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Abstract— In this paper, we present a dual-function
radar-communication (DFRC) system for automotive ap-
plications, that uses sparse phased arrays equipped with
quantized double-phase shifters, thus enabling a low-
hardware cost structure. To address the operation in dy-
namic environments, we propose a deep reinforcement
learning (DRL) approach to adaptively select a small subset
of transmit antennas and adjust quantized double-phase
shifters, such that the transmitted energy is concentrated
on the communication user and target of interest, while
reducing interference to other radars by creating nulls to-
wards their respective directions. The action space in the
DRL approach increases fast with the number of antennas
and the number of bits used in quantization, and as a result
the complexity of the design problem grows exponentially.
To tackle the resulting curse of dimensionality in the action
space, we adopt the Wolpertinger strategy, which incorpo-
rates the nearest neighborhood component to project the
vast action space into a smaller, more manageable space
while maintaining the desired performance. Numerical re-
sults demonstrate the feasibility of our proposed method.

Index Terms— Deep reinforcement learning, dual-
function radar-communication (DFRC), automotive radar,
sparse array, adaptive beamforming

I. INTRODUCTION

As self-driving technology advances, the integration of
vehicle-to-everything (V2X) communication into automotive
radar can help enhance road safety, alleviate traffic congestion,
and improve the driving experience. By enabling vehicles to
communicate with other vehicles, infrastructure, pedestrians,
and networks, V2X can facilitate the creation of a more
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connected and intelligent transportation system [3], [4]. How-
ever, as radar becomes an integral part of automobiles and
the demand for communication functions increases, limited
spectrum resources may become a challenge. Thus, finding
ways for radar and communication functions to coexist in
the same band has been drawing a lot of attention [5]–[10].
Dual-function radar-communication (DFRC) systems are a
new type of technology that offers the radar and communi-
cation functionalities out of a single platform and the same
waveform, thereby offering efficient spectrum use, reduced
hardware complexity, improved safety, higher accuracy, and
new application possibilities [11]–[23]. DFRC systems are
ideally suited for autonomous driving vehicles. Unlike com-
munication systems at cellular base stations, automotive radars
use a relatively small number of antennas, and thus greatly
benefit from sharing antennas and waveform for both radar
and communication functions.

Several key factors must be considered in the design of
automotive DFRC systems. First, for the possibility of mass
production, it is essential that these systems are cost-effective
while providing high angular resolutions. This requirement
makes sparse arrays with large apertures particularly attractive
because they offer a balanced trade-off between performance
and cost [24]. To achieve low-cost hardware solutions, phase
shifters are designed to select discrete values from a predefined
set, limiting the design flexibility of transmit signals due
to the constraints imposed by the phase shifters’ degrees
of freedom. For instance, the Texas Instruments AWR2243
radar chipset utilizes 6-bit phase shifters [25]. Second, the
current automotive multi-input multi-output (MIMO) radars
use orthogonal waveforms, and this creates some problems
such as mutual interference [26], [27] and ghost targets due to
multipath wave propagation, as the transmit energy is over the
entire field of view (FOV) [27], [28], heightening the risk of
interference and multipath. Third, automotive DFRC systems
operate in highly dynamic environments and must be capable
of detecting targets with low radar cross-sections (RCSs),
such as pedestrians and cyclists, amidst stronger reflective
objects like vehicles and light poles. Current state-of-the-
art systems heavily rely on MIMO radar technology with
static transmit parameters, including fixed array geometries
and non-adaptive orthogonal waveforms [27], [28], which may
not always provide optimal sensing performance in dynamic
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automotive conditions.
To address the above automotive DFRC system challenges,

in this paper, we propose a low-cost, reconfigurable adap-
tive beamforming scheme in automotive DFRC system to
enhance both sensing and communication performance while
suppressing mutual interference. Low-cost and low power
implementation is afforded via the use of sparse phased
arrays equipped with quantized double-phased shifters (DPSs).
Interference suppression and detection of weak targets is
achieved through beamforming. Unlike the high cost of digital
hardware associated with MIMO radar, our approach uses a
phased array equipped with DPSs. The DPSs enable the design
of flexible beams that can suppress automotive radar mutual
interference, minimize the occurrence of ghost targets due
to multipath, and enhance the signal-to-noise ratio (SNR) of
targets with low RCS in the tracking phase. The introduction
of DPSs opens up the possibility of forming richer beams
towards both communication user and target of interest [29],
[30]. The use of sparse phased arrays reduces hardware cost
and power consumption. By optimally designing the transmit
array along with the beamforming weights, one can closely
approximate the beampattern performance of a full array.
However, the high complexity of the design problem remains a
challenging bottleneck. Commonly used optimization methods
for beamformer optimization, such as linear programming and
alternative optimization [31]–[35], lead to daunting computa-
tional costs due to the NP-hard nature of the problem given
the selection of antennas and quantized phase shifters. We
propose a deep reinforcement learning (DRL) approach as a
feasible solution to adaptively select the antennas and adjust
the phase shifters to achieve beamforming performance in the
automotive DFRC system. DRL allows an agent to learn its
optimal action through interaction with its environment via
trial-and-error [36]. However, the dimensionality of the action
space of the proposed automotive DFRC system is huge, which
may require a significant large training process for DRL.
To address this issue, we adopt the Wolpertinger’s strategy
that encompasses the nearest neighborhood component to
project the daunting action space to a small size space, thus
significantly reducing the complexity of the training process
while maintaining the desired good performance.

We begin with a brief literature review of automotive DFRC,
sparse arrays, adaptive beamforming and DRL.

A. Related Work on Automotive DFRC

Generally, DFRC systems can be categorized as radar-
centric, communication-centric, or based on a joint design ap-
proach. In radar-centric systems, communication information
is embedded in radar waveforms. For example, when using
amplitude-modulated signaling, the communication informa-
tion can be associated with the sidelobe amplitude of the trans-
mitted waveform [37]. In MIMO radar, communication sym-
bols are encoded into each of the orthogonal waveforms. Phase
modulation can also be used to embed communication symbols
into the phase of transmitted chirps [38]. Radar-centric systems
achieve good sensing performance but their communication
rate is low. However, with frequency hopping [39], antenna

index modulation [40], [41], and sparse array configuration
techniques [32], their communication data rate can be further
increased. Communication-centric systems are optimized for
the communication function and use typical communication
signals, such as orthogonal frequency-division multiplexing
(OFDM), for sensing [42]–[44]. Adaptive systems, capable of
dynamically adjusting their parameters to achieve a desired
trade-off between the radar and communication subsystems,
and tailored to the specific requirements of the application
have also been proposed [40], [45]–[47].

DFRC systems have significant advantages in autonomous
vehicle applications [48]. Deep neural networks have been
introduced in [49] for communication multi-user demodulation
and target tracking. In [18], frequency-modulated continuous-
wave (FMCW) signals from a selected subset of antennas
are transmitted in a randomized fashion. Index modulation
is utilized to embed message through the selection of carrier
frequencies and antennas.

Sparse arrays have been widely adopted in automotive
radar systems to achieve a larger antenna array aperture by
deploying antenna elements placed in a non-uniform spacing
pattern [24]. Beamforming has been proposed to achieve dual
functions for vehicle networks [50] with the help of a road-side
unit (RSU), and thus it is not applicable for systems on moving
vehicles. Recently, an integrated MIMO system is proposed in
[51] that performs target tracking and downlink communica-
tions, while also receiving uplink signals from other commu-
nication nodes to facilitate bi-directional communications. In-
tegration of sparse array configuration and waveform permuta-
tion was introduced in [32] to embed communication symbols
effectively. Beamforming with sparse arrays was considered in
[52] through selective antenna positioning, ensuring both radar
and communication functionalities are maintained. In [53],
sparse array-based beamformers were designed for DFRC
systems by utilizing both amplitude and phase modulations to
encode information into complex transmit beam patterns. In
[34], an alternating direction method of multipliers (ADMM)
solver was developed to design sparse array beamforming
that accommodates multiple downlink users. More recently, a
new scheme is proposed in [54] to jointly develop multiple
beamformers that deliver communication information via a
common sparse array for integrated radar and communica-
tion (IRC) systems. This approach enhances the applicability
and simplifies the hardware implementation by eliminating
the need for continual antenna switching. Nevertheless, the
antenna selection problem is NP-hard, and the computational
cost of relaxed optimization algorithms is still extremely high.

B. Deep Reinforcement Learning

Machine learning techniques, including deep learning (DL)
and reinforcement learning (RL), have become powerful tools
for solving beamforming matrix and antenna selection prob-
lems [55]. Among them, DL networks can be trained to select
antennas and determine phase shifters with a low computa-
tional complexity, provided that a large amount of training
data is available. However, the applicability of DL algorithms
in real-life scenarios, such as for tracking noise and channel
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changes during rapid vehicle movements, may still be limited
due to inherent biases in the dataset. RL algorithms, on the
other hand, can be trained by interacting with the environment
and receiving feedback in the form of rewards or penalties.
This makes them well suited for decision-making tasks in
complex and dynamic environments, such as target tracking
using a massive MIMO radar. However, RL faces a scaling
dilemma when the goal is to obtain an optimal beamforming
matrix. To address this issue, we adopt deep RL (DRL) to
learn complex policies and representations directly from raw
data, such as online beamforming learning. Although it is more
computationally expensive than traditional RL, DRL offers
significant advantages in scalability, performance, and data
requirements [56], [57].

C. Motivation and Contributions

In this paper, our system operates in tracking and searching
modes. In the searching mode, the system performs a quick
target perception. During the tracking mode, based on the
perception results, the sparse transmit array is optimized to
carry out adaptive transmit beamforming to enhance both
radar sensing and communication functionalities. This ap-
proach reduces system costs and optimizes the target tracking
performance, while simultaneously suppressing interference
towards victim radars. Furthermore, by applying DRL, the
system dynamically adjusts the transmit parameters to achieve
an optimal solution through interactions with the environment.
Our contributions are as follows:

• We propose a low-cost reconfigurable transmit beam-
forming scheme, incorporating joint antenna selection
and quantized double-phase shifters, to implement DFRC
systems for automotive applications. We optimize the
array configuration and the beamforming weights in order
to simultaneously form two beams, one towards the
communication receiver and the other one towards the
target searching direction, while creating nulling towards
other radars, allowing multiple radars to coexist and
operate simultaneously within the same frequency band.

• We propose a DRL approach to adaptively select a sparse
subset of transmit antennas and adjust quantized double-
phase shifters to achieve optimal sparse transmit beam-
forming in the highly dynamic automotive scenarios.

• We propose a DRL framework based on Wolpertinger’s
strategy to tackle the dimensionality curse within the
action space, a challenge linked to dynamic antenna
selection and adaptive beamforming when employing
quantized double-phase shifters. The proposed approach
integrates the strengths of both deep Q-network and
deep deterministic policy gradient within the actor-critic
networks.

The basic concept of DRL applied to automotive radar
transmit beamforming is described in [1]. An enhanced DRL
algorithm along with preliminary simulation results are pre-
sented in [2]. The substantive novel contributions of this paper
beyond [1], [2] include the development of a comprehensive
analysis of communication signal loading, the development

of improved transmit beamforming algorithms based on op-
timization, a thorough numerical investigation including the
comparison with a baseline optimization approach, and an
analysis of radar sensing outcomes.

D. Article Organization

The rest of the paper is organized as follows. In Section II,
we describe the signal model of automotive radar for sensing
and communication and formulate the transmit beamforming
design exploiting sparse arrays and quantized double-phase
shifters. In Section III, we present a DRL-based optimiza-
tion method for of transmit beamforming. We validate our
models and methods with extensive numerical simulations in
Section IV. Finally, Section V concludes the paper.

Throughout this paper, upper-case and lower-case bold
characters denote matrices and vectors, respectively. Matrix
vectorization operation is denoted by vec(·). The conjugate
transpose and transpose are denoted by (·)H and (·)T , re-
spectively. The complex values set is C. The notations ⊙
and ⊗ denote the Hadamard product and Kronecker product,
respectively.

II. SYSTEM MODEL

We consider a colocated phase-controlled FMCW automo-
tive DFRC system consisting of a reconfigurable unit uniform
linear transmit array, which means that the transmit array
can be adaptive corresponding to the scenario by enabling
or disabling antennas. The transmit array is used for both
radar sensing and communication functions (see Fig. 1). The
communication information is embedded in the transmitted
waveform through slow-time encoding or a hybrid of fast-time
and slow-time encoding.

A. Automotive Radar

Consider an FMCW automotive radar operating at a central
frequency fc with a bandwidth of B and a pulse duration time
of T . This radar transmits a linear frequency ramp with a pulse
repetition interval Tp. At the m-th chirp, the corresponding
uncoded transmitted signal is given by [27]

x(m, t) = rect
(
t−mTp

T

)
ej2π(fct+

1
2 ·

B
T t2), (1)

where t is the fast-time with 0 ≤ t ≤ T .
In MIMO radar, transmitting antennas simultaneously emit

mutually orthogonal waveforms to enable a receiving an-
tenna to separate the incoming signals corresponding to each
transmitting antenna. Assume there are NT transmit and NR

receive antennas. When utilizing orthogonal waveforms in an
FMCW MIMO radar configuration, as demonstrated in [27],
[58], it is crucial to preserve the advantages of narrowband
sampling. There are many ways to realize waveform orthog-
onality in an FMCW radar, such as time division, frequency
division, and code division [27].

For each receiver, the received signals corresponding to
different transmit antennas can be identified by their unique
coding, which uses orthogonal properties. After applying fast
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Fourier transform (FFT) to the fast-time samples, a decoded
data matrix is obtained, which is then subjected to slow-time
FFT. This process results in a range-Doppler spectrum for a
specific transmit-receiver antenna pair. To extract the angle
information corresponding to the pair, thresholding techniques
such as the constant false alarm rate (CFAR) algorithm can
be used. By following this process, the virtual array steering
vector a ∈ CNTNR can be given by

a =

K∑
k=1

αk [at(θk)⊗ ar(θk)] (2)

where at(θk) = [1, ej(2π/λ)d̃21sin(θk), · · · , ej(2π/λ)d̃NT1
sin(θk)]T

and ar(θk) = [1, ej(2π/λ)d21sin(θk), · · · , ej(2π/λ)dNR1
sin(θk)]T

denote the transmit and receiver steering vectors, respectively.
To establish a common reference point, we define the first
element of each vector as the reference. Several classical
techniques exist for obtaining the angle spectrum from
the steering vectors, including digital beamforming and
compressive sensing [27].

B. Automotive Radar Sensing and Communication
Design

A moving target-oriented DFRC system with a radar-
centered reconfigurable phased transmitting array isolates
moving targets from static targets such as buildings and trees
through the range-Doppler spectrum of the echo and ego
vehicle speed. The change of the estimated target parameters
can guide the system to automatically adjust the activation and
deactivation of the reconfigurable array and the corresponding
beamforming vector.

1) Radar Transmit Beamforming: The radar transmit beam-
pattern is given by [59]

B(θ) = aHt (θ)Wat(θ), (3)

where W ∈ CNT×NT is the beamforming weight matrix com-
posed with quantized phase terms, expressed as

W = E
[
x(m, t)xH(m, t)

]
= fRFf

H
RF, (4)

E[·] denotes the statistical expectation, x(m, t) is the transmit
waveform vector for the NT transmit antennas at the m-th
chirp and is given by

x(m, t) = x(m, t)ejϕmfRF. (5)

Here, ϕm is the slow-time code at the m-th chirp. To perform
the radar sensing function, the analog precoder fRF is designed
to steer the mainlobe to the region of interest of the radar. fRF

is controlled by the phase shifters, which can be replaced by
the radar sensing beamformer wr, defined as

wr =
1√
NT

[
ejω1 , ejω2 , · · · , ejωNT

]T
, (6)

where ωi ∈ D for all i ∈ {1, · · · , NT }.

2) Communication Model: Assume that the communication
receiver has an array consisting of Nc elements, and the
number of independent propagation paths (L) is less than NT

because millimeter wave (mmWave) channels are considered
to have limited scattering [60]. In such scenarios, the downlink
channel matrix is denoted by Hd ∈ CNc×NT and can be
expressed as follows:

Hd =

√
NTNc

L

L∑
l=1

βlbc(θcl)a
H
t (θtl), (7)

where βl represents the complex path gain for the l-th path.
Additionally, bc(θcl) and at(θtl) denote the receive and trans-
mit array steering vectors of the l-th path, respectively, for the
communication system. The angles of arrival and departure
for the l-th path are denoted by θcl and θtl, respectively. The
received signal at the communication receiver can be expressed
as:

yc(m, t) =
√
ρx(m, t− τc)e

jϕmHdfRF + n(n, t), (8)

where ρ denotes the average received power and τc is the delay
between the radar transmitter and the communication receiver.

In the communication mode, fRF is replaced with a beam-
former wc, defined as

wc =
1√
NT

[
ejΩ1 , ejΩ2 , · · · , ejΩNT

]T
, (9)

where Ωi ∈ D for all i ∈ {1, · · · , NT }.
On the receive end of the communication channel, the

received signal can also be represented as:

yc(m, t) =
√
ρx(m, t− τc)e

jϕmhlump + n(n, t), (10)

In this equation, the lump channel information vector
hlump = HdfRF is present. To estimate the channel informa-
tion hlump for the full phase array, beam sounding techniques
can be employed, as described in the prior work [61], [62].
Accurate synchronization of the signal delay between the
sender and the receiver is necessary to extract communication
code from the received. To achieve time synchronization,
Global Positioning System (GPS) technology or atomic clock
technology can be used [63]–[65]. For example, the Pulse-
Per-Second (PPS) signals from two GPS modules can achieve
a synchronization accuracy of 60 ns [66]. If the estimated
channel hlump matches to hlump, after passing through the
mixer and the low-pass filter, the received communication
signal becomes

yc = ejϕm1+ n. (11)

The received reconstructed signal yc can be used to evaluate
the communication performance.

3) Communication Information Embedding: In the phased-
array beamforming mode, each chirp carries a communication
symbol from the binary phase-shift keying (BPSK) constella-
tion, also known as the slow-time coding method in this paper.
At the receive end, the transmitted signal can be extracted
using equation (11). However, in automotive radar, the number
of chirps is typically limited to several hundreds in order to
enable coherent processing of the target object echo, which
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Fig. 1. The proposed automotive radar DFRC system diagram in the tracking mode.

sets an upper bound on the communication rate. To increase
the communication capacity, a hybrid-coded method can be
adopted, which combines fast-time and slow-time coding. In
this coding scheme, the duration of each chirp is divided into
L short time periods, which are then encoded as follows: The
code sequence for NT transmit antennas at the m-th chirp is
given by

xC(m, t) =
L∑

l=1

ejϕl rect
(
t−m(l − 1/2)Tl

Tl

)
ej2π(fct+

1
2 ·

B
T t2+ϕNT m),

(12)

where Tl = T/L represents the duration of a fast-time chirp.

C. Transmit Beamforming Exploiting Sparse Arrays and
Quantized Double-Phase Shifters

We present the transmit beamforming using sparse arrays
with quantized phase shifters. The combined application of
transmit beamforming and sparse arrays allows for a cost-
efficient and effective system design. As shown in Fig. 1,
the transmit antennas are sparsely selected to form two dis-
tinct beams: one directed towards the radar target and the
other towards the communication user. Concurrently, a null
is created in the directions of the victim radars, functioning to
significantly minimize mutual interference.

1) Antenna Selection: In order to adapt different sparse
transmitting arrays in different scenarios, we designed a recon-
figurable sparse array based on the current radar scenario by
activating a subset of available transmit antennas, and keeping
the rest of the antennas inactive to reduce the power consump-
tion of the radar system and mutual coupling between the an-
tennas. A selection matrix denoted as S = [u1,u2, · · · ,uNT

]
is defined, where each column vector ui represents the status
of i-th antenna. The i-th entry of ui is set to “1” if the antenna
is activated, and “0” otherwise. The length of the transmit array
determines the transmit beam’s width, meaning that a larger
aperture size results in a narrower beamwidth [67]. Therefore,
we fix the first and the last antennas of the array to maintain
a consistent array aperture and select M other antennas in-
between, resulting in a total of M+2 antennas being activated.

As a result, the trace of S, denoted as tr(S), is M + 2. The
first element of u1 and the last element of uNT

are set to “1”,
while all other entries in u1 and uNT

are set to “0”.
2) Beam Synthesis via Double-Phase Shifters: In a full-

phase array DFRC system, radar sensing and communication
will share the same transmitter array. Therefore, in order to
achieve both functions, the radar sensing beamformer wr and
the communication beamformer wc need to be merged as a
single beamformer w, and this is accomplished using double-
phase shifters. Its working principle relies on each antenna
being connected to a unique RF chain via two phase shifters.
The beamformer can synthesize two main beams, focusing the
energy of the array on the respective directions of interest for
the two functions.

By connecting a pair of phase shifters to each antenna, we
introduce more degrees of freedom to shape the beampattern
[29]. The hybrid transmit beamformer w is given as

w = c1wr + c2wc

=
1√
Nt

[c1e
jω1 + c2e

jΩ1 , c1e
jω2 + c2e

jΩ2 , · · · ,

c1e
jωNT + c2e

jΩNT ]T , (13)

where c1 ∈ [0, 1] and c2 ∈ [0, 1] with c21+c22 = 1 are weighting
factors that balance radar sensing and communication capabil-
ities.

3) Beamforming Optimization Problem Formulation: In prac-
tical applications, however, phase shifters usually apply a
limited number of phase shift angles due to complex imple-
mentation and overhead challenges. At the same time, in order
to reduce the interference of transmitting antennas to uninter-
esting targets, additional constraints need to be introduced to
improve the above optimization problem.

In this section, we delve into the intricate process of
crafting a highly optimized transmit beamformer, denoted by
w, as well as an antenna selection matrix, represented by S.
To achieve both radar sensing and communication functions
simultaneously, a common sparse array can be designed as fol-
lows using two separate beamformers: wr for radar and wc for
communication [52]. The objective of this design is to ensure
that a certain level of power is maintained towards both the
radar targets and the communication destination. Furthermore,
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the beamformer must generate minimal interference towards
other directions while maintaining low peak sidelobe levels.
In essence, the problem at hand can be formulated as

min
{w,S,α1,α2,α3}

γ1α1 + γ2α2 + γ3α3

s.t.
∣∣wHSa(θr)

∣∣ = p1,∣∣wHSa(θc)
∣∣ = p2,∣∣wHSa(θl)
∣∣ ≤ ρ1 + α1, θl ∈ Θ,∣∣wHSa(θi)
∣∣ ≤ ρ2 + α2,

w = c1wr + c2wc,

wr,wc ∈ D,∣∣∣θr − θ̂r

∣∣∣ ≤ α3,

tr(S) = M + 2.

(14)

The coefficient of balance γi denotes the proportion of each
part in the cost function. The sensing direction, departure angle
to the communication user, discretized angle in the sidelobe
region, and direction of an uninterested target are represented
by the variables θr, θc, θl, and θi, respectively. Here, p1
and p2 quantify the power assigned to the radar target and
the communication user, respectively. With Θ denoting the
sidelobe region, ρ1 and ρ2 quantify the peak sidelobe level
of beampattern and interference attenuation, respectively. To
make the constraints feasible, we introduce auxiliary variables
α1 and α2 to relax the constraints on the specific level of
peak sidelobe and interference attenuation, and their minimum
values are 0. Constraints wr and wc force the value of phase
shifters within the range of quantitative values. The parameter
α3 is used to measure the deviation between the ground truth
θr and the actual main beam direction θ̂. The last constraint
ensures that a total of M + 2 antennas are selected. The
joint optimization problem of transmit antenna selection and
beamforming with quantized phase shifters is NP hard.

4) Optimization Based Solution: A simplified optimization
problem is developed to determine the optimal beamforming
weights by assuming that the selection matrix S of transmit
antennas is already obtained via DRL. Let fd denote the de-
sired reference beampattern including the mainlobe, sidelobe,
and null-space region constraints specified in problem (14).
The new beampattern synthesis problem is formulated as

min
w
|ASw − fd|

s.t. w = c1wr + c2wc, (15)
wr,wc ∈ D.

In this problem, A = [at(θ1),at(θ2), · · · ,at(θK)] ∈ CNT×K

is a dictionary matrix consisting of discretizing the entire
region of interest (ROI) into K discretized angles with a
certain step. The weight vector w comes from the quantized
set D. The fixed sparsity antenna distribution group sparse
optimization (GSO) method is used to solve the optimum
beam vector w. The values of the obtained phase shifters
through GSO can achieve arbitrary high precision. These
values are then quantized to the closest values in the quan-
tized phase shifter set D. The quantization may result in a
small performance loss that will be seen in the numerical

part. Further, when compared to the RL method, the GSO
optimization method lacks the ability to dynamically adjust
the beamforming weights when changes the target’s position
changes due to the absence of a feedback link.

5) Angle Finding Under Sparse Antenna Selection: In the
tracking mode, the transmit beamforming using sparse arrays
through antenna selection enhances the output SNR of both
sensing targets and communication users, while suppressing
interference to other automotive radars. For angle finding
of radar targets in the tracking mode, a separate receive
antenna array is required, which is decoupled from the transmit
beamforming design. However, in the sensing mode, the
virtual array is synthesized with MIMO radar technology
and, therefore, the dynamic sparse transmit antenna selection
would impact the virtual array beampattern. The challenge of
sparse arrays is the high sidelobes or potential grating lobes.
High-resolution algorithms such as compressive sensing (CS)
[68] and iterative adaptive approach (IAA) [69], [70] are of
great interest for angle finding, as they help to suppress the
high sidelobes. Additionally, CS and IAA work with single
snapshot. To deal with potential grating lobes, usually angle
unfolding technique can be applied with overlapped subarrays
[71].

III. TRANSMIT BEAMFORMING DESIGN USING DEEP
REINFORCEMENT LEARNING

The combinatorial transmit beamforming optimization prob-
lem is NP-hard that requires an exhaustive search through
a vast number of possible solutions. This means that the
time required to find a solution grows exponentially with the
size of the problem. To alleviate the optimization difficulties
caused by the size explosion, and considering the limited phase
tunability characteristics of practical phase shifters, we adopt a
framework based on DRL to dynamically activate or deactivate
antennas and tune the phase of each activated antennas. The
incorporation of DRL paves the way for intelligent, dynamic
decision-making that is responsive to changes in the system’s
environment.

A. Deep Reinforcement Learning
The problem of sparse array beamforming is to find the

optimal subarray set and the corresponding beamforming
matrix policy. RL utilizes the trail and reward loop to guide
the agency to an optimum solution, making it a powerful tool
to solve our beamforming problem in an intelligent way. RL
is a type of machine learning where an agent learns to make a
sequence of decisions in an environment in order to maximize
a reward. The goal of the agent is to learn a policy, which is a
mapping from states to actions, that maximizes the expected
cumulative reward. The mathematical framework of RL can
be defined by a Markov decision process (MDP) using a tuple
(S,A, P,R, γ), where S is the set of possible states, A is the
set of possible actions, P is the state transition function, which
specifies the probability of transitioning from the current state
st to the next state st+1 when taking action a, and R is
the reward function, which specifies the immediate reward
obtained during the transition from state st to state st+1 when
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taking action a. In addition, γ is the discount factor, which
determines the importance of future rewards. The goal of the
agent is to learn a policy π(a|s) that maximizes the expected
cumulative reward [72], [73]:

Gt =

∞∑
k=1

γkRt+k+1, (16)

where Gt is the discounted cumulative reward at time step
t. The policy is learned by updating the estimate of the
value function Vπ(s), which is the expected cumulative reward
starting from state s and following policy π. This can be done
using the Bellman equation [73]:

Vπ(st) =∑
a∈A

π(a|st)st+1∈SP (st+1|st, a) [R(st, a, st+1) + γVπ(st+1)] .

(17)

DRL is a type of RL that uses deep neural networks to
approximate the optimal policy or value function. This allows
the agent to learn more complex and abstract representations
of the state space, and enables it to generalize to unseen
situations. In DRL, the agent’s policy or value function is
represented by a deep neural network with weights θ. The
network takes the state s as input and outputs the action
probabilities or value estimates. The weights are updated using
stochastic gradient descent to minimize the loss function,
which is usually the mean squared error between the predicted
and the actual target values. Popularly used algorithms used
in DRL include Q-learning, State-Action-Reward-State-Action
(SARSA), and actor-critic methods, which are all based on
the idea of using deep neural networks to approximate the
Q-function or policy.

The Q-function is the expected cumulative reward for taking
a certain action a in a certain state s, and following the optimal
policy thereafter [72], [73]. It is expressed mathematically as:

Q∗(st, at) = E[Rt+1 + γmaxat+1
Q∗(st+1, at+1)|st, at],

(18)

where at+1 is the next action, and maxat+1 Q∗(st+1, at+1) is
the maximum expected cumulative reward under the optimal
policy in the next state.

The Q-learning algorithm updates the Q-function iteratively
using the following equation:

Q(st, at)← Q(st, at)

+ α
[
Rt + γmaxat+1

Q(st+1, at+1)−Q(st, at)
]
, (19)

where α is the learning rate, and the update is performed after
every action is taken by the agent.

SARSA is a similar algorithm that updates the Q-function
using the following equation:

Q(st, at)← Q(st, at) + α [Rt + γQ(st+1, at+1)−Q(st, at)] .
(20)

The update is performed after every action-state pair.
Actor-critic methods combine both the policy-based and

value-based approaches by training two neural networks: one
to approximate the policy and the other to approximate the

value function. The policy network is trained using the policy
gradient method, while the value network is trained using
temporal difference learning or a variant thereof.

The deep Q-network (DQN) algorithm is a DRL algorithm
that combines Q-learning with a deep neural network to learn
the Q-function in high-dimensional state spaces. The key
idea behind DQN is to use a neural network to approximate
the Q-function, which allows the agent to learn a more
accurate representation of the optimal policy than traditional
tabular methods. However, when the action dimension is high,
it becomes difficult to use DQN RL to find the desired
mapping policy. To overcome this challenge, we use the
Wolpertinger policy-based RL framework, which enables us to
implement training that is manageable on a time-wise basis.
The Wolpertinger policy comprises three basic elements: an
action network, a K-nearest neighbor (KNN) map, and a critic
network. Together, these elements make up the Wolpertinger
policy. The deep deterministic policy gradient (DDPG) is used
to train the networks [74].

The actor network in DDPG selects an action by mapping
the current state of the environment to a continuous action
space. The output of the actor network is a vector of continu-
ous action values that can be scaled to fall within a specified
range. Mathematically, the actor network is represented as:

â = Actor(s|θµ), (21)

where θµ contains the parameters of the actor network, and
Actor(·) is the function that maps the state to the action. The
action network in DDPG outputs a continuous action value,
which needs to be discretized before it can be used by the
critic network to estimate the Q value. To achieve this, the
KNN algorithm is used to select the K actions (a) in the
quantization interval D that are closest to the continuous action
output of the actor network.

In DDPG, the KNN network is used to select the best action
from the set of actions generated by the actor network. The
K-nearest neighbors and their associated actions are stored in
the KNN map for use during training and testing. The distance
metric d(â, a) can be defined as the Euclidean distance:

d(â, a) = ||â− a||2. (22)

The K actions can be selected as [75]

a =
K

argmin
a∈D

d (â, a). (23)

These K actions, along with the current state, are then used as
state-action pairs by the critic network to calculate the Q value.
The goal of critic network is to choose the corresponding
action to the maximum Q value, which can be given by

a = argmax
a∈D

Q(s, a|θQ), (24)

where θQ is the parameter set of the critic network.
During training, the actor network learns to maximize the

expected reward obtained by the agent. This is achieved by
adjusting the parameters of the actor network using the policy
gradient method. The policy gradient is computed using the
estimated value of the state-action pair, which is provided by
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the critic network. The gradient of the expected reward with
respect to the parameters of the actor network, denoted by
∇θµJ , can be written as [74]:

∇θµJ ≈ 1

N

N∑
i=1

∇aQ(si, a|θQ)∇θµActor(s|θµ), (25)

where N is the batch size, si is the i-th state in the batch, a
is the action selected by the actor network, and Q(si, a|θQ)
is the estimated value of the state-action pair provided by the
critic network. The policy gradient is computed by taking the
gradient of the expected reward with respect to the parameters
of the actor network, θµ, and is used to update the actor
network during training.

In the DDPG algorithm, the target actor and target critic
networks are copies of the original actor and critic networks,
respectively, but with separate sets of parameters [74]. These
target networks are used to generate the target actions and
target Q-values that are needed for updating the original net-
works. The update rule for the target actor network parameters
is given by:

θµ′ = (1− η)θµ′ + ηθµ, (26)

where θµ′ is the set of parameters for the target actor network
and η is the update rate parameter that controls the rate at
which the target network parameters are updated. Typically,
η is set to a small value such as 0.001. Similarly, the update
rule for the target critic network parameters is given by:

θQ
′
= (1− η)θQ

′
+ ηθQ, (27)

where θQ
′ is the set of parameters for the target critic network.

During training, the original actor and critic networks are
updated using the gradient descent algorithm based on the
loss function. However, the target networks are not updated
directly. Rather, their parameters are updated slowly to match
the parameters of the original networks. This introduces a
lagging between the generation of the target actions and Q-
values and the update of the original networks, which can
help to improve the stability and convergence of the learning
process.

The critic network is trained using a temporal difference
method [74]. The objective is to minimize the difference
between the estimated value and the actual value of the state-
action pair:

L(θQ) = E
[
(ri+1 + 1 + γQ(si+1, ai+1|θQ)−Q(si, ai|θQ))2

]
,

(28)

where st+1 is the state at time t+ 1 and at+1 is the action
taken at time t+ 1.

B. Beamforming Design with DRL

In this section, we describe in detail how to use Wolper-
tinger policy-based reinforcement learning framework to op-
timize transmission beamforming for both radar sensing and
communication functions and to avoid interference to specific
targets, as shown in equation (14), and specific functions of
function blocks in Fig. 1.

1) Action Space: We consider a scenario where we must select
M + 2 antennas from a pool of Nt antennas, and both ends
have fixed antennas. The number of potential solutions for this
scenario is Q = CM

Nt−2. Phased array antenna systems utilize
quantized phase shifters, which enable multiple antennas to
direct the transmission or reception of a signal by adjusting
each antenna’s output phase. This technique allows the signal
to be steered in a desired direction without requiring physical
movement of the antenna. Each antenna in a subphase array is
connected to two q-bit quantized phase shifters, which have a
value range of (−π, π). To obtain the optimal value of w,
we must optimize the phase of the phase shifters and the
sparse transmit array geometry. The dimension of the phase
adjustment is RQ·2q×(M−2)

.
2) State: Once an action is taken from the action space, the
state vector s changes and includes the current status of the
transmit array phase shifters. At the i-th iteration, the state
is represented as sTi = [w1, w2, · · · , wM+2]i, where each
element corresponds to the status of a specific phase shifter.
The activation or deactivation of a phase shifter represents a
change of one element and is considered as an action taken
from the action space.
3) Hold and Go: After the transmit antenna array emits
power, the receive array processes the received echo signal.
Subsequently, the moving targets within the ROI are analyzed,
and relevant parameters such as distance, Doppler, and angle,
are extracted. These parameter values are then transmitted to
the module, where they are dynamically adjusted based on the
parameter estimation results obtained from the receive array.
In the hold stage, only one set of phase shifters is explored
instead of two, and a pre-beamforming check is performed
before inputting two phase shifters with the desired phase.
The columns of the beamformer recorder matrix Wrc =
[wr(θr),wc(θc)] form the respective beams in the target and
communication receiver directions. The fused beamformer
w = 0.5wr(θr) + 0.5wc(θc) is obtained, assuming c1 =
c2 =

√
2/2. To determine whether the phase of double-phase

shifters should be changed, a set of flags fd is used. It consists
of two flag bits. The one-time trigger flag bit fd1 detects the
dimension of matrix Wrc, and once the dimension satisfies the
two columns, the holding phase ends and external environment
interaction begins. Another flag bit fd2 indicates whether Wrc

changes and, if so, updates the reward.
4) Environment Interaction: The feedback component of
RL is critical, making it superior to other machine learning
methods for control applications. In the design of beamform-
ing, radar sensing beam feedback consists of two compo-
nents. First, the self-detection of beam directivity using the
fusion beamforming vector w allows the agent’s behavior
to be adjusted by observing deviations between the obtained
target and the set target through beampattern transformation.
Second, the range-Doppler spectrum constructed from radar
sensing echoes provides feedback to compare deviations with
expectations and adjust the agent’s actions. Similarly, in-
teractive feedback for communication beamforming has two
components. The first component is feedback for deviations in
fusion weighting in the direction of the target, and the second
component adjusts the agent’s actions based on feedback from
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the communication channel. For the interaction of targets that
need to avoid interference, the corresponding position of null
in the transmit beampattern is fed back simultaneously and
immediately.
5) Reward: We design a comprehensive reward system that
dynamically evaluates the actions chosen by the agent. This
system guides the agent towards selecting the most appropri-
ate action to maximize its rewards. The rewards are based
on three evaluations: radar sensing, communication, and in-
terference reduction. Together, these evaluations enable the
agent to make informed decisions. Assume that the ROI for
radar sensing covers an angle of −θROI/2 to θROI/2, and
the 3-dB beamwidth is determined by the formula ∆θ =
2arcsin(1.4λ/(πD)), where D is the physical aperture size
of the transmit antenna array. The area beyond the first nulls
of the mainlobe is referred to as the sidelobe region. At
each update, the difference between the maximum level of
the mainlobe peak max(PROI,i) and the peak sidelobe level
max(PSLi) is denoted by ξi = max(PROI,i) − max(PSLi).
The main beam deviation is calculated using the values of
ξ and dr to ensure that the main beam is directed towards
directions while minimizing the peak sidelobe level. The
reward is given by

rri =

 1, if ξi > ξi−1 and dri ≤ dri−1,
−1, if ξi ≤ ξi−1 and dri > dri−1,
0, other cases.

(29)

To evaluate communication performance, the received gain is
usually represented by the expression gc = |Hw|2. Assuming
that the channel parameters have been estimated, the commu-
nication reward can be expressed as follows:

rci =

 1, if gci > gci−1,
0, if gci = gci−1,
−1, if gci < gci−1.

(30)

This dynamic gain will be reported to the automotive radar by
the communication user through an uplink channel.

To prevent interference with other automotive radar systems,
it is important that the synthesized beamformer produces a null
in the direction of departure θi. The level of attenuation can
be calculated using the formula p = |wHa(θi)|, where w is
the weight vector and a(θi) is the array response vector in the
direction θi. The reward for minimizing interference at the i-th
update can be given by

rpi =

 1, if pi < pi−1

0, if pi = pi−1

−1, if pi > pi−1.
(31)

The final triple reward ri at the i-th update is expressed as

ri = λ1rri + λ2rci + λ3rpi, (32)

where λ1, λ2, and λ3 represent the respective weights trading
off between the radar and communication functions, and
interference attenuation.

The pseudo code of DRL-based automotive DFRC using
Wolpertinger policy is given by Algorithm 1.

Algorithm 1 DRL-based automotive radar DFRC system
1: Initialize networks with corresponding parameters.
2: HOLD = TRUE, fd1 = 0; fd2 = 0.
3: Initialize ξ0 = 0, dr0 = 1, gc0 = 0, p0 = 1.
4: Initial sample a random beamforming vector wrc1 as

initial state s1 and record action a1.
5: for i = 1 to T do
6: Receive proto-action âi from actor network.
7: Action embedding g(âi) through KNN mapping.
8: while HOLD do
9: Update Wrc1.

10: fd1 = column(Wrc).
11: if fd1 == 2 then
12: HOLD = FALSE.
13: Execute action w1 passed from critic network.
14: Calculate reward and update state si+1 = ai.
15: Update ξ1 , dr1 , gc1 and p1.
16: end if
17: end while
18: Update Wrci.
19: if Wrci ̸= Wrci−1 then
20: Execute action wi passed from critic network.
21: Calculate reward and update state si+1 = ai.
22: Update ξi , dri , gci and pi.
23: Update all networks.
24: end if
25: end for

C. Computational Complexity Analysis

The action space in the DRL system grows exponentially
with the increasing number of antennas and quantized phase
values, which can make the computational cost of exploring
and learning the optimal policy prohibitively high. To address
this challenge, the KNN block is introduced to ensure that the
computational cost of the entire system remains tractable at
each state. The Wolpertinger policy scales linearly with the
number of selected actions, k. According to Lemma 1 in [76],
the expected value of the maximum of the k closest actions
is:

E
[

max
i∈1,...,k

Q(s, â)|s, â
]
=Q(s, a) + b− pk(c− b)

− 2b

k + 1

1− pk+1

1− p
.

Given â, each nearby action has a probability p of being
suboptimal or faulty, resulting in a value lower than Q(s, â)−c.
The values of the other actions are uniformly distributed within
the interval [Q(s, â)− b,Q(s, â)+ b], where b ≤ c. The minus
part −pk(c − b) − 2b

k+1
1−pk+1

1−p lowers the expected value to
below Q(s, a) + b, with changes governed by O(pk) and
O( 1

k+1 ). This significantly reduces the expected value, but
the diminishing returns become apparent as k increases. For
applications with low dimensionality, using 5% or 10% of
the maximum number of actions performs similarly to that
using the full action set A. However, even when considering
5% of a large set A, the number of actions to evaluate at
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each step remains considerable. Fortunately, when the action
space dimension is large, a single look-up is sufficient. For
example, in [76], with an action space dimension of n = 20,
using k = 1 ensures the convergence of the DRL. In our
system, we use a single look-up k = 1 to expedite the action-
critic process. Specifically, given an â, we only evaluate the
nearest action in A. This approach is low-cost, efficient, and
effectively addresses the curse of dimensionality in the action
space.

The computational complexity of the proposal DRL based
beamforming approach can be analyzed in terms of the number
of neural networks parameters that need to be stored CP ,
additions CA and multiplications CM . The actor and criti-
cal networks have a similar structure which takes the input
dimension Ns and passes it through two hidden layers with
the number of neurons denoting as N1 and N2. The softplus
and tanh functions are used for the first and second hidden
layers separately, and a batch norm is implemented from
layer to layer. Bias are assigned to the hidden layers and
the output layer. The computation complexity of the proposed
DRL is considered from the parameters to be stored CP ,
the addition operation CA, and the multiplication CM . The
activation function cost is considered as addition, and the
cost of the batch norm is counted to multiplication. Taking
the actor-network as an example, the bundle of computation
complexity is given by

CP = NsN1 +N1N2 +N2Ns +N1 +N2 +Ns,

CM = NsN1 +N1N2 +N2Ns +N1 +N2,

CA = NsN1 +N1N2 +N2Ns + 2(N1 +N2 +Ns).

Considering the target and evaluation networks of actor-critic
networks, the total complexity is C = 4(CP + CM + CA).

IV. NUMERICAL RESULTS

We carry out numerical simulations to evaluate the per-
formance of the proposed DRL assisted automotive DFRC
system. A FMCW MIMO radar with phase-modulated slow-
time waveforms features 15 transmit and 15 receive antennas
with a half wavelength inter element spacing and its setting
is given in Table I. The normalized spatial frequency of the
half FOV of the array is set to 0.7, which corresponds to a
half angle of the region of interest, denoted by θROI/2, of
44.2 degrees. The 3-dB beamwidth, denoted by ∆f , is 0.119,
which corresponds to a half angle, denoted by ∆θ, of 6.81
degrees.

TABLE I
RADAR PARAMETERS

Parameters Values

Carrier frequency, fc 77 GHz
Maximum detection range, Rmax 200 m
Maximum detection velocity, Vmax 230 km/h
Bandwidth, B 150 MHz
Pulse duration, Td 7.3 µs
Sampling frequency, fs 54.648 MHz
Number of chirps, M 512

(a)

(b)

Fig. 2. Estimated target parameters in the searching mode: (a) Range-
Doppler spectrum; (b) Range-angle spectrum. The red × denotes the
actual positions of the targets.

To enable radar sensing and communication for specific
purposes, the first crucial step is to estimate the target pa-
rameters within the radar’s FOV using the searching mode.
In this mode, following data processing, the resulting data
spectrum can be visualized in Fig. 2. There are three objects
in the FOV of the radar, including a tracking target with range
r1 = 25 m, v1 = −20 m/s, θ1 = −23.6◦, a communication
user with r2 = 25 m, v2 = 10 m/s, θ2 = −5.7◦, and a
potential interference radar with r3 = 20 m, v3 = 35 m/s, and
θ3 = 14.4◦. The reflection coefficients of the three objects
are normalized to α1 = α3 = 1.0, and α2 = 0.3 and are
assumed to be unchanged during the processing interval. The
input SNR is set to 0 dB.

For the learning model, we use the hyper-parameters as
described in Table II. All networks are trained on a Lambda
machine with an Intel Core i9-10920X CPU and four Nvidia
Quadro RTX 6000 GPUs.

TABLE II
HYPER-PARAMETERS FOR TRAINING
Parameter Value

Models Actor-Net Critic-Net
Replay Buffer 4096 4096

Mini-batch 128 128
Learning rate 0.001 0.001

Decay 0.001 0.001
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A. Performance Under Antenna Selection

We choose 12 antennas from 15 antennas to form the
final transmission array, as shown in Fig. 3. There are 455
possible selection schemes. Each antenna is connected to a
3-bit quantization double-phase shifter.

Antenna position (l/2)

Antenna position (l/2)
1 5 10 15

1 5 10 15

(a)

(b)

Fig. 3. (a) The transmit array configuration in the initial phase; (b) The
transmit array configuration after optimization.

The antenna selection process is depicted in Figs. 3(a) and
3(b). Additionally, Fig. 4 shows the average reward attained
during the training process. After approximately 60 epochs,
the network intelligently adjusts the phases to steer the main
beam to the ROI based on the current observation state. In the
100-th episode, the tracking target, the communication target,
and the direction that requires nulling change. At this time, the
reward drops sharply due to the loss of target. However, the
perception information updates the hold and go module, and,
therefore, RL is able to quickly adjust transmit beamforming
and reconfigure antenna locations. Fig. 5 (a) illustrates that at
the outset of the iterative optimization, two beams are gener-
ated in the directions of the radar target and the communication
receiver, but with a high sidelobe level in the undesired
direction. After optimization, the sidelobe level is substantially
reduced, effectively attenuating the interference to the specific
automotive radar. Compared with DRL-optimized and GSO-
optimized transmit beamforming in Fig. 5, it can be seen that
the energy of communication and tracking direction optimized
by DRL is more balanced and the sidelobes are reduced.
Fig. 6 explores the impact of power allocation coefficients.
Initially, the radar radiation power coefficient c1 for the ROI
was set to 0.1. Subsequently, the power was increased to
c1 = 0.5. Notably, power coefficients serve as effective tools
for regulating the radiation pattern through the assignment of
power to distinct functions.
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Fig. 4. The reward during training.
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Fig. 5. (a) The transmit beamforming in the initial phase; (b) The
transmit beamforming after optimization with DRL and GSO, Ground
truth directions are indicated in red dash lines.
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Fig. 6. The DRL optimized transmit beamforming in sparse phased
array with quantized phase shifters under different assigned power
coefficients to radar radiation.

B. Sensing Performance Evaluation

In the phase array mode, once the emission beampattern
of the fully phased array has been determined by the DRL,
further adjustments can be made by interacting the radar echo
spectrum with the DRL agent. As depicted in the Fig. 7, after
receiving the energy radiated by the antenna array, the radar’s
receiving antenna array processes the echo from the target.
Because of the directionality of the transmitted beampattern,
the echo of the target of uninterested with a higher reflection
coefficient is reduced and the communication target with a
lower reflection coefficient is enhanced. Simultaneously, the
range-angle spectrum shows that the target in the null position
can no longer stand out in the spectrum, unlike Fig. 2(b).
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(a)

(b)

Fig. 7. Target parameters estimation in phased array sensing mode:
(a) Range-Doppler spectrum; (b) Range-Angle spectrum. The red ×
denotes the actual positions of the targets.

Additionally, due to the characteristics of the phase-controlled
array, the angle resolution is also compromised relative to the
MIMO radar mode.

C. Communication Performance Evaluation

We assess the performance of the communication function
by evaluating the bit error rate (BER).

The accompanying Fig. 8 illustrates the BER variation trend
with respect to the input SNR for two coding modes, where
the number of chirps is set at M = 512, the number of receive
antennas at the user end is set to 1, and the hybrid coding mode
employs L = 400 time samples. Monte Carlo simulations were
run for 10, 000 rounds at each SNR scenario. As seen in the
plot, when the input SNR exceeds 10 dB, the BER drops
to 10−6. Hybrid coding exhibits an enhanced transmission
efficiency compared to slow-time coding.

D. Comparison With Optimization Methods

The comparison between the proposed and traditional op-
timization methods is of a significant value, and we select
the modified beampattern synthesis method of relaxation op-
timization as the baseline method [77].

In the case of optimizing the beam vector of a ULA
array, as shown in Fig. 9, both the DRL and the traditional
optimization methods can achieve the desired beampattern,
and the positions of the two mainlobes appear in the preset
directions. However, due to the quantization requirements,
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Fig. 8. The BER versus SNR with binary phase-coded communication
symbol along slow-time (a) and hybrid (b).
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Fig. 9. The transmit beamforming in uniform phased array status with
quantized phase shifters.

the mainlobe may have a slight deviation, which falls within
the control range of α3. While the deepest position of the
DRL-optimized null may slightly differ from the expected
direction, it still ensures the lowest possible transmission
power in the direction of the desired target. The optimal
phase values yielded by the GSO algorithm have arbitrary high
precision. These high precision phase values are quantized to
the nearest discretized phase values. The phase quantization
results in a small performance loss compared with the DRL
solution. In the optimization of the sparse transmission ar-
ray w, as illustrated in Fig. 5, both the DRL method and
the traditional optimization method can accurately align the
transmission mainlobe’s direction with the radar sensing target
and communication receiver. However, the DRL method has
a better beampattern synthesis performance compared to the
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optimization method, while both approaches can effectively
regulate the radiation power in the null direction. Overall, the
results indicate that the DRL method outperforms the relaxed
optimization method in terms of sidelobe control.

V. CONCLUSIONS

We presented an innovative DRL framework, inspired by
the Wolpertinger’s strategy, for the development of intelli-
gent automotive radar DFRC systems. This framework is
designed to optimize antenna distribution and accurately cal-
ibrate the quantized phase of low-bit double-phase shifters.
Unlike traditional single phase shifters, the use of double-
phase shifters in the proposed system allows for concurrent
tracking of targets, enhancing communication capabilities, and
reducing interference in undesired directions. This approach
is particularly adept at navigating high-dimensional action
spaces without requiring exhaustive action searches. In terms
of communication with objects, both slow-time coding and hy-
brid coding methods have shown promising results. However,
hybrid coding stands out in improving communication reliabil-
ity. The proposed method surpasses the conventional relaxed
optimization technique in effectively tuning the transmission
matrix. It aligns the mainlobes precisely with the directions
of radar sensing and communication users, while concurrently
pointing nulls to the victim radars. Simulation results vali-
dated the feasibility and efficiency of our proposed approach,
marking a significant advancement in automotive radar DFRC
systems. While DRL-based reconfigurable beamforming for
automotive radar sensing and communication is promising,
several challenges remain. One critical area for improvement is
enhancing the robustness of DRL-based beamforming systems
against environmental variations, such as multipath reflections
caused by surrounding objects. Another key challenge lies in
achieving real-time processing and computational efficiency
when implementing DRL-based beamforming on automotive
radar hardware with limited computational resources.
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