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Outline

Do More with Less: 
Revolutionize 

Direction Finding 
with Sparse Arrays

Section I. Introduction

Section II. More consecutive lags and lower coupling

Section III. Sparsity-based processing and array design

A. Sparsity-based DOA estimation

B. Structured matrix completion for DOA estimation

C. Group sparsity-based DOA estimation

Section IV. Additional topics

Section V. Concluding Remarks
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Part I: Introduction

• Direction-of-arrival (DOA) estimation and applications 

• Narrowband array signal model

• Beamforming-based DOA estimation

• Subspace-based DOA estimation
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• Array processing uses multiple sensors 
(antennas, microphones, transducers) 
and plays a fundamental role in wireless 
communications, radar and sonar 
sensing, autonomous driving, speech 
separation, and medical imaging

• Beamforming
• Signal enhancement
• Interference cancellation
• Multi-user detection
• Multiple-input multiple-output (MIMO) 

systems
• Increased channel capacity 

• Sensing: Localization/imaging
• Ground-to-air radar
• Automotive radar
• Sonar
• Ultrasonic imaging

Applications of array processing
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Radar sensing often requires high-resolution results 
in four dimensions (4-D imaging): 
• Range: range resolution and accuracy are 

determined by signal bandwidth 
• Doppler frequency: corresponding to radial 

velocity with its resolution determined by pulse 
repetition frequency 

• Azimuth angle
• Elevation angle

Four-dimensional sensing

This talk focuses on the angle estimation problem:
Estimating the directions-of-arrival (DOAs) 
• more signals
• higher resolution
• few sensors  
We mainly consider 1-D DOA estimation using linear arrays, but 
2-D DOA estimation using 2-D arrays is also addressed. 

Doppler frequency 
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Signal model for ULA

• Radio frequency (RF) model for an 𝑁𝑁-element ULA: 

• Baseband model: 

𝒙𝒙 𝑡𝑡 = �𝒙𝒙 𝑡𝑡 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 =

𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)
⋮

𝑥𝑥𝑁𝑁(𝑡𝑡)

= 𝑠𝑠 𝑡𝑡

1
𝑒𝑒𝑗𝑗𝑗𝑗
⋮

𝑒𝑒𝑗𝑗 𝑁𝑁−1 𝑗𝑗

 = 𝑠𝑠 𝑡𝑡 𝒂𝒂(𝜃𝜃)

�𝒙𝒙 𝑡𝑡 =

�𝑥𝑥1(𝑡𝑡)
�𝑥𝑥2(𝑡𝑡)
⋮

�𝑥𝑥𝑁𝑁(𝑡𝑡)

= 𝑠𝑠 𝑡𝑡 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗
1
𝑒𝑒𝑗𝑗𝑗𝑗
⋮

𝑒𝑒𝑗𝑗 𝑁𝑁−1 𝑗𝑗

𝑠𝑠 𝑡𝑡 𝑒𝑒𝑗𝑗2𝑗𝑗𝑓𝑓𝑐𝑐𝑗𝑗

𝑠𝑠(𝑡𝑡 + 𝜏𝜏)𝑒𝑒𝑗𝑗𝑗𝑗(𝑗𝑗+𝜏𝜏) ≈ 𝑠𝑠(𝑡𝑡)𝑒𝑒𝑗𝑗𝑗𝑗(𝑗𝑗+𝜏𝜏) = 𝑠𝑠(𝑡𝑡)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗

θ

d

𝒂𝒂 𝜃𝜃 =

1
𝑒𝑒𝑗𝑗𝑗𝑗
⋮

𝑒𝑒𝑗𝑗 𝑁𝑁−1 𝑗𝑗

 =
1

𝑒𝑒𝑗𝑗2𝑗𝑗(𝑑𝑑/𝜆𝜆)sin(𝜃𝜃)

⋮
𝑒𝑒𝑗𝑗2𝑗𝑗(𝑁𝑁−1)(𝑑𝑑/𝜆𝜆)sin(𝜃𝜃)

Consider an 𝑁𝑁 -element uniform linear array 
(ULA) with inter-element spacing 𝑑𝑑. 
• Time delay for far-field signals: 𝜏𝜏 = (𝑑𝑑 sin𝜃𝜃)/𝑐𝑐 
      c: speed of propagation 
• Phase delay: 𝜙𝜙 = 2𝜋𝜋𝑓𝑓𝑐𝑐𝜏𝜏 = 2𝜋𝜋 𝑑𝑑/𝜆𝜆 sin𝜃𝜃
     𝑓𝑓𝑐𝑐: carrier frequency (𝜔𝜔 = 2𝜋𝜋𝑓𝑓𝑐𝑐)
     𝜆𝜆 = 𝑐𝑐/𝑓𝑓𝑐𝑐: wavelength

Steering vector:
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Signal model for ULA

Array signal model in the presence of 𝐾𝐾 signals

 𝒙𝒙 𝑡𝑡 = �
𝑘𝑘=1

𝐾𝐾

𝑠𝑠𝑘𝑘 𝑡𝑡 𝒂𝒂 𝜃𝜃𝑘𝑘 + 𝒏𝒏 𝑡𝑡 = 𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝒏𝒏(𝑡𝑡)

where

        𝒂𝒂(𝜃𝜃𝑘𝑘) = 1, e𝑗𝑗𝑗𝑗𝑘𝑘 , e𝑗𝑗2𝑗𝑗𝑘𝑘 ,⋯ , e𝑗𝑗 𝑁𝑁−1 𝑗𝑗𝑘𝑘 T
: steering vector

 𝜙𝜙𝑘𝑘 = 2𝜋𝜋 𝑑𝑑/𝜆𝜆 sin𝜃𝜃𝑘𝑘: phase delay between adjacent sensors 
        𝐀𝐀 = [𝒂𝒂 𝜃𝜃1 ,𝒂𝒂 𝜃𝜃𝐾𝐾 ,⋯ ,𝒂𝒂 𝜃𝜃𝐾𝐾 ]: array manifold matrix
        𝑨𝑨 𝑡𝑡 = 𝑠𝑠1 𝑡𝑡 ,⋯ , 𝑠𝑠𝐾𝐾 𝑡𝑡 T: signal vector

𝜃𝜃1
𝑠𝑠1(𝑡𝑡)

𝑠𝑠2(𝑡𝑡)
𝜃𝜃2

𝑤𝑤1∗

+

𝑦𝑦 𝑡𝑡 = 𝒘𝒘H𝒙𝒙(𝑡𝑡)

𝑤𝑤2∗ 𝑤𝑤𝑁𝑁∗

Beamforming for signal enhancement / interference cancellation: apply a weight vector 𝒘𝒘 
to 𝒙𝒙(𝑡𝑡) such that 𝒘𝒘H𝒂𝒂(𝜃𝜃𝑑𝑑)  for some desired signal takes a high value and 𝒘𝒘H𝒂𝒂(𝜃𝜃𝑖𝑖)  for some 
interference signals takes a small value

DOA estimation: determine the directions of signal arrivals, 𝜃𝜃1,⋯ , 𝜃𝜃𝐾𝐾, from the received signal 
vector 𝒙𝒙(𝑡𝑡) over (typically) multiple samples 𝑡𝑡 = 1,⋯ ,𝑇𝑇. 



8

A
 S
 P
 Lab

Beamforming-based DOA estimation

Traditional DOA estimation approach through 
beamforming (Fourier-based): 
• For 𝐱𝐱(𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝐚𝐚(𝜃𝜃0) , by assuming  𝒘𝒘 = 𝒂𝒂(𝜃𝜃) with 

different 𝜃𝜃 , the magnitude of 𝑦𝑦(𝑡𝑡,𝜃𝜃) = 𝒂𝒂H(𝜃𝜃)𝒙𝒙(𝑡𝑡) =
𝑠𝑠(𝑡𝑡)𝒂𝒂H(𝜃𝜃)𝒂𝒂(𝜃𝜃0) is peaked at 𝜃𝜃0. 

• This approach has a low resolution because the 
beamwidth is wide. 

• Note that the resolution is determined by the array 
aperture. 
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Beamforming-based DOA 
estimation has a low resolution

(Example of 6-element ULA)

Single signal

Two signals
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Beamforming-based DOA estimation

Achieving high resolution: 
• Larger array aperture 

• More sensors: High cost 
• Large spacing (uniform): Alias
• Sparse arrays (irregular): To be discussed further

• High-resolution DOA estimation methods
• Adaptive beamforming (e.g., Capon)
• Maximum likelihood estimation
• Subspace-based methods

• MUSIC
• ESPRIT

• Compressive sensing (sparse reconstruction) 

-90 -60 -30 0 30 60 90

Angle (degree)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 p
at

te
rn

30o 45o

30o 45o

11 sensors, 𝑑𝑑 = 𝜆𝜆/2

6 sensors, 𝑑𝑑 = 𝜆𝜆

𝜆𝜆/2
𝜆𝜆
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DOA estimation

Subspace-based DOA estimation techniques based on the subspace analysis of the 
covariance matrix are commonly used to achieve a high resolution.  

Covariance matrix:

Estimated covariance matrix using 𝑇𝑇 snapshots: 

�𝑹𝑹𝒙𝒙𝒙𝒙 =
1
𝑇𝑇�
𝑗𝑗=1

𝑇𝑇

𝒙𝒙 𝑡𝑡 𝒙𝒙H 𝑡𝑡

𝑹𝑹𝒙𝒙𝒙𝒙 = E 𝒙𝒙 𝑡𝑡 𝒙𝒙H 𝑡𝑡 =

E[𝑥𝑥1(𝑡𝑡)𝑥𝑥1∗(𝑡𝑡)] E[𝑥𝑥1(𝑡𝑡)𝑥𝑥2∗(𝑡𝑡)] E[𝑥𝑥1(𝑡𝑡)𝑥𝑥3∗(𝑡𝑡)] E[𝑥𝑥1(𝑡𝑡)𝑥𝑥4∗(𝑡𝑡)]
E[𝑥𝑥2(𝑡𝑡)𝑥𝑥1∗(𝑡𝑡)] E[𝑥𝑥2(𝑡𝑡)𝑥𝑥2∗(𝑡𝑡)] E[𝑥𝑥2(𝑡𝑡)𝑥𝑥3∗(𝑡𝑡)] E[𝑥𝑥2(𝑡𝑡)𝑥𝑥4∗(𝑡𝑡)]
E[𝑥𝑥3(𝑡𝑡)𝑥𝑥1∗(𝑡𝑡)] E[𝑥𝑥3(𝑡𝑡)𝑥𝑥2∗(𝑡𝑡)] E[𝑥𝑥3(𝑡𝑡)𝑥𝑥3∗(𝑡𝑡)] E[𝑥𝑥3(𝑡𝑡)𝑥𝑥4∗(𝑡𝑡)]
E[𝑥𝑥4(𝑡𝑡)𝑥𝑥1∗(𝑡𝑡)] E[𝑥𝑥4(𝑡𝑡)𝑥𝑥2∗(𝑡𝑡)] E[𝑥𝑥4(𝑡𝑡)𝑥𝑥3∗(𝑡𝑡)] E[𝑥𝑥4(𝑡𝑡)𝑥𝑥4∗(𝑡𝑡)]

Eigen-decomposition of the covariance matrix

 𝑹𝑹𝒙𝒙𝒙𝒙 =  �
𝑖𝑖=1

𝐾𝐾

𝜆𝜆𝑖𝑖𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊H  +  �
𝑖𝑖=𝐾𝐾+1

𝑁𝑁

𝜎𝜎𝑛𝑛2𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊H  =  𝑼𝑼𝑨𝑨𝚺𝚺𝑨𝑨𝑼𝑼𝑨𝑨H  +  𝑼𝑼𝒏𝒏𝚺𝚺𝒏𝒏𝑼𝑼𝒏𝒏H

Signal subspace      Noise subspace 
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Subspace-based DOA estimation

Eigen-decomposition of the covariance matrix

 𝑹𝑹𝒙𝒙𝒙𝒙 =  �
𝑖𝑖=1

𝐾𝐾

𝜆𝜆𝑖𝑖𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊H  +  �
𝑖𝑖=𝐾𝐾+1

𝑁𝑁

𝜎𝜎𝑛𝑛2𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊H  =  𝑼𝑼𝑨𝑨𝚺𝚺𝑨𝑨𝑼𝑼𝑨𝑨H  +  𝑼𝑼𝒏𝒏𝚺𝚺𝒏𝒏𝑼𝑼𝒏𝒏H

Observations: 
• The signal subspace and the noise subspace are orthogonal: 𝑼𝑼𝑨𝑨H𝑼𝑼𝒏𝒏 = 𝟎𝟎. 
• Valid signal steering vectors are orthogonal to the noise subspace: 𝑨𝑨H𝑼𝑼𝒏𝒏 = 𝟎𝟎. 

Pseudo spatial spectrum of MUSIC (MUltiple SIgnal Classification): 

• MUSIC is popular because only 1-D search is needed 
for multiple signals.

• An 𝑁𝑁-element ULA can detect 𝑁𝑁 − 1 signals.   
• Knowledge of the number of signals 𝐾𝐾 is required. 

Signal subspace      Noise subspace 

𝑃𝑃 𝜃𝜃 =
1

𝒂𝒂H 𝜃𝜃 𝑼𝑼𝑛𝑛𝑼𝑼𝑛𝑛H𝒂𝒂 𝜃𝜃
= 𝑼𝑼𝑛𝑛H𝒂𝒂 𝜃𝜃 2

−2

-100 -50 0 50 100

angle (deg)

0

1000

2000

3000

4000

no
rm

al
iz

ed
 p

at
te

rn

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas and 
Propagation, 1986.

30o 45o



12

A
 S
 P
 Lab

Sparse array design and processing

1955-1968

Minimum- 
redundancy 

array

1978

Minimum 
hole array

2010-2011

Systematical: 
Nested 

& coprime 
arrays

MUSIC:
Only utilize 

consecutive lags

2013

ONR 
program 

on coprime 
sampling

Section II. More consecutive lags and lower coupling
• Coprime array with compressed inter-element spacing (CACIS)
• Maximum inter-element spacing constraint (MISC) array

Section III. Sparsity-based processing and array design
III-A. Sparsity-based DOA estimation
• Coprime array with displaced subarrays (CADiS)
III-B. Structured matrix completion for DOA estimation
• Non-redundant sparse arrays
• 4D automotive radar sensing
III-C. Group sparsity-based DOA estimation
• Multi-frequency array
• Frequency-switching array

Section IV. Additional topics
• DOA estimation exploiting high-order statistics
• Distributed array with mixed-precision covariance matrices
• 2-D sparse arrays
• Signal coherency consideration
• Machine learning for DOA estimation
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Part II: More consecutive lags and lower coupling

• Difference coarrays

• Nested and coprime arrays

• More consecutive lags and less mutual coupling 

• Design examples: CACIS, nested family, MISC family



14

A
 S
 P
 Lab

Uniform and sparse sampling

d

𝜆𝜆 = 𝑐𝑐/𝑓𝑓𝑐𝑐

𝑇𝑇

𝑡𝑡

Nyquist theorem: Sampling interval for periodic 
sampling should satisfy 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇min/2.
For periodic components, their  parameters and 
waveforms may be estimated from sparse samples. 
Similarly, conventional arrays use uniform linear arrays 
(ULAs) with inter-element spacing of 𝑑𝑑 = 𝜆𝜆/2. 
Sparse arrays:
• Direct DOA estimation, we may sparsely place the 

array sensors with 𝑁𝑁 > 𝐾𝐾 satisfied. 
• Larger aperture; same degrees-of-freedom (DOFs)
• High sidelobe effects

• DOA estimation exploiting difference lags: A more 
popular approach based  on second-order statistics 
• It increases both the array aperture and the number of 

DOFs, estimating more signals than sensors 
• May achieve consecutive lags to effectively suppress 

sidelobe issues

Wavelength

𝒙𝒙 𝑡𝑡 = �
𝑘𝑘=1

𝐾𝐾

𝑠𝑠𝑘𝑘 𝑡𝑡 𝒂𝒂 𝜃𝜃𝑘𝑘 + 𝒏𝒏 𝑡𝑡

𝒂𝒂(𝜃𝜃𝑘𝑘) = 1, e𝑗𝑗𝑗𝑗𝑘𝑘 , e𝑗𝑗2𝑗𝑗𝑘𝑘 ,⋯ , e𝑗𝑗 𝑁𝑁−1 𝑗𝑗𝑘𝑘 T

𝜙𝜙𝑘𝑘 = 2𝜋𝜋 𝑑𝑑/𝜆𝜆 sin𝜃𝜃𝑘𝑘
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Difference coarray

Subspace-based DOA estimation exploits the data covariance matrix 𝑹𝑹𝒙𝒙𝒙𝒙.
For a ULA with uncorrected signals: 
• 𝑹𝑹𝒙𝒙𝒙𝒙 is Toeplitz (diagonal-constant) and Hermitian 
• 𝑹𝑹𝒙𝒙𝒙𝒙 is highly redundant: Only 𝑁𝑁 elements are unique in the 𝑁𝑁 × 𝑁𝑁 covariance matrix
• We may not need 𝑁𝑁 sensors to estimate the 𝑁𝑁 × 𝑁𝑁 covariance matrix
 

d

𝑹𝑹𝒙𝒙𝒙𝒙 =

E[𝑥𝑥1𝑥𝑥1∗] E[𝑥𝑥1𝑥𝑥2∗] E[𝑥𝑥1𝑥𝑥3∗] E[𝑥𝑥1𝑥𝑥4∗]
E[𝑥𝑥2𝑥𝑥1∗] E[𝑥𝑥2𝑥𝑥2∗] E[𝑥𝑥2𝑥𝑥3∗] E[𝑥𝑥2𝑥𝑥4∗]
E[𝑥𝑥3𝑥𝑥1∗] E[𝑥𝑥3𝑥𝑥2∗] E[𝑥𝑥3𝑥𝑥3∗] E[𝑥𝑥3𝑥𝑥4∗]
E[𝑥𝑥4𝑥𝑥1∗] E[𝑥𝑥4𝑥𝑥2∗] E[𝑥𝑥4𝑥𝑥3∗] E[𝑥𝑥4𝑥𝑥4∗]

Consider removing the third sensor from a 4-
element ULA:
• All the entries of the ULA covariance matrix 

can be recovered: e.g., E 𝑥𝑥2𝑥𝑥3∗ ⇒  E 𝑥𝑥1𝑥𝑥2∗ .
• The 4-element ULA and the 3-element 

sparse array are different coarray 
equivalent because they generate the same 
number of correlation lags. 

• For physical array 𝔾𝔾, the difference lags are 
given as: ℂ𝐺𝐺 = {𝒛𝒛|𝒛𝒛 = 𝒖𝒖 − 𝒗𝒗,𝒖𝒖,𝒗𝒗 ∈ 𝔾𝔾}. -2 -1 0 1-3 2 3

Correlation lags (difference coarray)
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Minimum redundancy array

Minimum redundancy array (MRA): For a given 
number of physical sensors, MRA maximizes the 
number of consecutive virtual sensors in the resulting 
difference coarray.
• Restricted arrays: All lags are consecutive
• General arrays: Not all lags are consecutive

The difference lags an 𝑁𝑁-element sparse array can 
achieve is in the order of 1

2
𝑁𝑁(𝑁𝑁 − 1). 

For an MRA, the redundancy is defined as 𝑅𝑅 =
1
2𝑁𝑁(𝑁𝑁−1)

𝑁𝑁max 
, 

where 𝑁𝑁max is the maximum number of consecutive 
lags. 
• 𝑅𝑅 is found to be 1.217 ≲ 𝑅𝑅 ≲ 1.674. 
However, MRA cannot be systematically designed. 

A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas and Propagation, 1968.
M. Ishiguro, "Minimum redundancy linear arrays for a large number of antennas," Radio Science, 
1980. 
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Systematical sparse array design: Nested array

Systematical design: Nested array is a simple sparse array configuration which consists of 
two uniform linear subarrays, one of which has a unit spacing.   

P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Trans. Signal Processing, 2010.

[Pal and Vaidyanathan’10]

• For nested arrays, all lags are consecutive. 
• Depending on the applications, the high number of consecutive 

physical sensors may cause high mutual coupling effect, 
degrading DOA estimation performance. 

• Mutual coupling brings higher impact when the interelement 
spacing is small (e.g., half-wavelength spacing or less).

• The coprime array is proposed as an alternative to nested array. 
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Systematical sparse array design: Coprime array

Coprime array: utilizes a pair of uniform linear subarrays 
with 𝑀𝑀 and 𝑁𝑁 being coprime integers (greatest common 
divisor gcd(𝑀𝑀,𝑁𝑁)  =  1).
Example: 𝑀𝑀 = 3 and 𝑁𝑁 = 5 (6 elements)

Physical array

Coarray

P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime sampler and arrays,” IEEE Trans. Signal Processing, 2011

• Unlike nested arrays, coprime arrays generally have holes in the resulting lags.
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Direct MUSIC-based DOA estimation

Vectorizing 𝑹𝑹𝒙𝒙𝒙𝒙 yields
𝒛𝒛 = vec 𝑹𝑹𝑥𝑥𝑥𝑥  = �𝑨𝑨 𝒃𝒃 + 𝜎𝜎𝑛𝑛 

2 �̃�𝒊 = 𝑨𝑨𝑜𝑜𝒃𝒃𝑜𝑜

�𝑨𝑨 = 𝒂𝒂 𝜃𝜃1 ⨂𝒂𝒂∗ 𝜃𝜃1 , … ,𝒂𝒂 𝜃𝜃𝑄𝑄 ⨂𝒂𝒂∗ 𝜃𝜃𝑄𝑄 : Manifold matrix for the difference coarray

𝒃𝒃 = 𝜎𝜎12, … ,𝜎𝜎𝑄𝑄2
T
: Source power vector

�̃�𝒊 = vec(𝑰𝑰𝑁𝑁)
𝑨𝑨𝑜𝑜 = [�𝑨𝑨, �𝑰𝑰] 
𝒃𝒃𝑜𝑜 = 𝒃𝒃T,𝜎𝜎n2 T 

𝒛𝒛 acts as received data of a virtual array (difference coarray)
• Manifold matrix corresponds to virtual sensors which are much more than physical antennas
• Only a single snapshot corresponding to vector 𝒃𝒃
• Subspace-based DOA estimation cannot be directly applied because the single-snapshot 

covariance matrix 𝒛𝒛𝒛𝒛𝐻𝐻 is rank-1 

P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.
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Direct MUSIC-based DOA estimation

Spatial smoothing

• By dividing the rank-1 matrix 𝑹𝑹  into 𝐾𝐾 = (𝑁𝑁𝑧𝑧 + 1)/2 
subarrays 𝑹𝑹𝑘𝑘, their average 1

𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝑹𝑹𝑘𝑘 becomes rank-𝐾𝐾. 

• It is equivalent to placing the elements of 
𝒛𝒛 = 𝑧𝑧− 𝐾𝐾−1 ,⋯ , 𝑧𝑧𝐾𝐾−1

𝑇𝑇 in a Hermitian and Toeplitz manner.

• Only consecutive lags can be used for this purpose (e.g., 
lags of [−7:1:7]; detect up to 7 signals). 

• In this context, optimum design of parse arrays is to 
• A high number of consecutive lags
• Low mutual coupling (few lag-1 and lag-2 pairs)

   

�𝑹𝑹𝑥𝑥𝑥𝑥 =

𝑧𝑧0 𝑧𝑧1 ⋯ 𝑧𝑧𝐾𝐾−1
𝑧𝑧−1 𝑧𝑧0 ⋯ 𝑧𝑧𝐾𝐾−2
⋮ ⋮ ⋱ ⋮

𝑧𝑧−(𝐾𝐾−1) 𝑧𝑧−(𝐾𝐾−2) ⋯ 𝑧𝑧0

P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.
C.-L. Liu and P. P. Vaidyanathan, "Remarks on the Spatial Smoothing Step in Coarray MUSIC," IEEE Signal Processing Letters, 2015.

𝑹𝑹𝑹𝑹1
𝑹𝑹2

𝑹𝑹𝐾𝐾

Example: 𝑁𝑁𝑧𝑧 = 15,𝐾𝐾 = 8
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Problems:
• Coprime array: have holes in the lags
• Nested array: high mutual coupling
CACIS (Coprime array with compressed inter-element spacing):
Compresses the interelement spacing of one subarray �𝑀𝑀 = 𝑀𝑀/𝑝𝑝 with 2 ≤ 𝑝𝑝 ≤ 𝑀𝑀 to increase 
the number of consecutive lags 𝜂𝜂𝑐𝑐

Generalized coprime arrays: CACIS

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015. 

Example: 𝑀𝑀 = 6,𝑁𝑁 = 7

�𝑀𝑀 = 3,𝑝𝑝 = 2,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 47 

�𝑀𝑀 = 2, 𝑝𝑝 = 3,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 59

�𝑀𝑀 = 1,𝑝𝑝 = 6,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 71 (nested)

�𝑀𝑀 = 6,𝑝𝑝 = 1,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 25 (prototype)

(Only showing nonnegative lags)
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More consecutive lags and less mutual coupling

J. Liu, Y. Zhang, Y. Lu, S. Ren and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Trans. Signal Processing, 2017.
A. Raza, W. Liu and Q. Shen, "Thinned coprime array for second-order difference co-array generation with reduced mutual coupling," IEEE Trans. Signal 
Processing, 2019.

Many sparse arrays are proposed for (i) more 
consecutive lags and (ii) less mutual coupling. 
• Augmented nested array: Split the densely 

located elements in inner subarray to reduce 
the mutual coupling. Several variations. 

• Thinned Coprime Array: provides the same 
number of consecutive lags, unique lags, and 
aperture as the conventional coprime array 
but with fewer sensors.
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Modified  versions:  Use  more
segments to achieve higher freedom 
and better performance
• Improved MISC (I-MISC)
• Enhanced MISC (EMISC)
• Symmetry improved MISC (S-IMISC)
• Extended MISC (xMISC)

Sparse array: MISC family

Z. Zheng, W-Q. Wang, Y. Kong, and Y. D. Zhang, "MISC Array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling 
effect," IEEE Trans. Signal Processing, 2019. 
W. Shi, Y. Li, and R. C. de Lamare, ”Novel sparse array design based on the maximum inter-element spacing criterion,” IEEE Signal Processing Letters, 2022.
X. Sheng, D. Lu, Y. Li, and R. C. de Lamare, “Enhanced MISC-based sparse array with high uDOFs and low mutual coupling,” IEEE Trans. Circuits and Systems II: 
Express Briefs, in press. 
X. Li, H. Yang, J. Han, and N. Dong, “A novel low-complexity method for near-field sources based on an S-IMISC array model,” Electronics, 2023. 
S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

with 𝑃𝑃 = 2 𝑁𝑁/4 + 2  (𝑁𝑁 ≥ 5)

MISC (4 segments)

I-MISC (6 segments)

MISC (maximum interelement spacing constraint): A four-segment configuration to 
achieve a high number of consecutive lags with low mutual coupling

xMISC (7 segments)
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S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

DOF ratio: 
𝛾𝛾 𝑁𝑁 =

𝑁𝑁2

𝒮𝒮𝑢𝑢
         𝒮𝒮𝑢𝑢: one-side uniform DOF (uDOF)

Coupling leakage:

ℒ 𝑁𝑁 =
𝑯𝑯− diag 𝑯𝑯 F

𝑯𝑯 F

    𝑯𝑯: mutual coupling matrix whose 
elements depends on the distance 
between elements

         Simulations assumed

𝑯𝑯 𝑗𝑗,𝑙𝑙 = �
𝑐𝑐|𝑗𝑗−𝑙𝑙|,  if 𝑗𝑗 − 𝑘𝑘 ≤ 𝑉𝑉
0,  otherwise 

        with 𝑐𝑐0 = 1, 𝑐𝑐1 = 0.2𝑒𝑒𝑗𝑗𝑗𝑗/3, 𝑐𝑐𝑏𝑏
𝑐𝑐𝑙𝑙

= 𝑙𝑙
𝑏𝑏

Sparse array: Performance evaluation

(𝑁𝑁=30)
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Part III: Sparsity-based processing and array design

III-A. Sparsity-based DOA estimation
• Compressive sensing
• Sparsity-based DOA estimation
• Coprime array with displaced subarrays (CADiS)

III-B. Structured matrix completion for DOA estimation

III-C. Group sparsity-based DOA estimation
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Sparse signal reconstruction:

given linear model   𝒚𝒚 = 𝚽𝚽𝒙𝒙
           with observation 𝒚𝒚 and dictionary matrix 𝚽𝚽
find 𝒙𝒙

• When 𝑀𝑀 < 𝑁𝑁, the linear model is underdetermined with infinite number of solutions.
• In order to obtain meaningful solutions, additional constraints are needed. 
• Sparsity-based signal reconstruction assumes sparsity in 𝑥𝑥. 
• For x with K nonzero entries, 𝒙𝒙 may be solvable when 𝐾𝐾 < 𝑀𝑀 ≪ 𝑁𝑁. 

                                     

Sparse signal reconstruction

𝑀𝑀 × 1 
measurements

𝑁𝑁 × 1 
sparse 
signal

𝐾𝐾 
non-zero 

entries

𝑀𝑀 ×  𝑁𝑁 
dictionary matrix

𝒚𝒚 =  𝚽𝚽 𝒙𝒙
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Sparse signal reconstruction

 Compressive sensing problems are expressed as
min
𝒙𝒙

𝒙𝒙 0 s. t.  𝒚𝒚 = 𝚽𝚽𝒙𝒙

 Considering noise, a more general expression is
min
𝒙𝒙

𝒙𝒙 0 s. t. 𝒚𝒚 −𝚽𝚽𝒙𝒙 2 ≤ 𝜖𝜖

      where 𝜖𝜖 > 0 specifies the tolerable bound. 
 Because of the 𝑙𝑙0 norm operation, such problems are non-convex and NP-hard. 

 Greedy algorithms 
Greedy construction of “support” (=column combination) by adding one-by-one/best choice at 
each iteration: Orthogonal matching pursuit (OMP), … 

 Convex relaxation 
Approximation of the cost by convex functions (typically l1-norm recovery): LASSO (least 
absolute shrinkage and selection operator), …

 Probabilistic inference 
(Approximate) employment of probabilistic inference: Bayesian compressive sensing (sparse 
Bayesian learning) 
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Sparse signal reconstruction: Greedy algorithms 

Orthogonal matching pursuit (OMP)
Initialization: Initialize 𝑘𝑘 =  0, and set 𝒙𝒙0 = 0, 𝒓𝒓0 = 𝒚𝒚 −𝚽𝚽𝒙𝒙0 = 𝒚𝒚, 𝕊𝕊0 = ∅

Main iteration: let 𝑘𝑘 =  𝑘𝑘 +  1, and perform the followings:

 - Rating of the columns: 𝜀𝜀(𝑖𝑖) = min
𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖𝝓𝝓𝑖𝑖 − 𝑟𝑟𝑘𝑘−1 2

 - Update support: 𝑖𝑖0 = arg min
𝑖𝑖∉𝕊𝕊𝑘𝑘−1

{𝜀𝜀(𝑖𝑖)}, 𝕊𝕊𝑘𝑘 = 𝕊𝕊𝑘𝑘−1 ∪ {𝑖𝑖0}

 - Update provisional solution: �𝒙𝒙𝑘𝑘 = arg min
𝑥𝑥𝕊𝕊𝑘𝑘

𝐲𝐲 − 𝚽𝚽𝕊𝕊𝑘𝑘𝐱𝐱𝕊𝕊𝑘𝑘
2

 - Update residual: 𝒓𝒓𝑘𝑘 = 𝒚𝒚 −𝚽𝚽𝕊𝕊𝑘𝑘�𝒙𝒙
𝑘𝑘

 - Stopping rule: Stop if   𝒓𝒓𝑘𝑘 < 𝜀𝜀0 holds. Otherwise, apply another iteration

 Basic idea – Sample vector 𝒚𝒚 stands for a linear combination of columns 𝜙𝜙𝑖𝑖 of 𝚽𝚽. 
 Construct an appropriate set of columns whose coefficients are non-zero, which is 

termed support, in a greedy manner. 

𝒚𝒚 =  𝚽𝚽 𝒙𝒙
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Sparse signal reconstruction: Convex relaxation

 Compressive sensing problem:
min
𝒙𝒙

𝒙𝒙 0 s. t. 𝒚𝒚 −𝚽𝚽𝒙𝒙 2 ≤ 𝜖𝜖

 The non-convex 𝑙𝑙0-norm problem is relaxed to 
𝑙𝑙1-norm one: 

min
𝒙𝒙

𝒙𝒙 1 s. t. 𝒚𝒚 −𝚽𝚽𝒙𝒙 2 ≤ 𝜖𝜖

 LASSO
min
𝒙𝒙

 𝒚𝒚 −𝚽𝚽𝒙𝒙 2 + 𝜂𝜂 𝒙𝒙 1

          𝜂𝜂: regularization parameter    

 𝑙𝑙1-norm
 is convex (easy to solve)
 has corners (to provide sparse solutions)
 Used in LASSO

𝑙𝑙𝑝𝑝-norm: 
||𝒙𝒙||𝑝𝑝

Not sparse     Sparse & convex

Not convex
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Sparse signal reconstruction: Sparse Bayesian learning

 Obtain maximum a posteriori (MAP) solution of 𝒙𝒙 from 
𝒚𝒚 = 𝚽𝚽𝒙𝒙 + 𝜺𝜺, 𝜺𝜺~𝒩𝒩(𝜺𝜺|𝟎𝟎,𝛽𝛽𝑰𝑰)

 Sparse Bayesian learning based on relevance vector machine:
𝑝𝑝(𝒚𝒚|𝚽𝚽,𝒙𝒙) = 𝒩𝒩(𝒚𝒚|𝚽𝚽𝒙𝒙,𝛽𝛽I)

     Place Gaussian prior on 𝒙𝒙

𝑝𝑝(𝒙𝒙|𝜸𝜸) = �
𝑖𝑖

𝒩𝒩(𝑥𝑥𝑖𝑖|0, 𝛾𝛾𝑖𝑖)

 Inverse Gamma priors are placed over hyperparameters 𝛽𝛽 and 𝜸𝜸

 Key advantages of sparse Bayesian learning (Bayesian compressive sensing):
 Close to 𝑙𝑙0-norm sparse solution 
 Less sensitive to sensing matrix coherence
 Convenient to consider signal structures through priors

M. E. Tipping, “Sparse Bayesian shrinkage and selection learning and the relevance vector machine,” Journal of Machine Learning Research, 2001.
S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sampling,” IEEE Trans. Signal Processing, 2009. [MATLAB code available]
Z. Zhang and B. D. Rao, "Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation," IEEE Trans. Signal Processing, 2013  
[MATLAB code available]
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Mutual coherence of dictionary matrix 

 Mutual coherence of a matrix: the largest absolute normalized inner products between 
different columns

 For dictionary matrix 𝚽𝚽 = [𝝓𝝓1,𝝓𝝓2, … ,𝝓𝝓𝑚𝑚], its mutual coherence is

𝜇𝜇 𝚽𝚽 = max
1≤𝑖𝑖≠𝑗𝑗≤𝑚𝑚

|𝜙𝜙𝑖𝑖𝐻𝐻𝜙𝜙𝑗𝑗|
||𝜙𝜙𝑖𝑖||2 ⋅ ||𝜙𝜙𝑗𝑗||2

 It characterize the dependence between columns of 𝚽𝚽 

 For unitary matrices, 𝜇𝜇 𝚽𝚽 = 0

 For recovery problems, we desire a small 𝜇𝜇 𝚽𝚽  as it is similar to unitary matrices

 In order to achieve high-resolution signal reconstruction, however, the mutual 
coherence could be high
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Sparsity-based DOA estimation

Sparsity-based DOA estimation: 

𝒛𝒛 = vec 𝑹𝑹𝑥𝑥𝑥𝑥  = �𝑨𝑨 𝒃𝒃 + 𝜎𝜎𝑛𝑛 
2 �̃�𝒊 = 𝑨𝑨𝑜𝑜𝒃𝒃𝑜𝑜

• The linear coarray model well fits into the compressive sensing problem by defining 
dense dictionary matrix 𝑨𝑨𝑔𝑔 over a grid, e.g., [−90: 1: 90]: 

min
𝒛𝒛

𝒃𝒃𝑔𝑔 0 s. t. 𝒛𝒛 − 𝑨𝑨𝑔𝑔𝒃𝒃𝑔𝑔 𝟐𝟐 ≤ 𝜖𝜖

• The positions of the nonzero solutions of 𝒃𝒃𝑔𝑔 represent the signal DOA

• This approach does not require a specific array structure (e.g., consecutive coarray lags) 
and all difference lags can be utilized in sparsity-based DOA estimation: Unique lags

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015. 

�𝑀𝑀 = 𝑀𝑀/𝑝𝑝 with 2 ≤ 𝑝𝑝 ≤ 𝑀𝑀 

CADiS (Coprime array with displaced subarrays): 
• Displaces two subarrays to increases unique lags 
• Very low mutual coupling
• In general, the resulting lags are disconnected in the 

center region
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In CADiS configurations, the self-lags are less likely to coincide with the cross-lags:
(a) 𝐿𝐿 > 𝑀𝑀− 2 𝑁𝑁 achieves the maximum number of unique lags
(b) 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁 yields the largest number of consecutive lags

Sparse array: CADiS

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015. 

�𝑀𝑀 = 3, 𝑝𝑝 = 2,𝑁𝑁 = 7, 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁, 𝜂𝜂𝑐𝑐 = 33, 𝜂𝜂𝑢𝑢 = 89

�𝑀𝑀 = 2, 𝑝𝑝 = 3,𝑁𝑁 = 7, 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁, 𝜂𝜂𝑐𝑐 = 38, 𝜂𝜂𝑢𝑢 = 87

�𝑀𝑀 = 1,𝑝𝑝 = 6,𝑁𝑁 = 7, 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁, 𝜂𝜂𝑐𝑐 = 85, 𝜂𝜂𝑢𝑢 = 85

• A smaller value of 
�𝑀𝑀 reduces the 
unique lags and 
reduces the 
number of holes 

• The lags become 
consecutive when 
�𝑀𝑀 = 1 (nested 
array)

𝜂𝜂𝑐𝑐: consecutive lags; 𝜂𝜂𝑢𝑢: unique lags
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Sparse arrays: Comparison

Consider 𝑀𝑀 = 6 and 𝑁𝑁 = 7 with 𝑀𝑀 + 𝑁𝑁 − 1 = 12 physical sensors
• LASSO-based method achieves better DOA estimation performance
• When LASSO is used, CADiS generally outperforms CACIS

(a)  CACIS with �𝑀𝑀 = 3 (𝜂𝜂𝑐𝑐 = 47)

(b)  CACIS with �𝑀𝑀 = 2 (𝜂𝜂𝑐𝑐 = 59)

MUSIC (𝟐𝟐𝟐𝟐 signals)

(a)  CACIS with �𝑀𝑀 =1 (𝜂𝜂𝑐𝑐 = 71)

(b)  CADiS with �𝑀𝑀 = 1 (𝜂𝜂𝑐𝑐 = 85)

MUSIC (𝟑𝟑𝟐𝟐 signals)

(a)  CACIS with �𝑀𝑀 = 2 (𝜂𝜂𝑢𝑢 = 65)

(b)  CADiS with �𝑀𝑀 = 2 (𝜂𝜂𝑢𝑢 = 87)

LASSO (𝟑𝟑𝟑𝟑 signals)
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A major problem with the compressive sensing-based DOA estimation approach is that the 
DOAs must be on the defined grid, e.g., [−90o : 1o : 90o]. 

Signals arriving from other DOAs will suffer the off-grid problem, e.g., signal from 43.6o.

• Less sparse solution
• Difficult to converge

Solutions  in  the  context  of 
compressive sensing: 
• Finer grid resolution
• Grid refining
• Off-grid estimation

An attractive method is to complete the covariance matrix (matrix completion) so that 
conventional subspace-based methods (e.g., MUSIC) can be applied. 

Off-grid problem

1o grid DOA estimation

−4o −4.6o
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Part III: Sparsity-based processing and array design

III-A. Sparsity-based DOA estimation

III-B. Structured matrix completion for DOA estimation
• Structured matrix completion methods
• Non-redundant sparse arrays
• 4D automotive radar sensing

III-C. Group sparsity-based DOA estimation
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Matrix completion

Netflix problem: Predict unknown scores. 
The data is low-rank, but the dictionary is 
unknown (unlike CS). 

Let Ω be the region where the elements of matrix 
𝑴𝑴  are observed (i.e., {𝑀𝑀𝑖𝑖𝑗𝑗| 𝑖𝑖, 𝑗𝑗 ∈ Ω} ), matrix 
completion finds a low-rank full matrix 𝑿𝑿 which 
matches 𝑴𝑴: 

min
𝑿𝑿

rank 𝑿𝑿 subject to 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑀𝑀𝑖𝑖𝑗𝑗  ∀ (𝑖𝑖, 𝑗𝑗) ∈ Ω

Because the problem involves matrix rank, it is non-convex and NP-hard.
Therefore, the matrix rank is often relaxed, e.g., to its nuclear norm: 

       where  ||𝑿𝑿||∗ = tr( 𝑿𝑿𝐻𝐻𝑿𝑿): nuclear norm of matrix 𝑿𝑿

min
𝑿𝑿

||𝑿𝑿||∗ s.t. 𝑋𝑋𝑖𝑖𝑗𝑗 = 𝑀𝑀𝑖𝑖𝑗𝑗 ∀ (𝑖𝑖, 𝑗𝑗) ∈ Ω
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Structured matrix completion of covariance matrix

A matrix cannot be completed when an entire row or column is 
missing in the observed matrix. 
• Cannot complete covariance matrix of physical array
• However, for ULA, we can recover the covariance matrix utilizing 

its Toeplitz and Hermitian structure
• The completed covariance matrix can be defined by only a single 

column vector 𝒘𝒘 as 𝓣𝓣(𝒘𝒘), and obtained from the nuclear norm 
minimization

      where    

           𝑩𝑩Ω: mask matrix with 𝑩𝑩Ω 𝑖𝑖𝑗𝑗 = �1,  if 𝑖𝑖, 𝑗𝑗 ∈ Ω
0,  otherwise

           𝑹𝑹𝒚𝒚: observed sparse covariance matrix (nonzero only in 𝑩𝑩Ω)          
 𝜉𝜉: regularization parameter

min
𝐳𝐳

𝓣𝓣 𝒘𝒘 − 𝑹𝑹𝒚𝒚 ∘ 𝑩𝑩Ω 𝐹𝐹
2 + 𝜉𝜉||𝓣𝓣(𝒘𝒘)||∗

subject to 𝓣𝓣 𝒘𝒘 ≽ 𝟎𝟎
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H. Qiao and P. Pal, "Unified analysis of co-array interpolation for direction-of-arrival estimation," IEEE ICASSP, 2017.
C. Zhou, Y. Gu, Z. Shi, and Y. D. Zhang, "Off-grid direction-of-arrival estimation using coprime array interpolation," 
IEEE Signal Processing Letters, 2018.

𝓣𝓣 𝒘𝒘 =

𝑤𝑤1 𝑤𝑤2∗ 𝑤𝑤3∗ 𝑤𝑤4∗
𝑤𝑤2 𝑤𝑤1 𝑤𝑤2∗ 𝑤𝑤3∗
𝑤𝑤3 𝑤𝑤2 𝑤𝑤1 𝑤𝑤2∗
𝑤𝑤4 𝑤𝑤3 𝑤𝑤2 𝑤𝑤1
𝒘𝒘

In a Hermitian Toeplitz matrix, a 
single column w uniquely specifies 
all the elements of the matrix.
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Atomic norm 
• A more general alternative is based on the minimization of the atomic norm. 
• Using atomic set 𝒜𝒜 = {𝒂𝒂𝑖𝑖}, an observation vector can be expressed as

𝒙𝒙 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝒂𝒂𝑖𝑖 , 𝒂𝒂𝑖𝑖 ∈ 𝒜𝒜

• The atomic norm of 𝒙𝒙 is defined as
𝒙𝒙 𝒜𝒜 = inf{𝑡𝑡 ≥ 0: 𝑥𝑥 ∈ 𝑡𝑡 ⋅ conv(𝒜𝒜)}

    where conv 𝒜𝒜  is the convex hull of conv(𝓐𝓐)}

Rank minimization-based structure matrix reconstruction
• Both nuclear and atomic norm minimization problems approximate rank minimization. 
• To prevent the approximation loss, the rank function can be reformulated  a multi-convex form. 

Structured matrix completion of covariance matrix

C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, "Direction-of-arrival estimation for coprime array via virtual array interpolation," IEEE Trans. Signal 
Processing, 2018. 
Y. Chi and M. Ferreira Da Costa, "Harnessing sparsity over the continuum: Atomic norm minimization for superresolution," IEEE Signal Processing Magazine, 2020. 
S. Liu, Z. Mao, Y. D. Zhang, and Y. Huang, "Rank minimization-based Toeplitz reconstruction for DoA estimation using coprime array," IEEE Communications 
Letters, July 2021.
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Matrix completion-aware sparse array design 

Matrix completion 
• Fills in information in missing lags
• Converts missing holes in the lag from obstacles in consecutive-lag construction into a resource for 

aperture extension
• Enabling off-grid DOA estimation with larger array apertures

With such capability, how shall we consider the “optimality” of a sparse array? 
We introduce optimized non-redundant array (ONRA):
• Redundancy-free: Each lag only appears once (except lag-0)
• Introduce holes in the lag for reducing mutual coupling and enlarging array aperture 
• Optimized using mixed-integer linear programming approach (not systematical)

Direct 
MUSIC

MUSIC with 
matrix 
completion

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.
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Non-redundant sparse array: Comparison

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.

• Comparison for 6-sensor arrays (DOA estimation for 
13 sources; LASSO)

• ONRA has very low mutual coupling effect as the 
minimum interelement spacing is 2 units

Coprime array (9 lags; max lag 9)      Nested array (12 lags; max lag 11 )       MISC array (14 lags; max lag 13)           ONRA (16 lags; max lag 22) 
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• Radar has emerged as one of the key technologies in 
autonomous driving systems. 
• Low-cost implementation

• Resilient sensing in all weather/lighting conditions

• Automotive radar first performs range Doppler 
mapping, and the result data may only provide few 
(even one) data samples. 

• A large aperture in both azimuth and elevation is 
important to identify objects and enable drive-over and 
drive-under.

• To achieve a ∆𝜃𝜃 = 1o resolution, a 2D array with an 
aperture of 𝐷𝐷 = 1.4/(𝜋𝜋 sin(∆𝜃𝜃/2)) ≈ 51 wavelengths 
is needed in each dimension.

• Very few antennas can be used to keep a low cost.

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented 
approach,” IEEE Journal of Selected Topics in Signal Processing, 2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and 
waveform design in 4D automotive radar," IEEE Signal Processing Society Webinar Series, Sept. 2023.
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MIMO radar and sum coarray

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.

• Sparse 2-D MIMO radar is commonly used to achieve 
sum coarray. 

• The sum coarray in a MIMO radar is synthesized as 
𝑆𝑆 = 𝑥𝑥 + 𝑦𝑦 𝑥𝑥 ∈ 𝕊𝕊𝑇𝑇  ,𝑦𝑦 ∈ 𝕊𝕊𝑅𝑅}, where 𝕊𝕊𝑇𝑇 and 𝕊𝕊𝑅𝑅 are Tx 
and Rx antenna positions.

Rx

Tx

Sum coarray

• Texas Instruments (TI) 
AWRx Cascaded Radar RF 
Evaluation Module 
(MMWCAS-RF-EVM) use 
12 Tx 16 Rx configuration to 
provide a large horizontal 
sum coarray and small 
vertical aperture. 
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Simulation example: 
• Consider randomly placing 12 Tx and 16 Rx antennas in about 100 half-wavelength 2D 

range with 196 virtual antennas: Very sparse antenna placement
• Direct 2-D imaging renders high sidelobes due to missing elements in the sum coarray
• Data completion is important to recover a uniform rectangular array (URA) and reduce the 

sidelobes  
• How to perform data completion when there is a single snapshot?  

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.

Physical antennas             virtual sensors of sum coarray      Azimuth & elevation imaging without completion and with completion              
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Hankel matrix construction for 𝑀𝑀-element ULA: 
• Assume noiseless array response 𝒚𝒚 = 𝑦𝑦1, 𝑦𝑦2, … ,𝑦𝑦𝑀𝑀 𝑇𝑇, we construct a Hankel matrix as

ℋ 𝒚𝒚 =

𝑦𝑦1 𝑦𝑦2 ⋯ 𝑦𝑦𝐿𝐿
𝑦𝑦2 𝑦𝑦3 ⋯ 𝑦𝑦𝐿𝐿+1
𝑦𝑦3 𝑦𝑦4 ⋯ 𝑦𝑦𝐿𝐿+2 
⋮ ⋮ ⋱ ⋮
𝑦𝑦𝑀𝑀1 𝑦𝑦𝑀𝑀1+1 ⋯ 𝑦𝑦𝑀𝑀

     where 𝐿𝐿 is the pencil parameter and 𝑀𝑀1 = 𝑀𝑀− 𝐿𝐿 + 1
• When 𝐾𝐾 (𝐾𝐾 <  𝑀𝑀1 and 𝐾𝐾 <  𝐿𝐿) sources imping to the array, the Hankel matrix ℋ 𝒚𝒚  has a 

Vandermonde decomposition structure ℋ 𝒚𝒚 = 𝑨𝑨 𝚺𝚺𝑠𝑠𝑩𝑩𝑇𝑇 with rank 𝐾𝐾, where

 𝑨𝑨 = 𝒂𝒂 𝜃𝜃1 ,⋯ ,𝒂𝒂(𝜃𝜃𝐾𝐾)  with 𝒂𝒂 𝜃𝜃𝑘𝑘 = 1, 𝑒𝑒
𝑗𝑗2𝑗𝑗𝑑𝑑 sin 𝜃𝜃𝑘𝑘

𝜆𝜆 ,⋯ , 𝑒𝑒
𝑗𝑗2𝑗𝑗 𝑀𝑀1−1 𝑑𝑑 sin 𝜃𝜃𝑘𝑘

𝜆𝜆
𝑇𝑇

 𝑩𝑩 = 𝒃𝒃 𝜃𝜃1 ,⋯ ,𝒃𝒃(𝜃𝜃𝐾𝐾)  with 𝒃𝒃 𝜃𝜃𝑘𝑘 = 1, 𝑒𝑒
𝑗𝑗2𝑗𝑗𝑑𝑑 sin 𝜃𝜃𝑘𝑘

𝜆𝜆 ,⋯ , 𝑒𝑒
𝑗𝑗2𝑗𝑗 𝐿𝐿−1 𝑑𝑑 sin 𝜃𝜃𝑘𝑘

𝜆𝜆
𝑇𝑇

 𝚺𝚺𝑠𝑠 = diag([𝛽𝛽1,⋯ ,𝛽𝛽𝐾𝐾])

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal 
Processing Society Webinar Series, Sept. 2023.
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Hankel matrix completion for sparse linear array: 

• Missing sum coarray elements render a Hankel matrix with missing elements:

ℋ 𝒚𝒚 =

𝑦𝑦1 𝑦𝑦2 ⋯ 𝑦𝑦𝐿𝐿
𝑦𝑦2 𝑦𝑦3 ⋯ 𝑦𝑦𝐿𝐿+1
𝑦𝑦3 𝑦𝑦4 ⋯ 𝑦𝑦𝐿𝐿+2 
⋮ ⋮ ⋱ ⋮
𝑦𝑦𝑀𝑀1 𝑦𝑦𝑀𝑀1+1 ⋯ 𝑦𝑦𝑀𝑀

• The forward-only Hankel matrix completion problem is to find a Hankel matrix ℋ 𝒚𝒚  that 
has a minimum rank and its distance to the original data matrix at the observed 
positions meets the required error bound 𝛿𝛿: 

 min
𝒙𝒙

 rank ℋ 𝒙𝒙

                         s. t. ℋ 𝒙𝒙 ∘𝑴𝑴−ℋ 𝒚𝒚 𝐹𝐹 ≤ 𝛿𝛿 
     where 𝑴𝑴 is a mark matrix.

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal 
Processing Society Webinar Series, Sept. 2023.
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2-D sparse array completion: 
• We can construct an 𝑁𝑁1 × (𝑀𝑀1 − 𝑁𝑁1 + 1) block Hankel matrix as :

𝒀𝒀𝐸𝐸 =

𝒀𝒀0 𝒀𝒀1 ⋯ 𝒀𝒀𝑀𝑀1−𝑁𝑁1
𝒀𝒀1 𝒀𝒀2 ⋯ 𝒀𝒀𝑀𝑀1−𝑁𝑁1+1
𝒀𝒀2 𝒀𝒀3 ⋯ 𝒀𝒀𝑀𝑀1−𝑁𝑁1+2
⋮ ⋮ ⋱ ⋮

𝒀𝒀𝑁𝑁1−1 𝒀𝒀𝑁𝑁1 ⋯ 𝒀𝒀𝑀𝑀1−1

  with   𝒀𝒀𝑚𝑚 =

𝑥𝑥𝑚𝑚,0 𝑥𝑥𝑚𝑚,1 ⋯ 𝑥𝑥𝑚𝑚,𝑀𝑀2−𝐿𝐿
𝑥𝑥𝑚𝑚,1 𝑥𝑥𝑚𝑚,2 ⋯ 𝑥𝑥𝑚𝑚,𝑀𝑀2−𝐿𝐿+1
𝑥𝑥𝑚𝑚,2 𝑥𝑥𝑚𝑚,3 ⋯ 𝑥𝑥𝑚𝑚,𝑀𝑀2−𝐿𝐿+2 
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑚𝑚,𝐿𝐿−1 𝑥𝑥𝑚𝑚,𝐿𝐿 ⋯ 𝑥𝑥𝑚𝑚,𝑀𝑀2−1

• The array response of the URA can be obtained via completing the block Hankel matrix 
YE based on the array response of sparse arrays.

Decoupled atomic norm minimization
• The high-dimensional problem can be decoupled Toeplitz matrices in one dimension, 

followed by 1D angle estimation with automatic angle pairing. 
• The computational complexity is reduced by several orders of magnitude.

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.
Z. Tian, Z. Zhang and Y. Wang, "Low-complexity optimization for two-dimensional direction-of-arrival estimation via decoupled atomic norm minimization," IEEE ICASSP, 
2017. 
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Part III: Sparsity-based processing and array design

III-A. Sparsity-based DOA estimation

III-B. Structured matrix completion for DOA estimation

III-C. Group sparsity-based DOA estimation
• Multi-frequency array
• Frequency-switching array
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• Difference coarray is obtained from array data 
covariance matrix, which requires (time-domain) 
snapshots. 

• Can we further utilize resources in other domains, 
such as frequency? 

• Multi-frequency sparse array exploits two or more 
frequencies to obtain virtual arrays.

Multi-frequency sparse array

Transmitted signals

Received signals

f1
f2

A sparse ULA

Sparse ULA Equivalent structure with two coprime frequencies

𝐷𝐷 = 𝑀𝑀𝑖𝑖
𝜆𝜆𝑖𝑖
2 , 𝑖𝑖 = 1,⋯ , 𝐼𝐼

D

0 1 2
…

1L −

M1d

…
0 1 2

M2d

…
0 1 2

1L −

1L −

Integers 𝑀𝑀1 and 𝑀𝑀2 are coprime 

S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation exploiting a uniform linear array with multiple co-prime frequencies,” Signal Processing, 2017.
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Maximize the number of virtual 
sensors: choosing the array 
configuration and frequencies such that 
the virtual sensors corresponding to 
different frequencies do not overlap. 

Example: 3 antennas, 3 frequencies

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.

• 7 virtual sensors at 0, 6, 7, 9, 24, 28, 36 �̅�𝑑, where �̅�𝑑 
denotes half-wavelength without referring to a 
specific frequency 

• 10 non-negative self-lags:
 {0, 6, 7, 9, 18, 21, 24, 27, 28, 36}�̅�𝑑

• 12 non-negative cross-lags:
1, 2, 3, 4, 8, 12, 15, 17, 19, 22, 29, 30 �̅�𝑑

• All lags appear only once (redundancy-free)
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• Received signal vector for frequency 𝑖𝑖 from 𝐾𝐾 sources

• We obtain 𝐼𝐼2 covariance matrices

𝑹𝑹𝒙𝒙𝕊𝕊𝑖𝑖𝒙𝒙𝕊𝕊𝑗𝑗 = E 𝒙𝒙𝕊𝕊𝑖𝑖 𝑡𝑡 𝒙𝒙𝕊𝕊𝑗𝑗
𝐻𝐻 𝑡𝑡 = �

𝑨𝑨𝕊𝕊𝑖𝑖𝑹𝑹𝕊𝕊𝑖𝑖𝕊𝕊𝑖𝑖𝑨𝑨𝕊𝕊𝑖𝑖
𝐻𝐻 + 𝜎𝜎𝑛𝑛2𝑰𝑰𝐿𝐿, 𝑖𝑖 = 𝑗𝑗

𝑨𝑨𝕊𝕊𝑖𝑖𝑹𝑹𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗𝑨𝑨𝕊𝕊𝑗𝑗
𝐻𝐻 ,  𝑖𝑖 ≠ 𝑗𝑗

• Important to note that 𝜌𝜌𝑘𝑘𝑖𝑖 𝑡𝑡 ≠ 𝜌𝜌𝑘𝑘
𝑗𝑗(𝑡𝑡) 

• 𝑹𝑹𝕊𝕊𝑖𝑖𝕊𝕊𝑖𝑖 is real diagonal, but 𝑹𝑹𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗 is generally complex and differs for different frequency 
pairs

• The signals observed at different frequencies cannot be directly combined or stacked 
together 

• However, because they share the same signal DOAs, group sparsity-based 
approaches are effective to perform DOA estimation

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.

𝒙𝒙𝕊𝕊𝑖𝑖(𝑡𝑡) = �
𝑘𝑘=1

𝐾𝐾

𝜌𝜌𝑘𝑘𝑖𝑖 (𝑡𝑡)𝒂𝒂𝕊𝕊𝑖𝑖 𝜃𝜃𝑘𝑘 + 𝒏𝒏𝕊𝕊𝑖𝑖(𝑡𝑡)
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Array interpolation using self-lags only
• Construct 𝑹𝑹𝒙𝒙𝕌𝕌 𝒙𝒙𝕌𝕌

𝑖𝑖  corresponding to the ULA for frequency 
𝑖𝑖 from 𝑹𝑹𝒙𝒙𝕊𝕊𝑖𝑖𝒙𝒙𝕊𝕊𝑖𝑖 , and estimate 𝑹𝑹𝒚𝒚𝕌𝕌 𝒚𝒚𝕌𝕌 as

𝑹𝑹𝑦𝑦𝕌𝕌𝑦𝑦𝕌𝕌 = �
𝑖𝑖=1

𝐼𝐼

𝑹𝑹𝒙𝒙𝕌𝕌 𝒙𝒙𝕌𝕌
𝑖𝑖 ∘ 𝑩𝑩𝑖𝑖 ∘ 𝑫𝑫

    where 𝐵𝐵𝑖𝑖 𝑚𝑚,𝑛𝑛  denotes binary mask,  

𝐷𝐷 𝑚𝑚,𝑛𝑛 =
1

∑𝑖𝑖=1𝐼𝐼 𝐵𝐵𝑖𝑖 𝑚𝑚,𝑛𝑛 + 𝜖𝜖

     and 𝜖𝜖 > 0 is a small positive value
• Sparsity-based optimization
 min

𝒘𝒘,𝑹𝑹
 𝓣𝓣 𝒘𝒘 ∘ 𝑩𝑩 − 𝑹𝑹𝑦𝑦𝕌𝕌𝑦𝑦𝕌𝕌 𝐹𝐹

2 + 𝜁𝜁 Tr 𝓣𝓣(𝒘𝒘)

 s. t.  𝓣𝓣(𝒘𝒘) ≽ 0
      𝒯𝒯(𝒘𝒘): Hermitian Toeplitz matrix with 𝒘𝒘 as the first column     
 𝜁𝜁: regularization parameter

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.

𝓣𝓣 𝒘𝒘 =

𝑤𝑤1 𝑤𝑤2∗ 𝑤𝑤3∗ 𝑤𝑤4∗
𝑤𝑤2 𝑤𝑤1 𝑤𝑤2∗ 𝑤𝑤3∗
𝑤𝑤3 𝑤𝑤2 𝑤𝑤1 𝑤𝑤2∗
𝑤𝑤4 𝑤𝑤3 𝑤𝑤2 𝑤𝑤1
𝒘𝒘

In a Hermitian Toeplitz matrix, a 
single column w uniquely specifies 
all the elements of the matrix.



53

A
 S
 P
 Lab

Array interpolation using both self- and cross-lags
• Exploiting both self- and cross-lags more effective utilization 

of the observed information. 
• Vectorizing 𝑹𝑹𝒙𝒙𝕊𝕊𝑖𝑖𝒙𝒙𝕊𝕊𝑗𝑗, 𝑖𝑖 ≠ 𝑗𝑗, renders

 𝒛𝒛𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗 = vec 𝑹𝑹𝒙𝒙𝕊𝕊𝑖𝑖𝒙𝒙𝕊𝕊𝑗𝑗 = �𝑨𝑨𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗𝒓𝒓𝑖𝑖,𝑗𝑗 = 𝚽𝚽𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗 �𝒓𝒓𝑖𝑖,𝑗𝑗
     where 𝚽𝚽𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗 = [�𝑨𝑨𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗  0] is the dictionary counting for noise term 

• Because 𝒓𝒓𝑖𝑖,𝑗𝑗 differs to each other, we need to solve them for all 
frequency pairs, rendering a high number of unknowns 

• However, all these unknown vectors should have the same 
support, i.e., same nonzero positions indicating the same 
signal DOAs. 

• Such property is referred to as group sparsity, and group 
compressive sensing methods can achieve near-coherent data 
fusion. 

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.
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Group sparsity

𝒚𝒚(𝑖𝑖) = 𝚽𝚽(𝑖𝑖) 𝒙𝒙(𝑖𝑖) 

𝒙𝒙(1) 𝒙𝒙(2)

Same positions 
of nonzero 
values, but 
generally with 
different values
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Group sparsity

• OMP and Lasso use mixed 𝑙𝑙2/𝑙𝑙1-norm ( 𝑙𝑙2 -norm of the absolute 
values; also called mixed 𝑙𝑙12-norm) to handle signal group sparsity. 

• 𝑙𝑙1-norm relaxation  mixed 𝑙𝑙1,2-norm relaxation
min 𝒙𝒙 1,2  s. t. 𝒚𝒚 −𝚽𝚽𝒙𝒙 2 ≤ 𝜖𝜖

    where 

𝒚𝒚 =

𝒚𝒚(1)

𝒚𝒚(2)

⋮
𝒚𝒚(𝐿𝐿)

𝒙𝒙 =
𝒙𝒙(1)

𝒙𝒙(2)

⋮
𝒙𝒙(𝐿𝐿)

𝚽𝚽 =
𝚽𝚽(1)

𝚽𝚽(2)

⋱
𝚽𝚽(𝐿𝐿)

• Multitask sparse Bayesian learning uses the same prior for different tasks 
𝒚𝒚𝑙𝑙 = 𝚽𝚽𝑙𝑙𝒙𝒙𝑙𝑙 + 𝜺𝜺𝑙𝑙 , 𝛆𝛆𝑙𝑙~𝒩𝒩(𝟎𝟎,𝛽𝛽𝑙𝑙𝑰𝑰)
𝑝𝑝(𝒚𝒚𝑙𝑙|𝚽𝚽𝑙𝑙 ,𝒙𝒙𝑙𝑙) = 𝒩𝒩(𝒚𝒚𝑙𝑙|𝚽𝚽𝑙𝑙𝒙𝒙𝑙𝑙 ,𝛽𝛽𝑙𝑙𝑰𝑰)

𝑝𝑝(𝒙𝒙𝑙𝑙|𝛄𝛄) = �
𝑖𝑖

𝒩𝒩(𝑥𝑥𝑙𝑙,𝑖𝑖|0, 𝛾𝛾𝑖𝑖) Same prior 𝜸𝜸 is used for all 𝒙𝒙𝑙𝑙
L. Jacob, G. Obozinski, and J-P. Vert, “Group Lasso with overlap and graph Lasso,” International Conference on Machine Learning, 2009.
Y. C. Eldar, P. Kuppinger, and H. Bölcskei, “Block-sparse signals: Uncertainty relations and efficient recovery,” IEEE Trans. Signal Processing, 2010.
S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sampling,” IEEE Trans. Signal Processing, 2009. [MATLAB code available]
Z. Zhang and B. D. Rao, "Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation," IEEE Trans. Signal Processing, 2013  
[MATLAB code available]
Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, "Complex multitask Bayesian compressive sensing," IEEE ICASSP, 2014.
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Group sparse reconstruction
• Achieve near-coherent data fusion
• Useful in DOA estimation when involving unknown phase

Array Interpolation Using Both Self- and Cross-lags (con’t)
• Vectorizing 𝓣𝓣(𝒘𝒘) renders 𝑧𝑧𝕌𝕌𝕌𝕌 = vec 𝓣𝓣 𝒘𝒘 = 𝚽𝚽𝕌𝕌𝕌𝕌 𝒓𝒓
• Group sparsity-based optimization

 min
𝒘𝒘, 𝓡𝓡

𝓣𝓣 𝒘𝒘 ∘ 𝑩𝑩 − 𝑹𝑹𝑦𝑦𝕌𝕌𝑦𝑦𝕌𝕌 F
2 + 𝜁𝜁 Tr 𝓣𝓣(𝒘𝒘) + 𝛽𝛽1 �

1≤𝑖𝑖<𝑗𝑗≤𝐼𝐼

𝒛𝒛𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗 −𝚽𝚽𝕊𝕊𝑖𝑖𝕊𝕊𝑗𝑗 𝒓𝒓𝑖𝑖,𝑗𝑗 2
 + 𝛽𝛽1 𝑧𝑧𝕌𝕌𝕌𝕌 − 𝚽𝚽𝕌𝕌𝕌𝕌𝒓𝒓 2 + 𝛽𝛽2 𝓡𝓡 1,2

 s. t.  𝓣𝓣(𝒘𝒘) ≽ 0
    where 𝓡𝓡 = [𝒓𝒓1,2, 𝒓𝒓1,3, … , 𝒓𝒓𝐼𝐼−1,𝐼𝐼, 𝒓𝒓], 𝛽𝛽1 and 𝛽𝛽2 are regularization parameters, and the 𝑙𝑙1,2-norm of 𝓡𝓡 is

 𝓡𝓡 1,2 = �
𝑚𝑚=1

𝐺𝐺+1

�
𝑛𝑛=1

𝐼𝐼 𝐼𝐼−1
2 +1

𝓡𝓡 𝑚𝑚, 𝑛𝑛 𝓡𝓡∗ 𝑚𝑚,𝑛𝑛

1/2

                𝐺𝐺: dimension of 𝒓𝒓 (number of angular grid points)

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.
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Simulation example:

• 𝐾𝐾 =  8 targets are uniformly distributed in [−14o, 14o]
• Input SNR = 10 dB for all targets
• 𝑇𝑇 =  100 snapshots

Multi-frequency sparse array

A. Ahmed, D. Silage, and Y. D. Zhang, “High-resolution target sensing using multi-frequency sparse array,” IEEE SAM Workshop, 2020. 
S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “DOA estimation exploiting interpolated multi-frequency sparse array,” IEEE SAM Workshop, 2020. 
S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.

Group lasso without 
array interpolation 

[Ahmed 2020] 

MUSIC after array 
interpolation with self-lags 

[Zhang 2020] 

MUSIC using both self- 
and cross-lags 
[Zhang 2021]
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• Multi-frequency sparse arrays require 
wideband processing of the received signal 
with a high complexity, making them 
infeasible for certain applications.

• Frequency-switching sparse arrays provide 
an effective alternative with similar 
performance. 

• At any time, only a single-frequency 
component is processed. 

Frequency-switching sparse array

Y. D. Zhang and M. W. T. S. Chowdhury, "Frequency-switching sparse arrays," IEEE SAM Workshop, 2024.

• Multi-frequency: Power divided by 𝐼𝐼; all time samples used
• Frequency-selective: full power used; time samples divided by 𝐼𝐼
Processing
• Similar processing methods to the multi-frequency sparse arrays can be used to perform 

array interpolation and DOA estimation
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Frequency-switching sparse array

Y. D. Zhang and M. W. T. S. Chowdhury, "Frequency-switching sparse arrays," IEEE SAM Workshop, 2024.

Cramer-Rao Bound (CRB) analysis
• Frequency-switches lowers the CRB at low SNR
• For over-determined DOA estimation, both sparse 

arrays achieve the same CRB at high SNR region
• For under-determined DOA estimation, multi-frequency 

sparse arrays achieve lower CRB at high SNR, due to 
the floor with the SNR

Example:
• 5 physical sensors; 𝐼𝐼 = 2 frequencies
• 𝑇𝑇 = 5000 snapshots
• 4 or 10 signals uniformly distributed in [−60o, 60o] 

Overdetermined case (4 signals) 

Underdetermined case (10 signals) 
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Part IV: Additional Topics

• DOA estimation exploiting high-order statistics

• Distributed array with mixed-precision covariance matrices

• Signal coherency consideration

• Machine learning for DOA estimation
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Fourth-order difference coarray

A. Ahmed, Y. D. Zhang, and B. Himed, "Effective nested array design for fourth-order cumulant-based DOA estimation," IEEE Radar Conference, 2017.

• For zero-mean signals, fourth-order cumulant is defined as
𝑐𝑐 𝑙𝑙 = cum 𝑥𝑥𝑞𝑞1 , 𝑥𝑥𝑞𝑞2

∗ , 𝑥𝑥𝑞𝑞3 , 𝑥𝑥𝑞𝑞4
∗

 = E 𝑥𝑥𝑞𝑞1𝑥𝑥𝑞𝑞2
∗ 𝑥𝑥𝑞𝑞3𝑥𝑥𝑞𝑞4

∗ − E 𝑥𝑥𝑞𝑞1𝑥𝑥𝑞𝑞2
∗ E 𝑥𝑥𝑞𝑞3𝑥𝑥𝑞𝑞4

∗ − E 𝑥𝑥𝑞𝑞1𝑥𝑥𝑞𝑞4
∗ E{𝑥𝑥𝑞𝑞2

∗ 𝑥𝑥𝑞𝑞3} − E 𝑥𝑥𝑞𝑞2
∗ 𝑥𝑥𝑞𝑞4

∗ E{𝑥𝑥𝑞𝑞1𝑥𝑥𝑞𝑞3}
• Compared to the difference coarray based on second-order statistics, fourth-order statistics 

offers more lags and solves more sources because it utilizes sum co-array of two 
difference co-arrays

• Typically, fourth-order difference coarrays require a much higher number of snapshots to 
obtain a good estimate of the statistics

0 1 2 3 4-1-2-3-4-5-6-7-8 5 6 7 8

Physical array sensors

Difference co-array (second-order)

Fourth-order difference co-array
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Fourth-order difference coarray

A. Ahmed, Y. D. Zhang, and B. Himed, "Effective nested array design for fourth-order cumulant-based DOA estimation," IEEE Radar Conference, 2017.

Simulation example
• 7-element nested array (𝑀𝑀 = 3,𝑁𝑁 = 4)
• Four-order statistics provides consecutive lags 

between −84 and 84 
• Number of uncorrelated sources = 40 
• Uniformly distributed from −60o to 60o

• Number of snapshots = 500,000 
• Additive white Gaussian noise with 0 dB input SNR
• MUSIC spectrum show all signals are resolved

𝑁𝑁 = 4 𝑀𝑀 = 3

𝐿𝐿 = 2𝑀𝑀𝑁𝑁 + 𝑁𝑁 −𝑀𝑀 𝑑𝑑 = 25𝑑𝑑 𝐷𝐷 = 2𝑁𝑁 − 1 𝑑𝑑 = 7𝑑𝑑

This “nested array” configuration achieves 16𝑀𝑀𝑁𝑁 − 8𝑀𝑀 + 1 = 169 consecutive lags.
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Distributed array with mixed-precision data fusion

Y. D. Zhang and M. W. T. S. Chowdhury, "Direction-of-arrival estimation in closely distributed array exploiting mixed-precision covariance matrices," Signal Processing, 
2024.

• A large array is required to achieve high resolution and 
high number of DOFs. 

• Distributed array processing enables forming a large virtual 
array by exploiting multiple distributed subarrays. 

• Signals received from distributed subarrays can be fused 
and processed coherently or non-coherently. 

• Coherent signal fusion requires, among others, raw data 
from subarrays at the fusion center: High traffic overhead

 • We consider a mixed-precision processing 
technique to achieve coherent processing with 
low traffic overhead.
o Each subarray sends the full-precision self-

covariance matrix and the one-bit data to the 
fusion center

o Fusion center computes cross-subarray 
covariance matrices based on one-bit data
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Distributed array with mixed-precision data fusion

Y. D. Zhang and M. W. T. S. Chowdhury, "Direction-of-arrival estimation in closely distributed array exploiting mixed-precision covariance matrices," Signal Processing, 
2024.

Local processing at the 𝑘𝑘-th subarray
• Compute full-precision self-covariance matrix

• Compute one-bit complex array data
        where 𝑄𝑄[⋅]: one-bit quantization 
�𝑹𝑹𝑘𝑘 and 𝒚𝒚𝑘𝑘 𝑡𝑡  are sent to the fusion center for DOA estimation. 

Processing at fusion center
• Compute one-bit cross-covariance matrix between subarrays as

• Estimate normalized cross-covariance matrix as 

• Estimate cross-covariance matrix as

�𝑹𝑹𝑘𝑘 =
1
𝑇𝑇
�
𝑗𝑗

𝑇𝑇

𝒙𝒙𝑘𝑘 𝑡𝑡 𝒙𝒙𝑘𝑘𝐻𝐻 (𝑡𝑡)

𝒚𝒚𝑘𝑘 𝑡𝑡 =
1
2
𝑄𝑄 Re 𝒙𝒙𝑘𝑘 𝑡𝑡 + 𝑗𝑗 ⋅ 𝑄𝑄 Im 𝒙𝒙𝑘𝑘 𝑡𝑡

�𝑹𝑹𝑘𝑘1𝑘𝑘2
[1B] =

1
𝑇𝑇�
𝑗𝑗=1

𝑇𝑇

𝒚𝒚𝑘𝑘1 𝑡𝑡 𝒚𝒚𝑘𝑘2
𝐻𝐻  (𝑡𝑡)

��𝑹𝑹𝑘𝑘1𝑘𝑘2 = sin
𝜋𝜋
2 Re[�𝑹𝑹𝑘𝑘1𝑘𝑘2

[1B] ] + 𝑗𝑗 ⋅ sin
𝜋𝜋
2 Im[�𝑹𝑹𝑘𝑘1𝑘𝑘2

[1B] ] 

�𝑹𝑹𝑘𝑘1𝑘𝑘2 = 𝑮𝑮𝑘𝑘1
1/2��𝑹𝑹𝑘𝑘1𝑘𝑘2𝑮𝑮𝑘𝑘2

1/2,  𝑮𝑮𝑘𝑘 𝑚𝑚,𝑚𝑚 = �𝑹𝑹𝑘𝑘 𝑚𝑚,𝑚𝑚
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Distributed array with mixed-precision data fusion

Y. D. Zhang and M. W. T. S. Chowdhury, "Direction-of-arrival estimation in closely distributed array exploiting mixed-precision covariance matrices," Signal Processing, 
2024.

Assume all subarrays are precisely located on half-
wavelength grid, we can apply structured matrix completion 
to obtain the full covariance matrix and perform MUSIC for 
DOA estimation. 

Self-covariance matrix
Cross-covariance matrix

Missing entriesErrors due to subarray position 
errors can be iteratively 
estimated and compensated.  



66

A
 S
 P
 Lab

Distributed array with mixed-precision data fusion

Y. D. Zhang and M. W. T. S. Chowdhury, "Direction-of-arrival estimation in closely distributed array exploiting mixed-precision covariance matrices," Signal Processing, 
2024.

Simulation results: 
7 or 12 uncorrelated sources uniformly 
distributed between −50o and 50o. 
𝑇𝑇 =  200 data snapshots at each subarray
Input SNR is 0 dB.

Comparison of MUSIC spectra
 

(a) No interpolation, full-precision data, 7 sources
(b) No interpolation, one-bit data, 7 sources
(c) With interpolation, self-covariance only, 12 sources
(d) with interpolation, mixed-precision data, 12 sources

(a)                                    (b)

(c)                                         (d)
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Distributed array with mixed-precision data fusion

Y. D. Zhang and M. W. T. S. Chowdhury, "Direction-of-arrival estimation in closely distributed array exploiting mixed-precision covariance matrices," Signal Processing, 
2024.

Simulation results: 

The full-precision subarray covariance matrices cost very low data traffic, but help improve 
the DOA estimation performance.   
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Extension to 2-D (planar) sparse arrays: Sparse array design and processing concepts 
apply for 2-D array but need additional considerations. 
• Sparse arrays may have additional rooms for sensor reduction
• Covariance statistics becomes a tensor with high redundancies
• Multi-dimensional processing may require decoupling for reduced complexity

2-D sparse arrays

I. Aboumahmoud, A. Muqaibel, M. Alhassoun and S. Alawsh, "A Review of sparse sensor arrays for two-dimensional direction-of-arrival estimation," IEEE Access, 2021. 
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2-D sparse arrays: Semi-passive RIS channel estimation
Consider a planar reconfigurable intelligent surface 
(RIS) with 𝑀𝑀 = 𝑀𝑀𝑥𝑥 × 𝑀𝑀𝑧𝑧  elements, where 
�𝑀𝑀 elements are active elements in L-shape, and 
others can only reflect the impinging signals 
• Consider 𝐿𝐿 multipaths from mobile user to the 

RIS, the output signal vectors at the two RIS 
subarrays corresponding to the 𝑥𝑥-axis and 𝑧𝑧-axis 
are respectively given as:

�𝒂𝒂𝑥𝑥 𝜑𝜑𝑙𝑙 ,𝜗𝜗𝑙𝑙 and �𝒂𝒂𝑧𝑧 𝜗𝜗𝑙𝑙 : sparse steering vectors of 
the RIS in 𝑥𝑥 and 𝑧𝑧 axes

𝒙𝒙 𝑡𝑡 = �
𝑙𝑙=1

𝐿𝐿

𝛽𝛽𝑙𝑙�𝒂𝒂𝑥𝑥 𝜑𝜑𝑙𝑙 ,𝜗𝜗𝑙𝑙 𝑠𝑠𝑢𝑢 𝑡𝑡 + 𝒏𝒏𝑥𝑥 𝑡𝑡

𝒛𝒛 𝑡𝑡 = �
𝑙𝑙=1

𝐿𝐿

𝛽𝛽𝑙𝑙�𝒂𝒂𝑧𝑧 𝜗𝜗𝑙𝑙 𝑠𝑠𝑢𝑢 𝑡𝑡 + 𝒏𝒏𝑧𝑧 𝑡𝑡

M. Asif Haider, Y. D. Zhang, and E. Aboutanios, "ISAC system assisted by RIS with sparse active elements," EURASIP Journal on Advances in Signal Processing, 2023.
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2-D sparse arrays: Semi-passive RIS channel estimation

M. Asif Haider, Y. D. Zhang, and E. Aboutanios, "ISAC system assisted by RIS with sparse active elements," EURASIP Journal on Advances in Signal Processing, 2023.

• The covariance matrices �𝐑𝐑𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼and �𝐑𝐑𝑧𝑧𝐼𝐼𝐼𝐼𝐼𝐼  become sparse with missing holes.
• �𝐑𝐑𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼 and �𝐑𝐑𝑧𝑧𝐼𝐼𝐼𝐼𝐼𝐼  can be interpolated exploiting the Hermitian and Toeplitz structure of 

the covariance matrix of the fully interpolated uniform linear array.
• Interpolated covariance matrices contain all elements in the full uniform array.
• Subspace-based methods, such as MUSIC, can be applied to �𝑹𝑹zIRS to estimate the 𝑧𝑧-

axis DOAs (�̂�𝜗𝑙𝑙 ∀ 𝑙𝑙 = 1,2,⋯ , 𝐿𝐿) at the RIS for the user-RIS multipath signals.
• Source covariance matrix is estimated as:

�𝑹𝑹𝑠𝑠 = 𝑨𝑨𝑧𝑧
† �̂�𝜃 𝑽𝑽𝑧𝑧𝑠𝑠 �Γ𝑧𝑧 − 𝜎𝜎𝑛𝑛2𝑰𝑰𝐿𝐿 �𝑽𝑽𝑧𝑧𝑠𝑠𝐻𝐻 𝑨𝑨𝑧𝑧

† �̂�𝜃
H

• The azimuth angles are then estimated from the following optimization problem:
�𝜙𝜙 = arg min

𝜗𝜗𝑙𝑙∈[−𝑗𝑗2,𝑗𝑗2]
�𝑹𝑹𝑥𝑥𝑅𝑅𝐼𝐼𝑅𝑅 − 𝜎𝜎𝑛𝑛2𝑰𝑰𝑊𝑊𝑥𝑥 − 𝑨𝑨𝑥𝑥 �𝜙𝜙, �̂�𝜃 �𝑹𝑹𝑠𝑠𝑨𝑨𝑥𝑥 �𝜙𝜙, �̂�𝜃 H

• From the paired azimuth and elevation estimated angles, we generate the steering 
matrix of the RIS for the RIS-user channel as:

 �𝑨𝑨𝐼𝐼𝑅𝑅𝑅𝑅 = �𝒂𝒂RIS 𝜗𝜗1 ,𝜑𝜑1 , �𝒂𝒂RIS 𝜗𝜗2 ,𝜑𝜑2 ⋯ , �𝒂𝒂RIS 𝜗𝜗𝐿𝐿 ,𝜑𝜑𝐿𝐿
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Coherent signals: Signal model

M. S. R. Pavel, Y. D. Zhang, and B. Himed, "Tensor reconstruction-based sparse array interpolation for 2-D DOA estimation of 
coherent signals," IEEE Radar Conference, 2024.

• 𝕄𝕄,ℕ: two sparse uniform rectangular arrays (URAs) with
𝕊𝕊 = 𝕄𝕄∪ℕ forming an origin-centric coprime planner array

•  𝑀𝑀𝑥𝑥 × 𝑀𝑀𝑦𝑦: Number of sensors in sparse subarray 𝕄𝕄
• 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦: Number of sensors in sparse subarray  ℕ with 

𝑀𝑀𝑥𝑥,𝑁𝑁𝑥𝑥  and (𝑀𝑀𝑦𝑦,𝑁𝑁𝑦𝑦) being the coprime integer pairs
• The total number of sensors is 𝑀𝑀𝑥𝑥𝑀𝑀𝑦𝑦 + 𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦 − 1
• 𝐿𝐿 narrowband far-field coherent signals arrive from azimuth and elevation angle pairs 𝜃𝜃𝑙𝑙 ,𝜙𝜙𝑙𝑙  

for 𝑙𝑙 = 1,2,⋯ , 𝐿𝐿.
• The signals received at subarray 𝕄𝕄 at time 𝑡𝑡 is

𝑿𝑿𝕄𝕄 𝑡𝑡 = �
𝑙𝑙=1

𝐿𝐿

𝛼𝛼𝑙𝑙𝑠𝑠 𝑡𝑡 𝒂𝒂𝕄𝕄 𝜇𝜇𝑙𝑙 ∘ 𝒂𝒂𝕄𝕄 𝜈𝜈𝑙𝑙 + 𝑾𝑾𝕄𝕄 ∈ ℂ𝑀𝑀𝑥𝑥×𝑀𝑀𝑦𝑦

where 𝛼𝛼𝑙𝑙 : complex scalar
 𝑠𝑠(𝑡𝑡) : reference signal waveform
           𝑾𝑾𝕄𝕄 : noise matrix

• The signals received at subarray ℕ can be similarly defined. 
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Coherent signals: Signal model

M. S. R. Pavel, Y. D. Zhang, and B. Himed, "Tensor reconstruction-based sparse array interpolation for 2-D DOA estimation of 
coherent signals," IEEE Radar Conference, 2024.

• For 𝐿𝐿 coherent signals, the signal matrix of the full URA is

𝑿𝑿𝕌𝕌 𝑡𝑡 = �
𝑙𝑙=1

𝐿𝐿

𝛼𝛼𝑙𝑙𝑠𝑠 𝑡𝑡 𝒂𝒂𝕌𝕌 𝜇𝜇𝑙𝑙 ∘ 𝒂𝒂𝕌𝕌 𝜈𝜈𝑙𝑙 + 𝑾𝑾𝕌𝕌

• The augmented signal matrix 𝒀𝒀(𝑡𝑡) can be related to 𝑿𝑿𝕌𝕌 𝑡𝑡  
as

𝒀𝒀 𝑡𝑡 = 𝑩𝑩 ∘ 𝑿𝑿𝕌𝕌 𝑡𝑡
    𝑩𝑩 : masking matrix
• The covariance tensor of the augmented signal matrix 𝒀𝒀 𝑡𝑡 :

𝓡𝓡 = 𝓑𝓑 ∘ 𝜎𝜎𝑠𝑠2�
𝑙𝑙=1

𝐿𝐿

�
𝑙𝑙′=1

𝐿𝐿

𝛼𝛼𝑙𝑙∗𝛼𝛼𝑙𝑙′𝒂𝒂𝕌𝕌 𝜇𝜇𝑙𝑙′ ∘ 𝒂𝒂𝕌𝕌 𝜈𝜈𝑙𝑙′ ∘ 𝒂𝒂𝕌𝕌∗ 𝜇𝜇𝑙𝑙 ∘ 𝒂𝒂𝕌𝕌∗ 𝜈𝜈𝑙𝑙

 ∈ ℂ 2𝑈𝑈𝑥𝑥+1 × 2𝑈𝑈𝑦𝑦+1 × 2𝑈𝑈𝑥𝑥+1 × 2𝑈𝑈𝑦𝑦+1

    𝓑𝓑 : masking tensor
• Because of the signal coherency, the covariance tensor is rank-deficient.
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Coherent signals: Full rank recovery

H. Zheng, C. Zhou, Z. Shi, and Y. Gu, “Structured tensor reconstruction for coherent DOA estimation,” IEEE Signal Processing Letters, 2022.
M. S. R. Pavel, Y. D. Zhang, and B. Himed, "Tensor reconstruction-based sparse array interpolation for 2-D DOA estimation of coherent signals," IEEE Radar 
Conference, 2024.

• A structured Toeplitz tensor 𝓓𝓓 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦 ∈

ℂ 𝑈𝑈𝑥𝑥+1 × 𝑈𝑈𝑦𝑦+1 × 𝑈𝑈𝑥𝑥+1 × 𝑈𝑈𝑦𝑦+1  is constructed from 
𝓡𝓡(𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦, : , ) based on a particular pair of indices
𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦  for �𝑢𝑢𝑥𝑥, �𝑢𝑢′𝑥𝑥 ∈ 0,𝑈𝑈𝑥𝑥  and �𝑢𝑢𝑦𝑦, �𝑢𝑢′𝑦𝑦 ∈ 0,𝑈𝑈𝑦𝑦 :

 𝓓𝓓 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦 �𝑢𝑢𝑥𝑥, �𝑢𝑢𝑦𝑦 , �𝑢𝑢𝑥𝑥′ , �𝑢𝑢𝑦𝑦′ = 𝓡𝓡 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦 ,−�𝑢𝑢𝑥𝑥 + �𝑢𝑢𝑥𝑥′ ,−�𝑢𝑢𝑦𝑦 + �𝑢𝑢𝑦𝑦′

• The tensor 𝓓𝓓 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦  exhibits a full-rank tensorial Toeplitz structure:

𝓓𝓓 𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦 = 𝑏𝑏(𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦) �
𝑙𝑙=1

𝐿𝐿

𝒈𝒈 𝜇𝜇𝑙𝑙 ∘ 𝒈𝒈 𝜈𝜈𝑙𝑙 ∘ 𝒈𝒈∗ 𝜇𝜇𝑙𝑙 ∘ 𝒈𝒈∗ 𝜈𝜈𝑙𝑙

     where 𝒈𝒈 𝜇𝜇𝑙𝑙 = 1,⋯ , 𝑒𝑒−𝑗𝑗𝑗𝑗𝑈𝑈𝑥𝑥𝜇𝜇𝑙𝑙 T ∈ ℂ𝑈𝑈𝑥𝑥+1 and 𝒈𝒈 𝜈𝜈𝑙𝑙 = 1,⋯ , 𝑒𝑒−𝑗𝑗𝑗𝑗𝑈𝑈𝑦𝑦𝜈𝜈𝑙𝑙
T
∈ ℂ𝑈𝑈𝑦𝑦+1 act as the

     steering vectors for the 𝑙𝑙th coherent source in the 𝑋𝑋 and 𝑌𝑌 directions.
• Due to the sparsity of 2-D coprime array 𝕊𝕊, the covariance tensor 𝓓𝓓 contains holes.
• The unknown correlations associated with the missing sensors can be estimated through a 

gridless convex optimization problem through nuclear norm minimization.

𝓡𝓡 𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦 , : , :
𝓓𝓓(0, : , 0, : )

−𝑈𝑈𝑥𝑥

0

𝑈𝑈𝑥𝑥
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Coherent signals: Simulation results

M. S. R. Pavel, Y. D. Zhang, and B. Himed, "Tensor reconstruction-based sparse array interpolation for 
2-D DOA estimation of coherent signals," IEEE Radar Conference, 2024.

• The subarray 𝕄𝕄  consists of 𝑀𝑀𝑥𝑥 × 𝑀𝑀𝑦𝑦 = 3 × 3 =
9 sensors, and the subarray ℕ consists of 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 =
5 × 5 = 25 sensors (total number of sensors: 33).

• The dimension of the interpolated URA 𝕌𝕌 is (
)

2𝑈𝑈𝑥𝑥 +
1 × 2𝑈𝑈𝑦𝑦 + 1 = 13 × 13.

• Therefore, the proposed approach can detect up to 
𝑈𝑈𝑥𝑥 + 𝑈𝑈𝑦𝑦 = 12 coherent sources.

• The (1,1) th slice of the covariance tensor, i.e., 
𝓡𝓡 1,1, : , : ∈ ℂ1×1×13×13 , is used to obtain the 
decorrelated tensor 𝓓𝓓(1,1) ∈ ℂ7×7×7×7.

• 9 coherent sources are considered with 20 dB input 
SNR and 1,000 snapshots.

• The azimuth and elevation angles are randomly 
sampled from uniform distributions with azimuth range 
− 60° to 60° and elevation range 0° to 60°.

• All coherent sources are detected in this example.
-80 -60 -40 -20 0 20 40 60 80

Azimuth angle (degree)

0

30

60

90

El
ev

at
io

n 
an

gl
e 

(d
eg

re
e)

True coherent DOA

Estimated coherent DOA



75

A
 S
 P
 Lab

Machine learning for DOA estimation

[Reduced complexity]
M. Chen, Y. Gong, and X. Mao, “Deep neural network for estimation of direction of arrival with antenna array,” IEEE Access, 2000.
R. Zheng, S. Sun, H. Liu, H. Chen and J. Li, "Interpretable and Efficient Beamforming-Based Deep Learning for Single Snapshot DOA Estimation," IEEE Sensors Journal, 
in press. 
[Robustness to imperfections]
Z. M. Liu, C. Zhang, and S. Yu Philip. ”Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections.” IEEE Trans. Antennas and 
Propagation, 2018. 
H. Xiang, B. Chen, M. Yang, S. Xu, and Z. Li, Improved direction-of-arrival estimation method based on LSTM neural networks with robustness to array imperfections. 
Applied Intelligence, 2021. 
M. S. R. Pavel, M. W. T. S. Chowdhury, Y. D. Zhang, D. Shen, and G. Chen, "Machine learning-based direction-of-arrival estimation exploiting distributed sparse arrays," 
Asilomar Conference on Signals, Systems, and Computers, 2021.
[Denosing]
G. K. Papageorgiou and M. Sellathurai, “Direction-of-arrival estimation in the low-SNR regime via a denoising autoencoder,” IEEE SPAWC, 2020. 
[Sequential Processing]
F. Sohrabi, Z. Chen, and W. Yu, “Deep active learning approach to adaptive beamforming for mmWave initial alignment,” IEEE Journal on Selected Areas in 
Communications, 2021.
S. R. Pavel and Y. D. Zhang, “Optimization of the compressive measurement matrix in a massive MIMO system exploiting LSTM networks,” Algorithms, 2023.

Selected offerings
• Reduced complexity
• Robustness to imperfections
• Denoising
• Sequential Processing
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Machine learning for DOA estimation

• Three sparse subarrays are colinear, 
forming a 31 × 31 augmented 
covariance matrix with missing 
entries.

• K = 15 sources arrive between -60o 
and 60o.

• The input SNR is set to 0 dB. 
• The antenna gains follow a uniform 

distribution between 0.9 and 1.1, 
and the phase errors are uniformly 
distributed between −9o and 9o.

• By training the network with imperfect antenna model, it achieve robust DOA estimation 
performance. MUSIC assuming perfect antenna model fails.  

M. S. R. Pavel, M. W. T. S. Chowdhury, Y. D. Zhang, D. Shen, and G. Chen, "Machine learning-based direction-of-arrival estimation exploiting distributed sparse 
arrays," Asilomar Conference on Signals, Systems, and Computers, 2021.
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Modern sensing applications require higher 
resolution (larger aperture), resolve more 
signals (more DOFs), low mutual coupling effect 
(avoid close placement). 

The fundamental goals of sparse array design 
and processing are to answer these needs while 
keeping a low system complexity. 

Sparse array designs are enabled by the signal 
processing techniques, such as compressive 
sensing, matrix completion, and tensor analysis.

While the last decade witnessed significant 
process in this area, many challenging issues 
remain to be explored.  

Concluding remarks

Multi-frequency 
sparse array

Non-redundant 
sparse array

Unique lags

Interpolated lags
�
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Sparse array design and processing: What is next?

General issues
• Low-complexity implementations
• Performance and bound analysis
• Robustness issues

Two/multi-dimensional arrays
• Array design 
• Extreme sparse arrays
• Tensor-based processing

Bandwidth exploitation
• DOF analysis for wideband signals
• Low-complexity solutions 
• Fractional sparse arrays

Signal coherency
• Coherent/correlated signals
• Mixed uncorrelated/coherent signals

Section II. More consecutive lags and lower coupling
• Coprime array with compressed inter-element spacing (CACIS)
• Maximum inter-element spacing constraint (MISC) array

Section III. Sparsity-based processing and array design
III-A. Sparsity-based DOA estimation
• Coprime array with displaced subarrays (CADiS)
III-B. Structured matrix completion for DOA estimation
• Non-redundant sparse arrays
• 4D automotive radar sensing
III-C. Group sparsity-based DOA estimation
• Multi-frequency array
• Frequency-switching array

Section IV. Additional topics
• DOA estimation exploiting high-order statistics
• Distributed array with mixed-precision covariance matrices
• 2-D sparse arrays
• Signal coherency consideration
• Machine learning for DOA estimation
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