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Abstract—In this paper, we propose high-resolution target direction-
of-arrival (DOA) estimation using frequency-switching sparse arrays
which implement multi-frequency sparse arrays in a low-complexity
manner. Unlike multi-frequency sparse arrays which require processing
of wideband signals comprising multiple frequency components, the
proposed frequency-switching sparse arrays only need to process a single-
frequency component at any time instant, thereby eliminating such
hurdles and significantly reducing the system complexity. A frequency-
switching sparse array achieves the same number of degrees-of-freedom
as a multi-frequency counterpart with comparable DOA estimation
performance. Numerical results on the DOA estimation performance and
Cramer-Rao bounds are provided to illustrate the effectiveness of the
proposed frequency-switching sparse arrays.

Index Terms—Sparse array, direction-of-arrival estimation, frequency
diversity, frequency-switching, group sparsity

I. INTRODUCTION

Direction-of-arrival (DOA) estimation of targets using sparse arrays
has attracted great interests over the last few decades due to their
capability to achieve a higher number of degrees-of-freedom (DOFs)
compared to the uniform array counterparts. A well-designed N -
element sparse linear array can achieve O(N2) DOFs [1, 2]. Various
systematical sparse array structures, such as the coprime array [3], the
nested array [4], and the maximum inter-element spacing constraint
(MISC) array [5], have been developed that have closed-form expres-
sions of their sparse sensor positions, thus allowing convenient design
and analysis of their lags and achievable DOFs. Inspired by these
array configurations, a number of systematical sparse array design
schemes have been developed [6–13].

One such novel approach of sparse array design is by taking
advantages of the property that the array manifold is frequency-
dependent. This property enables construction of a virtual coprime
array using a single uniform linear array (ULA) with two frequencies
[14]. Such array design extends the coprime array concept developed
in the spatial domain using two physical subarrays to a joint spatio-
spectral domain with a single physical subarray. As such, it achieves
far more DOFs than the number of physical sensors, offering a
significant flexibility in sparse array design to meet both DOF and
system complexity requirements. An analysis of the Cramer-Rao
bound (CRB) of the virtual coprime array is considered in [15]
for a ULA using two coprime frequencies. The extension to multi-
frequency case along with an analysis of the achievable DOFs are
studied in [16–19]. In addition, multi-frequency sparse array struc-
tures are designed in [20] such that the resulting difference coarrays
are free of redundant lags, thus achieving the highest possible number
of DOFs for a given number of physical sensors. Sensor interpolation
techniques are used in [21, 22] so that missing virtual elements can be
filled for enhanced DOA estimation. Rational multi-frequency sparse
arrays are considered in [23, 24] to facilitate flexible design of multi-
frequency sparse arrays.

It should be noted that, although multi-frequency sparse array
designs are lucrative in terms of the increased number of DOFs
and higher design flexibility, the frequency span of multi-frequency
signals render a high bandwidth at the receiver output, thus requiring
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more complicated receiver processing which is undesirable and may
even be infeasible for some applications.

This paper develops the concept of frequency-switching sparse
array which aims to achieve the same frequency diversity as multi-
frequency sparse arrays but with a low complexity. By switching
between the available frequencies within the coherent processing in-
terval (CPI), frequency-switching sparse arrays only handle a single-
frequency component at any time instance, thus the receiver pro-
cessing remains narrowband. The signals received in the frequency-
switching sparse array can be formulated in a similar manner as that
of the multi-frequency sparse array, and thus processed using same
methods, such as the group-LASSO [26, 27], that account for the
phase uncertainty of the received signals corresponding to different
carrier frequencies.

Compared to multi-frequency sparse arrays, the frequency-
switching scheme benefits from a higher signal power and, at the
same time, suffers from reduced number of data samples. As such,
the frequency-switching scheme achieves similar performance as the
multi-frequency sparse arrays. Numerical results are provided to
demonstrate their performance difference with respect to the input
signal-to-noise ratio (SNR) and the number of data samples.

Notations: We use lower-case (upper-case) bold characters to
denote vectors (matrices). In particular, IN denotes the N×N identity
matrix. (·)∗, (·)T, and (·)H respectively represent the complex
conjugate, transpose, and the Hermitian operations. E(·) stands for
statistical expectation, and ȷ =

√
−1 stands for the unit imaginary

number. || · ||2 and || · ||1,2 denote the l2 norm and the mixed l1,2
norm, respectively, and | · | represents the absolute value. Further-
more, ⊗ and

⋃
respectively denote the Kronecker product and union

operators. δ(i, j) is the Kronecker delta function which equals 1 when
i = j and 0 otherwise. Finally, CM×N denotes the M ×N complex
space.

II. MULTI-FREQUENCY SPARSE ARRAY

In this section, we review the array and signal models for multi-
frequency sparse arrays and their covariance matrices [14, 17, 21].

A. Array Model

Consider I continuous-wave (CW) signals with carrier frequencies
fi, i = 1, 2, · · · , I , which are reflected from K far-field targets. Fig.
1(a) illustrates that the I frequencies are activated over the entire time,
although their exact time occupancy depends on the duty cycles of
the transmitted waveform being used. The reflected signals impinge
on the receive array with N physical sensors, which can be either a
uniform or a sparse linear array. Denote the locations of the physical
array sensors as P = {l0, l1, · · · , lN−1}d, where l0 = 1, and d
denotes the unit inter-element spacing. It should be noted that the
I frequencies of the CW signals are related by the following:

M1

f1
=

M2

f2
= · · · = MI

fI
=

2d

c
, (1)

where c is the propagation velocity of electromagnetic waves in the
free space. We assume that Mi, i = 1, · · · , I , take integer values such
that the inter-element spacing d = Miλi/2 is an integer multiple
of half-wavelength in the respective frequencies. The set of sensor



locations of the virtual array corresponding to the ith frequency is
obtained as

P̃i = {0,Mil1,Mil2, · · · ,MilN−1}λi/2. (2)

As such, the virtual sensors associated with each frequency have
different positions which are sparsely located on the half-wavelength
grid. To obtain a high number of virtual sensors, these virtual sensor
positions should be chosen distinctly.

Denote the integer coefficients of the virtual sensor positions with
respect to half-wavelength at the respective frequency as

Pi = {0,Mil1,Mil2, · · · ,MilN−1}. (3)

For the entire multi-frequency sparse array, all the data corresponding
to the I frequencies are observed and the total virtual array thus
becomes

Pv =

I⋃
i=1

Pi. (4)

Fig. 2 shows an example of the virtual array where 5 physical sensors
with two frequencies form a virtual array of 9 elements. Note that
the element at position 0 is shared by the two virtual subarrays P1

and P2 obtained from both frequencies.

B. Signal Model

The radio-frequency (RF) signal vector corresponding to all I
frequency components is expressed as

x̃′(t) =

I∑
i=1

ỹ′
i(t) + ñ′(t) =

I∑
i

Ais
′
i(t)e

ȷ2πfit + ñ′(t), (5)

where ỹ′
i(t) is the noise-free RF vector component corre-

sponding to the ith frequency, ai(θ) = [1, e−ȷπMil1 sin(θ), · · · ,
e−ȷπMilN−1 sin(θ)]T is the steering vector of the ith virtual array
for signal arriving from θ, ρ′k

(i)
(t) is the reflection coefficient

of the kth target corresponding to the ith frequency, si(t) =

[ρ′1
(i)
(t), · · · , ρ′K

(i)
(t)]T is the complex magnitude of the signal

of the ith frequency component, and ñ′
i(t) ∼ CN (0, σ2

nIN )
is the bandpass additive white Gaussian noise (AWGN). The
manifold matrix of the ith virtual array is denoted as Ai =
[ai(θ1),ai(θ2), · · · ,ai(θK)] ∈ CN×K . We used (·)′ to denote the
results for the multi-frequency sparse array where they differ to the
frequency-switching counterparts to be described in Section III.

The complex magnitude ρ′k
(i)
(t) is determined by the transmit

signal power, path loss, and radar cross section (RCS) at the ith
frequency, given as

ρ′k
(i)
(t) =

√
Piβ

(i)
k σ

(i)
k (t), (6)

where Pi is the transmit power used for the ith frequency component,
and the transmit power in all the I frequencies is subject to the
total power constraint, i.e.,

∑I
i Pi = P . In addition, β(i)

k = αλi/r
2
k

is the path loss with rk denoting the range of the kth target from
the array and α is a constant determined by the sensor directional
gains. In addition, σ

(i)
k (t) is the RCS which is assumed to be

independently time-varying over slow-time so that they are treated
as uncorrelated. In case that the transmit power is equally distributed
to the I frequencies, we have Pi = P/I for i = 1, · · · , I .

Because x̃′(t) contains multiple frequency components, the analog-
to-digital converter (ADC) would need to have a high bandwidth even
as the RF signal is down-converted with respect to some signal carrier.
When all the I frequency components are separately obtained in their
baseband version, they are expressed as

x′
i(t) = Ais

′
i(t) + n′

i(t) =

K∑
k=1

ρ′k
(i)
(t)ai(θk) + ni(t) (7)

(a) Multi-frequency sparse array

(b) Frequency-switching sparse array

Fig. 1: Array configurations of multi-frequency and frequency-
switching sparse arrays.

Fig. 2: Sensor location of the virtual arrays when P = {0, 1, 2, 4, 7},
M1 = 3 and M2 = 5.

for i = 1, · · · , I , where n′
i(t) is the noise component at the ith

frequency.

C. Covariance Matrices

The self-covariance matrix of the received data vector xi(t) is
obtained as

R′
ii = E[x′

i(t)x
′
i
H
(t)] = AiR

′
s
(ii)

AH
i + σ2

nIN (8)

for i = 1, · · · , I , where R′
s
(ii)

= E[s′i(t)s′i
H
(t)] is the covariance

matrix of the reflected signal vector for frequency fi and is a diagonal
matrix with real entries.

Similarly, the cross-covariance matrix between the received data
vectors x′

i(t) and x′
j(t) is obtained as

R′
ij = E[x′

i(t)x
′
j
H
(t)] = AiR

′
s
(ij)

AH
j (9)

for i ̸= j, where R′
s
(ij)

= E[s′i(t)s′j
H
(t)] is the cross-covariance

matrix of the reflected signal vectors for frequencies fi and fj .
Matrix R′

s
(ij) is also diagonal but its diagonal elements generally

take complex values because the signals corresponding to different
frequencies experience diverse reflection coefficients as well as
distinct propagation phase delays.

In practice, the exact covariance matrices are unavailable and are
estimated from T data samples that are available within the CPI. The
sample self- and cross-covariance matrices are respectively given as

R̂′
ii =

1

T

T∑
t=1

x′
i(t)x

′
i
H
(t) and R̂′

ij =
1

T

T∑
t=1

x′
i(t)x

′
j
H
(t). (10)

III. FREQUENCY-SWITCHING SPARSE ARRAY MODEL

While multi-frequency sparse arrays enjoy a significant benefit
in terms of a high number of DOFs and an extended aperture
from its virtual arrays, the received signals containing multiple
frequency components do not support narrowband signal processing
as in conventional radar after pulse compression at the receiver. A
wideband output comprising multiple frequency components at the



receiver would translate to wideband ADC and high-rate processing,
thereby hindering the applicability to practical radar systems.

To address this issue, in this paper, we develop a frequency-
switching version of the multi-frequency sparse array such that,
instead of transmitting and processing multiple frequency components
at the same time, different frequency components take a turn and only
one frequency component is transmitted and processed at any time.
For simplicity and without losing generality, we consider an equal
division of the T available samples over the CPI into the I frequency
components so that each frequency component would have T/I data
samples. Depending on the way the frequency-switching signals are
processed, different switching patterns may impact the estimation
results of other parameters, such as the Doppler and range [28–30].
However, when the DOA estimation performance is concerned, only
the number of data samples would be of interest.

The received RF signal vector at time t is expressed as

x̃(t) = x̃i(t) =

K∑
k=1

ρ
(i)
k (t)ai(θk)+ni(t) = Aisi(t)+ni(t). (11)

This expression is similar to (5) with several important differences.
First, at any time t, only one frequency component with i ∈
{1, · · · , I} exists. Second, because all the transmit power will be
dedicated to a single-frequency component at any time, the complex
magnitude ρ

(i)
k (t) is now changed to

ρ
(i)
k (t) =

√
Pβ

(i)
k σ

(i)
k (t). (12)

On the other hand, the available number of snapshots T during a CPI
is partitioned into I segments T1, · · · , TI for the I frequencies such
that

∑I
i=1 Ti = T . In this paper, we assume equal-length partition

with Ti = T/I .
Comparing (11) and (12) with (5) and (6), when the same total

power is used and equally distributed in the multi-frequency sparse
array scheme, the frequency-switching scheme benefits from the
higher signal power by a factor of I while it suffers from the reduced
number of data samples by the same factor of I .

IV. DOA ESTIMATION

A. Covariance Matrices

The self-covariance matrix of the received data vector xi(t) is
formulated as

Rii = E[xi(t)x
H
i (t)] = AiR

(ii)
s AH

i + σ2
nIN (13)

for i = 1, · · · , I , where covariance matrix R
(ii)
s = E[si(t)sHi (t)]

is diagonal with real entries. Note that, R
(ii)
s = (P/Pi)R

′
s
(ii)

=

IR′
s
(ii) when the transmit power is equally distributed to all I

frequencies in the multi-frequency sparse array.
For the cross-covariance matrix between two different frequency

components, we need to consider the fact that these frequency
components are transmitted and received at different time sample
periods. Suppose that, for a data sample of the f1 component sampled
at t, the corresponding data sample of the fi component is obtained
at t + ∆ti, which introduces an additional phase term e−ȷ2πfi∆ti

compared to the signal if sampled at t. Because both fi and ∆ti
are known, this phase term can be compensated for so that the
sampling timing difference does not affect the computation of the
cross-covariance matrices.

The cross-covariance matrix between received data vectors xi(t+
∆ti) and xi(t+∆tj) is expressed as

Rij = E[xi(t+∆ti)x
H
j (t+∆tj)e

ȷ2π(fi∆ti−fj∆fj)] = AiR
(ij)
s AH

j

(14)
for i ̸= j, where R

(ij)
s = IR′

s
(ij).

Note that, when computing the sample covariance matrices, only
T/I data samples are available because the T available samples are
equally divided into I frequency components.

B. DOA Estimation

Because the self- and cross-covariance matrices obtained from the
frequency-switching sparse arrays have the same form as those of the
multi-frequency sparse arrays, the existing methods used for the latter
can be similarly exploited. In this paper, we use the group-LASSO
approach, described in [20], for this purpose.

The covariance matrices can be vectorized as

zij = vec(Rij) = Ãijbij + σ2
niNδ(i, j), (15)

where Ãij = [ãij(θ1), · · · , ãij(θK)] such that ãij(θk) = a∗
i (θk) ⊗

aj(θk), bij = vec(R
(ij)
s ) and iN = vec(IN ). If the number of grids

across the DOA search space is denoted as G, then group-LASSO
defines I2 optimization vectors bo

ij of size G×1, and the dictionary
matrix on the G-point search grid corresponding to Ãij is denoted as
Dij . The following group sparse optimization problem is formulated:

b̂o
ij = argmin

bo
ij

I∑
i=1

I∑
j=1

||zuv −Dijb
o
ij ||22+ζ||bo

ij ||1,2, (16)

where ζ denotes the regularization parameter. The DOA estimates
across the G search grids are obtained as

b̂ =

I∑
i=1

I∑
j=1

|b̂o
ij |. (17)

V. NUMERICAL RESULTS

In this section, we provide simulation results that demonstrate the
DOA estimation performance of the frequency-switching sparse array
which is compared with that of the multi-frequency counterpart. Their
CRB results are also compared.

We assume I = 2 frequencies applied to a 5-element sparse linear
array with physical sensors located at P = {0, 1, 2, 4, 7}. The two
frequencies are chosen to be mutually coprime as M1 = 3 and
M2 = 5. The virtual arrays corresponding to f1 and f2 and their
union are shown in Fig. 2. Furthermore, an alternate switching pattern
with T = 1, 000 samples over a CPI is considered as shown in Fig.
1. Therefore, for the frequency-switching scheme, each frequency
component utilizes T/2 = 500 data samples. The input SNR of each
frequency component is assumed to be equal and is defined in the
frequency-switching case, i.e., all the transmit power is transmitted
using a single frequency component. The effective input SNR in the
multi-frequency case is divided by a factor of I = 2. K = 10 targets
are uniformly distributed in [−60◦, 60◦]. The grid interval is set to
0.1◦ and a regularization parameter of ζ = 15 is considered.

Because we only have 9 virtual sensors as shown in Fig. 2, this
is an underdetermined DOA estimation problem. It is observed in
Figs. 3(a) and 3(b) that, by using the group-Lasso, all the 10 sources
are successfully estimated for both frequency-switching and multi-
frequency sparse arrays with a similar performance.

To further understand the offerings of the frequency-switching
sparse arrays, we compare its CRB with its multi-frequency coun-
terpart. For overdetermined DOA estimation, the CRB is inversely
proportional to both the input SNR and the number of snapshots, so
the two schemes yield the same CRB [32]. Due to the space limita-
tion, we only compare the CRB for the underlying underdetermined
DOA estimation scenario outlined above.

Fig. 4 shows the square-rooted CRB versus the input SNR, and 3
cases are considered, respectively with T = 500, 5, 000, and 10, 000
data samples. In the low SNR regime, the frequency-switching



(a) Frequency-switching sparse array (b) Multi-frequency sparse array

Fig. 3: Group-LASSO spectra of targets using frequency-switching sparse array and multi-frequency sparse array.

(a) T = 500 snapshots (b) T = 5,000 snapshots (c) T = 10,000 snapshots

Fig. 4: CRB versus the input SNR for different numbers of snapshots.

(a) Input SNR = −10 dB (b) Input SNR = 5 dB (c) Input SNR = 15 dB

Fig. 5: CRB versus the number of snapshots for different input SNR levels.

sparse array offers a lower CRB because of the higher signal power
compared to the multi-frequency counterpart. However, because the
CRB has a floor determined by the number of data samples [15, 33],
the advantages of the input SNR vanish at the high-SNR regime,
and the multi-frequency sparse array is advantageous in this regime
because more data samples are used.

In Fig. 5, the CRB results are plotted against the number of
snapshots T , where the input SNR is chosen to be −10 dB, 5 dB,
and 15 dB. In all cases, the CRB monotonically decreases with T .
Regarding the different input SNR cases, as we observed in Fig.
4, the frequency-switching sparse array obtains lower CRB in the
low SNR scenario, whereas the multi-frequency sparse array offers
a lower CRB when the input SNR is high. Note that the results
shown in Figs. 4 and 5 are for the case of I = 2, and such
differences between the frequency-switching sparse array and the
multi-frequency sparse array would become more pronounced as a

higher number of frequencies are used.

VI. CONCLUSION

In this paper, the frequency-switching sparse array scheme was
proposed as a low-complexity strategy for the implementation of
the multi-frequency sparse arrays. The proposed frequency-switching
sparse array achieves the same frequency diversity offered by the
multi-frequency counterparts but only requires narrowband data sam-
pling and processing at the receiver. Compared to multi-frequency
sparse arrays, a frequency-switching sparse array achieves higher
signal power but suffers from reduced number of data samples. For
underdetermined DOA estimation, the frequency-switching sparse
array achieves a lower CRB than its multi-frequency counterpart at
the low-SNR regime, but the multi-frequency sparse array performs
better for high input SNR values.
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