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Abstract—This paper proposes a tensor-based two-
dimensional (2-D) direction-of-arrival (DOA) estimation method
for coherent sources using a 2-D coprime array. The proposed
method preserves the structural characteristics of multi-
dimensional signals with multiple snapshots by constructing a
covariance tensor of the received signal. To address the issue of
rank-deficiency of the covariance tensor due to the coherency of
the impinging signals, a structural tensor reconstruction method
is employed to decorrelate the covariance tensor. Additionally,
the use of a coprime array results in a non-contiguous difference
coarray, leading to missing measurements in the reconstructed
covariance tensor. To fully leverage the aperture provided by
the coprime array, the missing correlations are interpolated by
solving a convex optimization problem. The canonical polyadic
decomposition method is applied to the interpolated covariance
tensor to detect the coherent sources. The conditions for source
resolvability are also analyzed.

Keywords—Direction-of-arrival estimation, sparse array, tensor
decomposition, canonical polyadic decomposition, coherent signals

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a key technology
in array signal processing that determines the spatial spectrum
of impinging signals. It has broad applications in wireless
communication, radar, automotive vehicles, sonar, radio astron-
omy, and biomedical imaging [1–6]. Subspace-based methods,
such as MUSIC [7] and ESPRIT [8], are popularly used for
DOA estimation due to their superior performance and low
complexity. However, when dealing with coherent signals,
these methods suffer from the rank-deficiency problem and fail
to resolve their DOAs without proper decorrelation. Coherent
signals are frequently encountered in practice, including multi-
path propagation, low-grazing-angle scattering, and reflection
signals from swarm targets.

By using two-dimensional (2-D) arrays, both azimuth and
elevation angles can be estimated. Compared to the one-
dimensional counterpart for coherent signals, 2-D DOA esti-
mation for coherent signals is even more challenging. DOA
estimation methods developed for coherent signal detection
exploiting linear arrays primarily rely on matrix-based pro-
cessing. These approaches require transformation of the array
data in a vector form into a covariance matrix when utilizing
multiple data snapshots. An effective way to preserve and
utilize the inherent structural properties of multi-dimensional
signals associated with a 2-D array is to use tensor modeling,
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and tensor decomposition techniques can be used to effectively
exploit the inherent characteristics of such signals. Commonly
used tensor decomposition methods include canonical polyadic
decomposition (CPD) [9, 10], Tucker decomposition [11], and
high-order singular value decomposition (HOSVD) [12]. For
example, tensor decomposition is used in [13] for DOA estima-
tion using multiple-invariance sensor array processing. In [14],
a coarray tensor DOA estimation approach is developed to
utilize augmented co-coarrays of multi-dimensional structured
sparse arrays. It is worth noting that these methods primar-
ily address uncorrelated sources. To handle coherent signals,
tensor-based spatial smoothing techniques are presented in [15]
and [16]. Nevertheless, these methods involve repeated tensor
calculations, resulting in limited decorrelation effectiveness
and a substantial computational burden. In [17], a tensorial
Hermitian Toeplitz structure is reconstructed from the coherent
covariance tensor utilizing its structural property.

Compared to uniform arrays, sparse arrays offer an en-
larged array aperture and a higher number of degrees-of-
freedom (DOFs). Recently, systematic sparse array designs,
inspired by the nested array [18] and the coprime array
[19, 20], become attractive to ensure effective sparse array
design and performance analysis. Various signal processing
techniques are developed to perform DOA estimation exploit-
ing such structured sparse arrays [21–24] where augmented
virtual arrays derived from second-order statistics are used to
enhance the available DOFs.

In this paper, we consider the CPD tensor decomposition
approach for 2-D DOA estimation of coherent signals exploit-
ing 2-D coprime arrays. To decorrelate the covariance tensor
obtained from coherent signals, a structured tensor reconstruc-
tion method is employed. Due to the partially augmented
nature of the coprime array, there are missing measurements,
also referred to as holes, in its difference coarray, leading
to discontinuities in the derived virtual array. These holes in
the difference coarray also result in missing elements in the
reconstructed covariance tensor. To address this issue and fill
these holes in the decorrelated covariance tensor, we employ
a coprime array interpolation technique [25] to estimate the
unknown correlations of the decorrelated covariance tensor. By
applying CPD to the interpolated and decorrelated covariance
tensor, 2-D DOAs of the coherent sources are estimated. The
effectiveness of the proposed technique is validated through
theoretical analyses and simulation results.

Notations: We use lower-case bold characters (e.g., a),
upper-case bold characters (e.g., A), and upper-case calli-
graphic bold characters (e.g., A) to denote vectors, matrices,
and tensors, respectively. In particular, I denotes the identity
matrix of a proper dimension. (·)T and (·)H respectively



represent the transpose and Hermitian operations of a matrix
or vector. ◦ denotes the outer product and ⊙ denotes the
Hadamard product. In addition, vec(·) vectorizes a matrix,
κ(·) represents the Kruskal rank of a matrix, and triu(·) and
tril(·) represent the upper and lower triangular elements of a
matrix, respectively. E[·] stands for the statistical expectation
operator. R(·) extracts the real part of a complex entry, and
CI1×I2×···×IN denotes the complex space with the specified
dimension. |P| returns the cardinality of set P. T (x) denotes a
Hermitian Toeplitz matrix with x as its first column and Tr(·)
represents the trace operator.

CPD: CPD represents a high-order tensor as a linear com-
bination of a minimum number of rank-1 tensor components.
For an N -dimensional tensor A ∈ CI1×I2×···×IN , its rank-R
CPD is expressed as

A =

R∑
r=1

ηra1(r) ◦ a2(r) ◦ aN (r)
∆
= Jη;A1;A2;AN K, (1)

where an(r) ∈ CIn is a canonical polyadic (CP) factor,
An = [an(1),an(2), · · · ,an(R)] ∈ CIn×R denotes the
corresponding factor matrix for n = 1, 2, · · · , N , and η =
[η1, η2, · · · , ηR]T is a vector of scalar coefficients.

II. ARRAY AND SIGNAL MODELS

A. Array Geometry Model
Consider an origin-centric coprime planar array S consist-

ing of two sparse subarrays with a uniform rectangular array
(URA) configuration, respectively denoted as M and N, where
S = M∪N. There are Mx×My sensors in the sparse subarray
M and Nx×Ny sensors in the sparse subarray N, as depicted
in Fig. 1, where (Mx, Nx) and (My, Ny) are positive coprime
integer pairs. The inter-element spacing for the sparse subarray
M is Nxd and Nyd along the X and Y axes, respectively,
where d = λ/2 with λ denoting the signal wavelength.
Similarly, the inter-element spacing for sparse subarray N is
Mxd and Myd along the X and Y axes, respectively. Without
loss of generality, we assume that the number of sensors in
each direction is an odd integer for both subarrays.

For subarrays M and N, the sensors are positioned at

PM = {(xM, yM) | xM ∈ Nxmxd, yM ∈ Nymyd},
PN = {(xN, yN) | xN ∈ Mxnxd, yN ∈ Mynyd},

(2)

respectively, where

−(Mx − 1)/2 ≤ mx ≤ (Mx − 1)/2,

−(My − 1)/2 ≤ my ≤ (My − 1)/2,

−(Nx − 1)/2 ≤ nx ≤ (Nx − 1)/2,

−(Ny − 1)/2 ≤ ny ≤ (Ny − 1)/2.

The location of sensors for the planar array S can then be
expressed as

P = PM ∪ PN . (3)

Due to the coprime relationship, the sensors in subarrays M
and N do not overlap except at the origin. Hence, the total
number of sensors is MxMy +NxNy − 1.
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Fig. 1: Array configuration

B. Signal Model
Consider L narrowband far-field coherent signals imping-

ing on the planar array S from azimuth and elevation angles
(θl, ϕl), l = 1, 2, · · · , L. These L coherent signals are a scaled
version of s(t) up to a complex scalar αl.

Denote µ = sin(ϕ) cos(θ) and ν = sin(ϕ) sin(θ). Then,
the steering vectors for subarray M in the X and Y directions
are respectively expressed as

aM(µ) = [e−jπ
−(Mx−1)

2 Nxµ, · · · , e−jπ
(Mx−1)

2 Nxµ]T ∈ CMx ,

aM(ν) = [e−jπ
−(My−1)

2 Nyν , · · · , e−jπ
(My−1)

2 Nyν ]T ∈ CMy .
(4)

Similarly, for subarray N, the steering vectors are expressed
as

aN(µ) = [e−jπ
−(Nx−1)

2 Mxµ, · · · , e−jπ
(Nx−1)

2 Mxµ]T ∈ CNx ,

aN(ν) = [e−jπ
−(Ny−1)

2 Myν , · · · , e−jπ
(Ny−1)

2 Myν ]T ∈ CNy .
(5)

The signals received at subarrays M and N at time t can be
respectively expressed as

XM(t) =

L∑
l=1

αls(t)aM(µl) ◦ aM(νl)+WM ∈ CMx×My ,

XN(t) =

L∑
l=1

αls(t)aN(µl) ◦ aN(νl) +W N ∈ CNx×Ny ,

(6)
where WM and W N are noise matrices associated with
subarrays M and N.

C. Covariance Tensor
The non-uniformity in a coprime array restricts the appli-

cation of traditional DOA estimation methods. In particular,
the well-known spatial smoothing methods [26, 27] cannot be
readily applied to such sparse arrays for signal decorrelation
when the correlation lags are discontinuous. To address this
problem, an array interpolation technique is employed by
augmenting virtual sensors at integer multiples of the half-
wavelength with the region spanned by the coprime array S
where physical sensors are not present. Several array interpola-
tion methods have been developed [25, 28–30]. In this paper,
the coprime array interpolation method developed in [25] is
exploited.

The resulting interpolated URA can be expressed as



U = {(xU, yU) | xU ∈ [−Uxd, Uxd], yU ∈ [−Uyd, Uyd]},
(7)

where Ux = max ((Nx − 1)Mx, (Mx − 1)Nx) /2 and Uy =
max ((Ny − 1)My, (My − 1)Ny) /2 define the utmost sensor
positions in the positive X and Y directions, respectively. It
is noted that the missing positions bounded by the physical
sensors in S are augmented in U such that S ⊂ U.

The received signals at the interpolated URA U can be
initialized by augmenting the received signals from the 2-D
coprime array S as

⟨Y (t)⟩(xU,yU) =


⟨XM(t)⟩(xU,yU), (xU, yU)d ∈ M
⟨XN(t)⟩(xU,yU), (xU, yU)d ∈ N
0, (xU, yU)d ∈ U\S,

(8)

with ⟨.⟩(xU,yU) denoting the element corresponding to the
sensor location at (xU, yU)d. We define a binary matrix B to
distinguish the virtual and physical sensors in the interpolated
URA as

⟨B⟩(xU,yU) =

{
1, (xU, yU) ∈ S
0, (xU, yU) ∈ U\S, (9)

also denoting its tensor version as B by replicating the matrix
B in additional dimensions.

As such, the initialized signal matrix Y (t) of the 2-D
coprime array can be related to the signal matrix of the full
URA U as

Y (t) = B ⊙XU(t). (10)

The signal matrix of the full URA can be expressed as

XU(t) =

L∑
l=1

αls(t)aU(µl) ◦ aU(νl) +W U, (11)

where aU(µ) and aU(ν) are the steering vectors corresponding
to the URA U respectively associated with the X and Y axes,
expressed as

aU(µ) = [e−jπ(−Ux)µ, · · · , e−jπ(Ux)µ]T ∈ C2Ux+1,

aU(ν) = [e−jπ(−Uy)ν , · · · , e−jπ(Uy)ν ]T ∈ C2Uy+1.
(12)

The covariance tensor of the initialized signal matrix Y (t) is
expressed as

R = B ⊙ σ2
s

L∑
l=1

L∑
l′=1

α∗
l αl′aU(µl′) ◦ aU(νl′) ◦ a∗

U(µl)

◦ a∗
U(νl) ∈ C(2Ux+1)×(2Uy+1)×(2Ux+1)×(2Uy+1),

(13)
where σ2

s represents the power of the reference signal. The
existence of cross-terms between the coherent signals prevents
the covariance tensor from satisfying the conditions of a full-
rank CP problem, resulting in tensorial rank deficiency. A
particular (ux, uy, u

′
x, u

′
y)th element of the covariance tensor

can be expressed as

R(ux, uy, u
′
x, u

′
y) = B(ux, uy, u

′
x, u

′
y)

⊙ σ2
s

L∑
l′=1

αl′e
−jπuxµl′ e−jπuyνl′

·
L∑

l=1

α∗
l e

jπu′
xµlejπu

′
yνl

+ σ2
nζ(ux,uy,u′

x,u
′
y)

= b(ux,uy)

L∑
l=1

α∗
l e

jπu′
xµlejπu

′
yνl

+ σ2
nζ(ux,uy,u′

x,u
′
y)
,

(14)

where ux, u
′
x ∈ [−Ux, Ux] and uy, u

′
y ∈ [−Uy, Uy], whereas

b(ux,uy) = σ2
s

∑L
l′=1 αl′e

−jπuxµl′ e−jπuyνl′ depends only on
the first two indices (ux, uy) of the covariance tensor.

III. DOA ESTIMATION

Sparse array-based DOA estimation for coherent signals
poses two significant challenges. One of them is the tensorial
rank-deficiency problem. To successfully employ tensor de-
composition methods, such as CPD, it is necessary to obtain
a full-rank CP problem. Structural tensor reconstruction-based
covariance tensor decorrelation is employed in this paper to
achieve a full-rank CP model. Second, due to the presence
of holes in the difference coarray, the covariance tensor also
includes missing entries. These holes in the covariance tensor
impede the DOA estimation process and make spatial smooth-
ing inapplicable. To circumvent this issue, we first perform
decorrelation of the coherent signals exploiting structural ten-
sor reconstruction, and a low-rank matrix completion technique
is employed to fill in the holes. These two steps are described
in the following subsections.

A. Decorrelation of Coherent Covariance Tensor via Struc-
tural Tensor Reconstruction

To decorrelate the coherent signals in the covariance tensor
R, we employ a tensor reconstruction strategy similar to that
described in [17]. The objective is to reconstruct a tensorial
Toeplitz structure from the covariance tensor R such that
a full-rank (rank L) CP problem is formulated. We con-
sider a pair of indices (ux, uy) from the covariance tensor,
i.e., R(ux, uy, :, :), which consists of the scaling coefficient
b(ux,uy) and the components ejπu

′
xµl and ejπu

′
yνl . A struc-

tured tensor D(uxuy) ∈ C(Ux+1)×(Uy+1)×(Ux+1)×(Uy+1) is
constructed by rearranging the elements from R(ux, uy, :, :).
More specifically, the (−ũx+ũ′

x)th row of R(ux, uy, :, :) can
be exploited as the (ũx, :, ũ

′
x, :)th slice of D(ux,uy). Similarly,

the (−ũy + ũ′
y)th column of R(ux, uy, :, :) is utilized to

construct the (:, ũy, :, ũ
′
y)th slice of D(ux,uy). In summary,

the mapping between R(ux, uy, :, :) and D(ux,uy) can be
described as

D(ux,uy)(ũx, ũy, ũ
′
x, ũ

′
y) = R(ux, uy,−ũx + ũ′

x,−ũy + ũ′
y),

(15)
where ũx, ũ

′
x ∈ [0, Ux] and ũy, ũ

′
y ∈ [0, Uy].



Considering Eqs. (14) and (15), the reconstructed tensor
D(ux,uy) can be expressed as

D(ux,uy)(ũx, ũy, ũ
′
x, ũ

′
y)

= b(ux,uy)

L∑
l=1

ejπ(−ũx+ũ′
x)µl · ejπ(−ũy+k̃′y)νl .

(16)

Neglecting the scaling coefficient b(ux,uy), the tensor D(ux,uy)

exhibits a tensorial Toeplitz structure in which the cross-terms
as those depicted in (13) are eliminated. Accordingly, D(ux,uy)

can be reformulated as

D(ux,uy) = b(ux,uy)

L∑
l=1

g(µl) ◦ g(νl) ◦ g∗(µl) ◦ g∗(νl), (17)

where g(µl) = [1, · · · , e−jπUxµl ]T ∈ C(Ux+1) and g(νl) =
[1, · · · , e−jπUyνl ]T ∈ C(Uy+1) act as steering vectors for the
lth coherent source in X and Y directions. Eq. (17) is a
rank-L CP problem. However, due to the presence of holes
in D(ux,uy), we need to interpolate the missing elements of
the D(ux,uy) before the CPD method can be applied.

B. Covariance Tensor Recovery via Interpolation
Due to the non-uniform nature of the 2-D coprime array S,

the resulting covariance tensor contains holes. The unknown
correlations associated with the missing sensors can be es-
timated through a gridless convex optimization problem. In
this subsection, we extend the interpolation method developed
in [25], which reconstructs the covariance matrix of a linear
sparse array by exploiting the low-rank Hermitian positive
semi-definite (PSD) Toeplitz structure of the covariance matrix,
to the reconstruction of the underlying covariance tensor of 2-
D sparse arrays.

We first matricize the covariance tensor D(ux,uy), denoted
as D ∈ C(Ux+1)(Uy+1)×(Ux+1)(Uy+1). Due to the complex
scaling factor b(ux,uy), the reconstructed covariance tensor
D(ux,uy) and, consequently, the matrix D may not be Her-
mitian in nature. We construct two Hermitian matrices Du

and Dl from matrix D by respectively utilizing the upper and
lower triangular elements of D as

Du = triu(D) + triu(D)H − Diag(diag(DH)),

Dl = tril(D) + tril(D)H − Diag(diag(DH)).
(18)

These two matrices are Hermitian and Toeplitz, thus can be
interpolated separately to fill in the missing elements.

Define binary masks denoted by Bu and Bl to distinguish
existing and missing entries from the matrices Du and Dl,
respectively. The elements of Bu and Bl are 1 for the
existing entries and 0 for the missing entries. Recognizing the
Hermitian and Toeplitz structure of the two matrices Du and
Dl as well as the low-rank property of the noise-free version of
these covariance matrices, the full matrices of Du and Dl can
be recovered by solving the following optimization problems:

min
wu

rank(T (wu))

s.t. ∥(T (wu)) ◦Bu −Du∥2F ≤ δ,

(T (wu)) ⪰ 0,

(19)

and
min
wl

rank(T (wl))

s.t. ∥(T (wl)) ◦Bl −Dl∥2F ≤ δ,

(T (wl)) ⪰ 0,

(20)

where δ is an error tolerance.
Due to the NP-hard nature of the problems described in

(19) and (20), the rank minimization objective is relaxed by
exploiting the nuclear norm minimization. The nuclear norm of
T (w1) is expressed as ∥T (wu)∥∗ = Tr(

√
T H(wu)T (wu)),

and the nuclear norm of T (wl) can also be defined in a similar
way. As a result, Eq. (19) can be reformulated as

min
wu

∥(T (wu)) ◦Bu −Du∥2F + ζTr(
√
TH(wu)T (wu))

s.t. (T (wu)) ⪰ 0,
(21)

where ζ is a regularization parameter, and the problem is
convex and therefore can be solved. The problem in Eq. (20)
can be solved in a similar way.

Using these two interpolated matrices, the missing entries
of D is populated, resulting in the filled version denoted as
D̃ ∈ C(Ux+1)(Uy+1)×(Ux+1)(Uy+1). Subsequently, the matrix
D̃ is rearranged to obtain the interpolated tensor D̃(ux,uy) ∈
C(Ux+1)×(Uy+1)×(Ux+1)×(Uy+1).

C. DOA estimation
Because the interpolated tensor D̃(ux,uy) is full rank, CPD

can be applied on it to estimate the steering vectors ĝ(µ) and
ĝ(ν). The estimated µ̂ and ν̂ can then be extracted from the
phase of the steering vectors. Finally, the azimuth and elevation
angles can be estimated by

θ̂ = arctan

(
ν̂

µ̂

)
,

ϕ̂ = arcsin
(√

µ̂2 + ν̂2
)
.

(22)

IV. SOURCE IDENTIFIABILITY

The maximum number of identifiable coherent sources
using the proposed method relies on the uniqueness of the
CPD of D(ux,uy). Denote the estimated CP factor matri-
ces as Ĝ(µ) = [ĝ(µ1), ĝ(µ2), . . . , ĝ(µL)] and Ĝ(ν) =
[ĝ(ν1), ĝ(ν2), . . . , ĝ(νL), where ĝ(µl) and ĝ(νl) are the es-
timated steering vectors. These matrices, along with their
conjugates Ĝ

∗
(µ) and Ĝ

∗
(ν), have dimensions C(Ux+1)×L

and C(Uy+1)×L, respectively.
The unique estimation of these factor matrices is guaran-

teed through CPD under the condition [31]:

κ(Ĝ(µ))+κ(Ĝ(ν))+κ(Ĝ∗(µ))+κ(Ĝ∗(ν)) ≥ 2L+3, (23)

where κ(Ĝ(µ)) = κ(Ĝ∗(µ) = min(Ux+1, L) and κ(Ĝ(ν)) =

κ(Ĝ∗(ν) = min(Uy +1, L). To obtain the upper bound of the
number of signals to be detected, we consider the scenario of
Ux + 1 ≤ L and Uy + 1 ≤ L. In this case, Eq. (23) becomes
2Ux + 2Uy + 4 ≥ 2L+ 3, i.e., L ≤ Ux + Uy + 1/2. Since L
takes integer values, the maximum number of coherent sources
that can be identified becomes

L ≤ Ux + Uy. (24)
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V. SIMULATION RESULTS

We consider a 2-D coprime array comprising of two sparse
URAs M and N. The subarray M consists of Mx × My =
3 × 3 = 9 sensors, while the subarray N consists of Nx ×
Ny = 5× 5 = 25 sensors. Because the sensor at the origin is
shared by both subarrays, the total number of sensors in the
2-D coprime array S = M ∪ N is MxMy +NxNy − 1 = 33.
The interpolated URA U is formed according to Eq. (7), which
has dimension (2Ux+1)×(2Uy+1) = 13×13. The proposed
approach can therefore detect up to Ux + Ux = 12 coherent
sources.

To decorrelate the coherence covariance tensor R, we
consider the (1, 1)th slice, i.e., R(1, 1, :, :) ∈ C1×1×13×13.
This slice is arranged according to Eq. (15) to obtain the
decorrelated tensor D(1,1) ∈ C7×7×7×7. After interpolating
the missing entries of D(1,1), CPD is performed on D(1,1) to
estimate the steering vectors, which are then used to estimate
the signal DOAs. We use MATLAB Tensorlab 3 Toolbox [32]
to implement CPD on the decorrelated tensor derived through
the structural reconstruction approach.

Consider 9 coherent sources with an equal input SNR of
20 dB, and the number of snapshots is 1,000. The azimuth
and elevation angles are randomly sampled from uniform
distributions with the respective ranges of −60◦ to 60◦ and
0◦ to 60◦. Fig. 2 depicts the successful detection of all of the

coherent sources.
We then evaluate the performance of the proposed approach

using root mean-squared error (RMSE) as the performance
metric, which is defined as

RMSE =

√√√√ 1

QL

Q∑
q=1

L∑
l=1

(θl − θ̂l,q)2 + (ϕl − ϕ̂l,q)2, (25)

where Q is the number of Monte Carlo trials, and θ̂l,q and ϕ̂l,q

are respectively the estimated elevation and azimuth angles of
the lth signal in the qth trial. We perform 100 Monte Carlo
trials to compute the RMSE values.

Fig. 3 depicts the RMSE results with respect to the
input SNR. We consider 5 coherent sources with elevation
and azimuth angle pairs being (54◦,−58◦), (18◦,−35◦),
(44◦,−30◦), (48◦,−7◦), (49◦, 16◦) to compute the RMSE
results over a range of input SNR values between −10 dB
and 20 dB. The RMSE decreases as the input SNR increases.

VI. CONCLUSION

In this paper, we proposed a tensor decomposition-based
approach for 2-D DOA estimation of coherent sources in
sparse arrays. To address the rank-deficiency problem inherent
in the coherent covariance tensor, we perform structural tensor
reconstruction to reconstruct a Toeplitz covariance tensor. In
order to fully utilize the aperture offered by sparse arrays
and thereby increase the number of DOFs, we matricize the
covariance tensor and enforce the Hermitian structure so that
the missing correlations in the reconstructed covariance tensor
can be computed through interpolation. The proposed DOA
estimation method resolves a high number of coherent signals
with enhanced estimation accuracy.
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