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Abstract—The popularity of mmWave in 5G and future com-
munications is hindered by challenging propagation environ-
ments, such as line-of-sight obstruction. Reconfigurable intelli-
gent surfaces (RIS) address this issue by dynamically modifying
wireless channels, thereby enhancing data rates, reducing latency,
and improving reliability in non-line-of-sight scenarios. For high
data-rate communication and precise mobile user localization,
a large RIS is required, resulting in a high pilot overhead for
channel estimation. To address this issue, we exploit a semi-
passive RIS with sparsely distributed active RIS elements in lieu
of fully passive RIS. This approach efficiently enables channel
estimation both between the base station and the RIS as well
as between the RIS and the mobile users. Structured covariance
matrix interpolation optimally utilizes the array aperture from
the sparsely placed active RIS elements. Recognizing the need
for frequent channel estimation, we introduce a recurrent neural
network-based model for sequential channel prediction, resulting
in a significant reduction of the required training pilot signals.
Simulation results affirm the capability and effectiveness of the
proposed approach to enhance data transmission.

Keywords: Channel estimation, reconfigurable intelligent surface,
sparse array, neural network, sequential learning.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RIS) have garnered significant
attention for 5G and beyond, showcasing their capability to dynam-
ically modify wireless channels between communicating units. They
bring forth advantages such as enhanced spectral efficiency, lowered
base station (BS) transmit power, deployment flexibility, improved
mitigation of multiuser interference, and precise direction of arrival
(DOA) estimation [1–4]. Wireless communication systems assisted
by RIS achieve enhanced signal-to-noise ratio (SNR), reduced outage
probability and symbol error rate, and higher ergodic capacity [5, 6].

In multiple-input multiple-output (MIMO) communication sys-
tems, the optimization of transmitter parameters, such as the transmit
power, modulation constellation, data rate, antenna selection, and
precoding codewords, depends on the knowledge of the channel state
information (CSI) to achieve high efficiency and reliability [7]. On
the other hand, when the line-of-sight (LOS) between the BS and a
mobile user (MS) is obstructed, exploitation of RIS is found effective
to create a virtual LoS link between them [3]. However, a MIMO
system exploiting fully passive RIS can only estimate the cascade CSI
linking the BS and MS via the RIS. An effective strategy to enable
CSI estimation of both BS-RIS and MS-RIS channels is through the
exploitation of a semi-passive RIS which includes a small number
of active RIS elements with sensing capabilities [8, 9]. In particular,
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leveraging structural placement of sparse active RIS elements benefits
from reduced hardware complexity and shortened training data for
channel estimation [10–12].

For rapidly time-varying channels, the CSI needs to be frequently
estimated, which, in turn, necessitates a high overhead of pilot
sequences. However, using advanced machine learning techniques,
it is possible to predict the MS-BS or MS-RIS uplink channel and
anticipate upcoming channels. In [13], channel predictors based on
a vector Kalman filter and on a multilayer perceptron (MLP) are
found to have similar performance. In [14], convolutional neural
networks combined with autoregressive models and recurrent neural
networks (RNN) are used to estimate and predict the CSI in massive
MIMO systems. RNNs are effective tools for CSI prediction as they
serve as nonlinear approximators for mapping features within the data
[15, 16]. Simple RNNs are often unable to effectively process distant
data because of the vanishing gradient problem. To overcome this
issue, advanced architectures, such as autoregressive networks with
exogenous inputs (NARX) as well as evolved RNN models, e.g., long
short-term memory (LSTM) and gated recurrent units (GRU), have
been proposed [17, 18]. In [16, 19], it is found that the semi-passive
RIS can perform channel estimation and prediction, but repetitive
estimation is required for predicting each single channel.

In this paper, we introduce a hybrid model which is designed to
efficiently estimate and predict time-varying MS-RIS uplink channels
so that the pilot overhead is reduced. The proposed approach utilizes a
limited number of active RIS elements, arranged as an L-shape sparse
array, to estimate the azimuth and elevation angles of the mobile
user. In this approach, the fast-fading multipath uplink channel from
a mobile user to the semi-passive RIS is first estimated. We employ a
structured matrix completion method to the received data observed at
the sparse active RIS elements to enable enhanced estimation of the
azimuth and elevation DOAs with an increased number of degrees
of freedom. To properly pair between the multipath azimuth and
elevation angles, we first estimate the signal covariance matrix based
on the estimated elevation angles, followed by the estimation of the
azimuth angles which minimize the error between the observed data
covariance matrix and that based on the estimated model. The full
channel is recovered after determining the path loss. Next, we predict
the CSI over time by utilizing GRU-based evolved RNN models,
thus avoiding the transmission of pilot signals from the mobile user
during selected time frames. The predicted channels obtained in a
time frame are further utilized as the input of the network to predict
the subsequent channels. By using fewer pilot symbols, the proposed
model reduces the channel estimation overhead, allowing for more
efficient data transmission. Simulation results verify the effectiveness
of the proposed GRU-based techniques for sequential prediction of
the channels. The advantages of using GRU-based channel prediction
over that based on a simple RNN network are also demonstrated.

Notations: Lower- and upper-case bold letters are used to denote
vectors and matrices, respectively. Specifically, IN represents the
N×N identity matrix. We use (·)T and (·)H to denote the transpose



Fig. 1: Communication between a BS and user is facilitated by an
RIS-assisted channel model.

and Hermitian operations of a matrix or a vector. The (·)† operator
returns the pseudo-inverse of a matrix. The trace of a matrix is
represented by Tr(·), while diag(·) translates a vector into a diagonal
matrix. ⊗ denotes the Kronecker product. In addition, ∥.∥∗ and ∥.∥F
respectively represent the nuclear and Frobenius norms of a matrix.
We use E[·] to denote statistical expectation, and CM×N to represent
the complex space with a dimension of M ×N .

II. SYSTEM AND SIGNAL MODELS

A. Array Signal Models

Consider a downlink communication system where the BS has
Bb antennas, while the MS is equipped with a single antenna. Due
to the obstacles that block the LOS between the BS and the MS,
wireless communication between them is established through a semi-
passive RIS. The RIS is assumed to be a rectangular planar shape with
M = Mx ×Mz elements, which are uniformly spaced with distance
d across both x and z axes. While most of the M RIS elements
are passive, i.e., they only have the passive reflecting capability, a
small number of M̄ active elements, which can actively sense the
impinging signal while maintaining their passive reflecting capability,
are used to enable channel estimation between the MS and RIS. We
place the active RIS elements in an L-shape, comprising two linear
subarrays respectively with M̄x and M̄z elements in the x and z
directions. Therefore, the total number of active RIS elements is given
as M̄ = M̄x + M̄z − 1 because one active RIS element is shared by
both subarrays.

Denoting θ as the elevation angle and ϕ as the azimuth angle with
0 ≤ θ ≤ π/2 and −π/2 ≤ ϕ ≤ π/2, the mth element of the steering
vector aRIS(θ, ϕ) is expressed as

[aRIS(θ, ϕ)]m = e−j 2π
λ

((mx−1)d sin(θ) sin(ϕ)+(mz−1)d cos(θ)) (1)

for mx = 1, 2, · · · ,Mx and mz = 1, 2, · · · ,Mz , where λ stands
for the wavelength. The two-dimensional steering vector aRIS(θ, ϕ)
can be decomposed into the Kronecker product of the horizontal and
vertical subarrays ax(θ, ϕ) and az(θ), i.e.,

aRIS(θ, ϕ) = ax(θ, ϕ)⊗ az(θ) (2)

with

ax(θ, ϕ)=[1, e−j 2π
λ

d sin(θ) sin(ϕ), . . . , e−j 2π
λ

(Mx−1)d sin(θ) sin(ϕ)]T,
(3)

az(θ)=[1, e−j 2π
λ

d cos(θ), . . . , e−j 2π
λ

(Mz−1)d cos(θ)]T. (4)

Fig. 2: The transmission frame structure.

The MS-RIS channel vector is the result of L superposed paths,

h =

L∑
l=1

βlaRIS(θl, ϕl), (5)

where βl is path gain of the lth path arriving from (θl, ϕl) for l =
1, 2, · · · , L.

B. Signal Structure

Fig. 2 shows the framework for channel detection and prediction.
Because both BS and RIS have fixed positions and, as a result, the
BS-RIS channel is relatively stable, our focus is on the estimation of
the dynamic MS-RIS channel. Compared to traditional time division
duplexing (TDD) schemes, we develop a machine learning (ML)-
based TDD (ML-TDD) scheme that reduces channel estimation
overhead within the frame structure and thus improves the efficiency
of data transmission. The CSI is obtained using ML techniques,
leveraging correlation among adjacent intervals [14].

As depicted in Fig. 2, each loop in the ML-TDD scheme consists
of a head block (HB) and a ML block (MLB). After each loop, a
new loop begins to track environmental variations through the HB
and continue the ML block. An HB consists of B conventional
TDD coherence intervals, where channels are estimated using the
sparse RIS active elements, serving as uplink channel CSI data.
An MLB comprises P coherence intervals without the channel
estimation phase, i.e., no pilot sequences are transmitted from the
MS. Instead, the MS-RIS channel is predicted using the ML-based
channel predictor scheme during this block. The ML-based TDD
process involves the estimation of the CSI in the HBs using the sparse
array estimator, followed by the prediction of the CSI using a GRU-
based network based on the previously estimated CSI.

Within each HB block, two modes are present: channel estimation
(CE) and data transmission. In the CE mode, the MS transmits
pilot signals so the RIS, using its active elements, can estimate the
channel. Active RIS elements gather Ṫ samples per time frame within
the HB block, forwarding them to the BS via a backhaul network
to carry out the estimation of the MS-RIS channel hT ∈ CM×1.
The data transmission mode encompasses both uplink and downlink
phases. In this mode, the RIS switches to a reflection mode, utilizing
all components to reflect signals from both uplink and downlink
communications.

III. PROPOSED CHANNEL ESTIMATION AND PREDICTION
METHOD

We present the channel estimation and prediction steps in two
respective subsections.

A. RIS-Assisted MS-RIS Channel Estimation

In each HB, the RIS estimates the MS-RIS channel using sparse
RIS elements. We employ the hybrid optimized non-redundant array
(ONRA) structure in an L-shaped configuration [12, 20]. The ONRA
configurations offer optimized array design with redundancy-free



difference lags and a desired array aperture. The positions of the
RIS subarray elements along the x- and z-axes are denoted as
X = {p0, p1, · · · , pM̄x−1}λ/2 and Z = {q0, q1, · · · , qM̄z−1}λ/2,
respectively, where pi and qi are integers for all i, and p0 = q0 = 0
is assumed. The steering vectors corresponding to these two RIS
subarrays are respectively denoted as ãx(θl, ϕl) and ãz(θl).

Denote the uplink pilot signal transmitted by the MS as su(t) =√
Γs(t), where Γ is the transmitted power and s(t) is the signal

waveform with E(|s(t)|2) = 1. Then, the received signals at the
x-axis and z-axis subarrays are respectively given as [10]

x(t) =

L∑
l=1

βlãx(ϕl, θl)su(t) + nx(t), (6)

z(t) =

L∑
l=1

βlãz(θl)su(t) + nz(t), (7)

for t = 1, 2, · · · , Ṫ , where nx(t) and nz(t), both following
CN (0, σ2

nIN ), represent the additive white Gaussian noise vectors.
We first perform DOA estimation of the received signals at the

vertical subarray. The signal vectors observed at the Ṫ samples are
stacked as matrix

Z = [z(1), z(2), · · · , z(Ṫ )]. (8)

Assuming that the noise elements are uncorrelated with the signals,
we estimate the covariance matrix of z(t) as

R̃zRIS = ZZH = ÃzRsÃ
H
z + σ2

nUzU
H
z , (9)

where Rs is the source covariance matrix, Ãz =
[ãz(θ1), ãz(θ2), · · · , ãz(θL)], and Uz is a binary diagonal
mask matrix indicating the presence of sensors in the z-axis
subarray, i.e., [Uz]g,g is equal to 1 if gλ/2 ∈ Z and 0 otherwise.
Ideally, Rs is given as Rs = diag(σ2

1 , σ
2
2 , · · · , σ2

L) with σ2
l

denoting the power of the lth signal path.
Due to the sparse arrangement of active RIS elements, matrix

R̃zRIS contains missing elements when considered in the half-
wavelength space. To address this, we employ matrix completion
techniques to interpolate R̃zRIS , resulting in the covariance matrix
for the virtual uniform linear array (ULA) along the z-axis, denoted
as R̂zRIS . Covariance matrix interpolation can be solved using a rank
minimization or atomic norm minimization problem [21, 22].

Once the interpolated covariance matrix R̂zRIS is obtained, we
use the MUSIC algorithm to estimate the elevation DOAs of the
MS-RIS multipath signals. Subsequently, the array manifold matrix
Az(θ̂) ∈ CMz×L for the z-axis subarray is constructed based on
these estimated elevation angles.

Azimuth angle estimates are required to align them with their cor-
responding elevation angles. Leveraging the interconnections among
signal subspace components facilitates the estimation of Rs as
follows [12]:

R̂s = A†
z(θ̂)V̂zs(Γ̂z − σ2

nIL)V̂
H
zs(A

†
z(θ̂))

H, (10)

where V̂zs ∈ CMx×L represents the estimated signal subspace
for the z-axis subarray, while Γ̂zs ∈ CL×L is a diagonal matrix
containing the eigenvalues corresponding to the signal subspace.

Since both the azimuth and elevation subarrays observe the same
signal power, the signal eigenvalues are interchangeable between the
two subarrays. Thus, the eigenvalues of the covariance matrix for
both subarrays follow the order γ1 > γ2 > · · · > γL. Therefore, the
azimuth angles can be determined from the subsequent optimization
problem:

ϕ̂ = argmin
ϕ

∥(R̂xRIS − σ2
nIMx)−Ax(ϕ, θ̂)R̂sA

H
x (ϕ, θ̂)∥, (11)

where Ax(ϕ̂, θ̂) = [ax(ϕ̂1, θ̂1), · · · ,ax(ϕ̂L, θ̂L)] ∈ CMx×L. Finally,
after both azimuth and elevation angles of all paths are obtained, the
MS-RIS channel gains βl of each path can be separately estimated
[12]. As a result, in the T th time frame of an HB block, the MS-RIS
multipath channel hT is reconstructed based on (5).

B. RIS-Assisted MS-RIS Channel Prediction

As illustrated in Fig. 3(a), an HB contains B coherent blocks,
and consecutive channels ĥT−B+1, ĥT−B+2, · · · , ĥT are estimated
at time T . A deep machine learning-based algorithm is then
introduced that leverages a GRU network to predict channels
hT+1,hT+2, · · · ,hT+P in the MLB. In this sequential channel
prediction scheme in the MLB block, these estimated channels are
utilized to predict hT+1, which is then fed into the network to predict
hT+2, and the process continues until the last time frame in the MLB.

The GRU network is selected for its ability to handle long-
term dependencies, achieved through memory cells and multiplicative
gates, as illustrated in Fig. 3(b). In each time step, the memory
cell produces output by considering the estimated channel input
and feedback from the hidden state of the previous time step. The
GRU model has two gating signals: an update gate called yT and
a reset gate called rT . These gates can be fine-tuned based on the
rate of channel variations, providing the GRU network with better
adaptability and robustness compared to memoryless networks like
MLPs.

For the activation vectors of gates, the current input channel vector
ĥT and the memory from previous short-term sT−1 are fed into three
distinct fully connected (FC) layers, the equations of the update and
reset gates are respectively expressed as [18]

yT = σg(WyĥT +UysT−1 + by), (12)
rT = σg(WrĥT +UrsT−1 + br), (13)

where subscripts y and r correspond to the update and reset gates,
respectively. The weight matrices W and U, along with appropriate
subscripts, represent the weight matrices for the FC layers corre-
sponding to the current input vector ĥT and the previous state sT .
The bias vector b, with an appropriate subscript, represents the bias
vector. In addition, σg(·) denotes the sigmoid activation function.

Through the process of discarding old memories of the hidden
state at the previous time step and integrating new ones the GRU
network is updated as

sT = (1−yT )⊗sT−1+yT ⊗tanh(WsĥT +Us(rT ⊗sT−1)+bs),
(14)

where tanh(·) denotes the hyperbolic tangent function. Next, the new
step sT and output ĥT+1 are then used as the input to predict ĥT+2

Fig. 3: GRU structure for channel prediction.



and so on. We used the general form of RNN [23] to compare with
the GRU model.

The model’s overall structure is a sequence-to-vector GRU. In
the GRU training phase, the GRU layer processes an input se-
quence of length B. The input to the GRU network is a series
of channel vectors ĥT−B+1, ĥT−B , · · · , ĥT which are estimated
in the HB. The output is the predicted channel vector hT+1 for
the (T + 1)-th time slot, which is generated by a dense layer. In
order to use a real-valued GRU architecture, we decompose the
complex-valued input vectors into real and imaginary parts, i.e.,
{Re(ĥT−B+1), Im(ĥT−B+1), · · · ,Re(ĥT ), Im(ĥT )}. The output
layer is configured with a dimension of 2M , representing the real and
imaginary parts of the channel vector {Re(hT+1), Im(hT+1)} at the
(T + 1)-th time slot. Using this predicted channel vector as input,
{Re(hT+2), Im(hT+2)} can be predicted. This sequential process
extends over P coherent intervals before initiating the subsequent
loop.

IV. SIMULATION RESULTS

The RIS is a square UPA that comprises M = 23×23 = 529 ele-
ments. The carrier frequency used is fc = 28 GHz. We consider two
paths, denoted by L = 2, between the mobile user and the RIS. The
path loss exponents for these paths are set to 2.2 and 2.1, respectively.
There are M̄ = 11 active RIS elements which are configured in an L
shape consisting of two linear subarrays, each having M̄x = M̄z = 6
active sensors which are placed based on the hybrid ONRA design.
More specifically, these active sensors are positioned along the x-
and z-axes at X = Z = {0, 3, 7, 12, 20, 22}λ/2. If we consider only
the non-negative lags for both subarray, then DX

self = DZ
self =

{0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 19, 20, 22}λ/2.
The RIS is positioned at Cartesian coordinates (30 m, 4 m, 10 m),

with the user initially at (30 m, 34 m, 2 m). Training and testing
datasets reflect the user’s mobility, specifically their walking speeds
of 1 m/s and 3 m/s relative to the RIS. For predictive modeling,
Ntrain = 113 datasets are generated to capture various MS-RIS
channel dynamics at these speeds. The ADAM algorithm, utilizing a
batch size of 64, trains the model. During training, datasets for both
speeds are merged. For testing, the system randomly selects 20% of
the data for validation, ensuring the trials are independent

During the analysis of the results, we consider two types of HB
frame spans with different numbers of coherent blocks: one with
B = 3 coherent blocks, and the other with B = 4 coherent
blocks. When estimating the channel, the user sends Ṫ = 200 uplink
pilot samples, and the MU pilot signal’s transmit power used for
channel estimation is 25 dBm. The channel noise power remains
fixed at σ2

n = −80 dBm. MinMax scaling is applied to each
feature dimension independently using MinMaxScaler. The channel
prediction performance is evaluated using the root-mean-square error
(RMSE) between predicted and actual channel states, expressed as

∆n =

√√√√ 1

Q

Q∑
q=1

∥∥∥ĥn,q − hn,q

∥∥∥2

(15)

for n = T + 1, T + 2, · · · , T + P , where Q denotes the number of
independent trials.

Fig. 4(a) shows the RMSE variation with respect to the number of
iterations for the initial predicted channel hT+1, utilizing RNN and
GRU for different input channel orders B. The network undergoes
training and testing stages with mixed user speeds (1 m/s and 3 m/s).
As the iterations increase, there is a notable decrease in the RMSE of
the predicted channels. The figure provides insights into the optimal
number of input channels required for accurate predictions.

It is clear that when the input order is low (B = 1 and B = 2),
the channel prediction may not be optimal [16]. Over successive
iterations, GRU models outperform traditional RNNs. This advantage
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Fig. 4: RMSE performance of the predicted channels averaged over 5
independent trials. (a) Convergence of the predicted channels (P =
1). (b) RMSE performance curve of the predicted channels using
RNN and GRU (after 500 iterations).

is attributed to the GRU’s ability to maintain essential spatial features
over extended transmissions [24]. GRUs are specifically designed
to overcome the vanishing gradient problem, which hampers the
ability of simple RNNs to recognize long-term dependencies in data
sequences.

GRU exploits a more complex structure with memory cells and
gates, allowing them to capture and maintain information over longer
sequences. Despite RNN’s simpler structure, characterized by fewer
gates compared to GRU, leading to reduced matrix multiplication
and increased speed, it may not capture long-term dependencies as
effectively as GRU.

Fig. 4(b) displays the RMSE performance of the test datasets
for the RNN and GRU networks, used for sequential time interval
prediction. The GRU network Consistently outperforms the RNN
networks, as previously described. As the interval between pre-
dictions increases, the prediction performance for both RNN and
GRU networks decreases. Additionally, all networks achieve better
performance when a higher order of the initial input is assumed,
especially for the GRU case. As the number of predicted intervals
rises, both GRU and RNN networks encounter declining RMSE
performance. For the GRU model, the performance degrades more
rapidly for the case of B = 3, implying that a higher-order model
provides more accurate channel estimation and prediction, at the
expense of higher computational complexity due to longer input
sequences in the model. Depending on the requirements of the
networks, we can either shorten or prolong the prediction intervals
and start estimating the channels. Through the use of RNN models,
we have uncovered that we can predict CSI for extended periods of
time. Accurate prediction is crucial for maintaining reliable RIS-to-
user connections. It also holds value in advancing sparse semi-passive
RIS, offering the potential for establishing high data rate connectivity
in future wireless systems.

V. CONCLUSION

We presented a new method to improve the quality of service
in an RIS-assisted network through the estimation and sequential
prediction of the channel states. The GRU network utilizes the CSI
obtained at the previous time frames to predict subsequent channels.
This approach reduces the pilot requirement for channel estimation.
With the help of structured matrix completion and pair-matching
algorithms, multipath channels are estimated with high precision.
This semi-passive RIS configuration expands the array aperture and
reduces computational load. Simulation results demonstrated the
effectiveness and performance superiority of the proposed approach
over other machine learning algorithms.
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