
Redefining Radar Perception for Autonomous Driving:
The Role of Sparse Array and Waveform Design in 4D Automotive Radar

Shunqiao Sun† and Yimin D. Zhang‡

†The University of Alabama, Tuscaloosa, AL, USA

‡Temple University, Philadelphia, PA, USA

Supported in part by National Science Foundation (NSF) under Grants CCF-2153386 and ECCS-2236023

IEEE Signal Processing Society Webinar Sparse Array and Waveform Design in 4D Automotive Radar Sept. 26, 2023 1 / 41



Outline

1 Overview of High-Resolution Imaging Radar for Autonomous Driving

2 2D Sparse Array: Achieving Large Aperture with Few Sensors

3 Single-Snapshot DOA Estimation: Achieving Fast Response with Robust Performance

4 Sparse Waveform Design: Achieving High Range/Doppler Resolution with Low Mutual Interference

IEEE Signal Processing Society Webinar Sparse Array and Waveform Design in 4D Automotive Radar Sept. 26, 2023 2 / 41



1 Overview of High-Resolution Imaging Radar for Autonomous Driving

2 2D Sparse Array: Achieving Large Aperture with Few Sensors

3 Single-Snapshot DOA Estimation: Achieving Fast Response with Robust Performance

4 Sparse Waveform Design: Achieving High Range/Doppler Resolution with Low Mutual Interference

IEEE Signal Processing Society Webinar Sparse Array and Waveform Design in 4D Automotive Radar Sept. 26, 2023 3 / 41



Imaging Radar for Fully Autonomous Driving
Radar has emerged as one of the key technologies in autonomous driving
systems.

▶ Low-cost implementation
▶ Resilient long-range sensing in all weather and lighting conditions

MmWave automotive radar is required to offer high-resolution in 4D:
range, Doppler, azimuth, and elevation1

Technical challenges

Large Aperture vs. Few Sensors
▶ Sparse 2D array to achieve large aperture with few antennas
▶ Ensure low-sidelobe sensing capability

Robust Performance vs. Fast Response
▶ DOA estimation under single snapshot
▶ Difference coarray based on second-order statistics becomes challenging

High Range/Doppler Resolution vs. Low Mutual Interference
▶ Sparse orthogonal waveform design with low time and frequency occupancy
▶ Sidelobe mitigation

Real-time 4D high-resolution imaging of diverse targets in the highly dynamic autonomous driving scenario using
automotive radar with small form factor and low cost represents the hardest challenges.

1S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges,” IEEE
Signal Processing Magazine, vol. 37, no. 4, pp. 98-117, 2020 (Feature Article).
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Commercial 4D Imaging Radars in Early Stage

Continental ARS540:
▶ Long-range radar with maximum range of 300 meters
▶ Azimuth FOV: [-60◦, 60◦]
▶ Stepped frequency modulation
▶ 12 TX and 16 RX, rendering 192 virtual array elements
▶ Processor: Xilinx Zynq UltraScale+ MPSoC

Aptiv FLR4+
▶ Long-range radar with maximum range of 300 meters
▶ 6TX and 8 RX, rendering 48 virtual array elements

ZF Forward-Looking Full-Range Radar
▶ Long-range radar with maximum range of 350 meters
▶ Azimuth FOV: [-60◦, 60◦]
▶ 12 TX and 16 RX, rendering 192 virtual array elements

Other Startups:
▶ Uhnder
▶ Arbe Robotics
▶ Aystx (now part of Cruise)
▶ RadSee
▶ Spartan Radar
▶ Zadar Labs

Source: Xilinx and Continental

Source: FCC
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High-Resolution Radar Low-Level Range-Azimuth Spectra in Bird’s-Eye View

Figure 1: Zoom-in radar bird’s-eye views of typical objects, such as bike, car, bus, truck, and pedestrian2.

High-resolution radar low-level data representation (e.g., range-azimuth spectra) contains rich
information of the object (e.g., shape) to support environmental perception for fully autonomous driving.

2R. Zheng, S. Sun, H. Liu and T. Wu, “Deep neural networks-enabled vehicle detection using high-resolution automotive radar imaging,” IEEE Transactions on
Aerospace and Electronic Systems, accepted for publication, 2023.
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Importance of Information in Both Azimuth and Elevation Directions

For autonomous driving, azimuth information alone does not ensure safe driving.

Information in both azimuth and elevation is crucial 3.
▶ The height information of targets is required to enable drive-over and drive-under functions.
▶ It is safe to drive over a metal beverage can on the road and to drive under a steel pedestrian bridge over the road.
▶ Without sufficient resolution in measuring elevation angles, automotive radars cannot make such decisions.

To achieve a ∆θ = 1o resolution in both azimuth and elevation, a 2D array with an aperture of
D = 1.4/(π sin(∆θ/2)) ≈ 51 wavelengths is needed in each dimension.

3S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal
Processing, vol. 15, no. 4, pp. 879-891, 2021.

IEEE Signal Processing Society Webinar Sparse Array and Waveform Design in 4D Automotive Radar Sept. 26, 2023 7 / 41



Sparsity in Angular Domain

Targets are first separated in range and Doppler domains.

In the same range-Doppler bin, the number of targets that need to be resolved in the 2D spatial domain is small.

Range-Doppler FFT operations yield significant SNR improvement (Raw data has extremely low SNR).

One range-Doppler domain sample is treated as a snapshot for DOA estimation.
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Sum Coarray Synthesis in MIMO Radar
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Figure 2: An example of MIMO radar with 8 virtual sum coarray elements, synthesized by 2 transmit and 4 receive antennas. (a) Physical
and virtual arrays. (b) Illustration of waveform orthogonality through TDM.

We first consider sum coarray and structured interpolation for linear arrays.
In MIMO radar, sum coarray can be synthesized as S = {x + y |x ∈ ST , y ∈ SR}, where ST and SR are TX and RX
antenna positions.
The waveforms transmitted from the transmit antennas are desired to be orthogonal. Waveform orthogonality may be
achieved utilizing diversity in fast-time, slow-time, frequency, Doppler, and code domains.
The example show time division multiplexing (TDM) in slow-time using frequency-modulated continuous-wave
(FMCW). FMCW signals are commonly used because, after matched filtering, the target return signal becomes
low-frequency complex sinusoids, known as beat signal, for convenient processing.
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Hankel Matrix Completion for Sparse Linear Coarray
The sum coarray may be designed to be sparse so as to achieve an desired aperture.

When there are missing elements in the sum coarray, directly performing DOA estimation may yield high sidelobes and
obstruct target detection.

To reduce the sidelobe levels, missing elements in the “holes” need to be recovered through structured interpolation.

For an M-element ULA, the noiseless array response y = [y1, y2, · · · , yM ]T can be used to construct a Hankel matrix
with dimension M1 × L as

H (y) =


y1 y2 · · · yL
y2 y3 · · · yL+1

y3 y4 · · · yL+2

...
...

. . .
...

yM1
yM1+1 · · · yM


where L is the pencil parameter and M1 = M − L+ 1.

When K (K < M1 and K < L) sources imping to the array, the Hankel matrix H (y) has a Vandermonde
decomposition structure H (y) = AΣsBT with rank K , where

A = [a (θ1) , · · · , a (θK )] with a (θk ) =

[
1, e j2π

d sin(θk )
λ , · · · , e j2π

(M1−1)d sin(θk )
λ

]T
B = [b (θ1) , · · · , b (θK )] with b (θk ) =

[
1, e j2π

d sin(θk )
λ , · · · , e j2π

(L−1)d sin(θk )
λ

]T
Σs = diag ([β1, · · · , βK ])
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Hankel Matrix Completion for Sparse Linear Coarray

Missing sum coarray elements render a Hankel matrix with missing elements:

H (y) =


y1 y2 · · · yL
y2 y3 · · · yL+1

y3 y4 · · · yL+2

...
...

. . .
...

yM1
yM1+1 · · · yM


The forward-only Hankel matrix completion problem4 is to find a Hankel matrix
H(x) that has a minimum rank and its distance to the original data matrix at the
observed positions meets the required error bound δ:

min
x

rank (H (x))

s.t. ∥H (x)⊙MFO −H (y)∥F ≤ δ,

where MFO is a mask matrix.

4S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal
Processing, vol. 15, no. 4, pp. 879-891, 2021.
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Forward-Backward Hankel Matrix Completion for One-Dimensional Sparse Array5

Theorem

The noiseless conjugate backward array response can be written as ȳ =
[
y∗M , y∗M−1, · · · , y

∗
1

]T . Formulate a block Hankel matrix

YFB =
[

H (y) H (ȳ)
]
∈ CM1×2L. The rank of the forward-backward block Hankel matrix YFB = [H (y) |H (ȳ)] ∈ CM1×2L is K if

M1 > K and L > K/2.

In foward only case, L =
⌊

M+1
2

⌋
, and the FO data matrix has dimension of

⌊
M+1
2

⌋
×

⌊
M+1
2

⌋
.

In forward-backward case, L =
⌊

M+1
3

⌋
, and the FB data matrix has dimension of 2

⌊
M+1
3

⌋
× 2

⌊
M+1
3

⌋
. The FB data matrix has a

larger dimension than the FO data matrix while having the same rank.

The noisy matrix completion is formulated as a rank minimization problem, defined below

min
x

rank
([

H (x) H (x̄)
])

s.t.
∥∥∥[ H (x) H (x̄)

]
⊙ MFB − ZS

FB

∥∥∥
F
≤ δ.

5S. Sun, Y. Wen, R. Wu, D. Ren, and J. Li, “Fast forward-backward Hankel matrix completion for automotive radar DOA estimation using sparse linear arrays,”
IEEE Radar Conference, San Antonio, TX, May 2023.
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Fast Forward-Backward Hankel Matrix Completion Using Iterative Hard Thresholding
In the n-th iteration, the new forward-backward array beamvectors Xn =

[
xn x̄n

]
∈ CM×2 is updated as

Xn = Xn−1 − αnDn−1,

where αn = 1√
n
is the step size, and Dn−1 ∈ CM×2 is the sub-gradient, defined as

Dn−1 =
[

zS z̄S
]
− Xn−1 ⊙

[
m m̄

]
.

In the n-th iteration, the obtained FB Hankel matrix Hn =
[

H (xn) H (x̄n)
]
= UnΣkV

H
n , with Un ∈ CM1×K and Vn ∈ C2L×K , is

first projected onto a tangent subspace Tn ∈ CM1×2L, which is defined as

Tn = {UnA
H + BVH

n |A ∈ C2L×K
,B ∈ CM1×K}.

The projection can be rewritten as

PTnHn =
[

Un Q2

]
Mn

[
Vn Q1

]H
,

where

Mn =

[
UH

n HnVn RH
1

R2 0

]
∈ C2K×2K

.

Here, Q1 ∈ C2L×K and R1 ∈ CK×K are from QR decompositions of the following matrix of dimensional 2L × K , with computational
cost of O

(
2LK 2

)
. (

I − VnV
H
n

)
HH

n Un = Q1R1,(
I − UnU

H
n

)
HnVn = Q2R2.
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Fast Forward-Backward Hankel Matrix Completion Using Iterative Hard Thresholding, Cont’d

The multiplications of HH
n Un and HnVn can be computed efficiently via fast Fourier transform (FFT) with computational cost of

O (KM logM). Let the reverse of the k-th column of the matrix Vn be
←
v k = rev (vk ) =

[
←
v 1k ,

←
v 2k

]T
∈ C2L×1. The multiplication of

FB Hankel matrix with a vector is computed efficiently via FFT6

f = ifft [fft (vec (Xn)) ⊙ fft (v̂k )] ,

where v̂k =
[
←
v 1k , 0,

←
v 2k , 0

]T
∈ C2M×1 is a zero-padding vector with 0 being a zero vector of length M − L. By extracting the last

M1 elements of f, we have

Hnvk = extract (f) .

FB Hankel matrix Hn is projected on to the set of rank K matrices.

Hn+1 = DKPTn

[
H (xn) H (x̄n)

]
where the hard thresholding operator DK computes the rank K approximation via truncated SVD.

6L. Lu, W. Xu, and S. Qiao, “A fast SVD for multilevel block Hankel matrices with minimal memory storage,” Numerical Algorithms, vol. 69, pp. 875–891, 2015.
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Fast Forward-Backward Hankel Matrix Completion Using Iterative Hard Thresholding, Cont’d
The rank K truncated SVD of Mn ∈ C2K×2K can be represented as Mn = UMΣMVH

M which can be computed in O
(
K 3

)
flops. Then

the SVD of Hn+1 can be written as

Hn+1 =

[
Un Q2

]
UM︸ ︷︷ ︸

Un+1

 ΣM︸︷︷︸
Σn+1

[
Vn Q1

]
VM︸ ︷︷ ︸

Vn+1


H

Finally, update the estimate of Xn+1 =
[

xn+1 x̄n+1

]
as

xn+1 =
K∑

k=1

[Σn+1]k,kH
+
(
[Un+1]:,k

(
[Vn+1]1:L,k

)H
)

x̄n+1 =
K∑

k=1

[Σn+1]k,kH
+
(
[Un+1]:,k

(
[Vn+1]L+1:2L,k

)H
)

where H+ denotes the left inverse of H, i.e.,[
H+

(
[Un+1]:,k

(
[Vn+1]1:L,k

)H
)]

t

=
1

ρt

∑
a+b=t

[Un+1]a,k [Vn+1]
∗
b,k ,[

H+
(
[Un+1]:,k

(
[Vn+1]L+1:2L,k

)H
)]

t

=
1

ρt

∑
a+b=t

[Un+1]a,k [Vn+1]
∗
L+b,k ,

where ρt denotes the number of entries on the t-th anti-diagonal of H (xn+1) or H (x̄n+1). It can be computed efficiently via fast
convolution with computational cost of O (KM logM).

IEEE Signal Processing Society Webinar Sparse Array and Waveform Design in 4D Automotive Radar Sept. 26, 2023 16 / 41



Fast Forward-Backward Hankel Matrix Completion
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Figure 3: Example of beamvector recovery error for an automotive radar with virtual sparse array of 48 elements and aperture of 76λ.

For the forward only case, the pencil parameter is chosen as L = 76 and the dimension of FO Hankel matrix is 76 × 76. For the FB
case, the pencil parameter is chosen as L = 51 and the dimension of FB Hankel matrix is 102 × 102.
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2D Sparse Array Completion
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Figure 4: A MIMO radar with 12 transmit antennas and 16 receive antennas by cascading 4 automotive radar transceivers. The transmit and
receive antennas are randomly deployed in an area of [0, 100] (λ/2) × [0, 120] (λ/2) to synthesize a MIMO 2D virtual array of 196 elements.
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2D Sparse Array Completion

We can construct an N1 × (M1 − N1 + 1) block Hankel matrix as

YE =


Y0 Y1 · · · YM1−N1

Y1 Y2 · · · YM1−N1+1

...
...

. . .
...

YN1−1 YN1
· · · YM1−1

 ,

where

Ym =


xm,0 xm,1 · · · xm,M2−L

xm,1 xm,2 · · · xm,M2−L+1

...
...

. . .
...

xm,L−1 xm,L · · · xm,M2−1

 ,

is an L× (M2 − L+ 1) Hankel matrix, and xm1,m2 =
∑K

k=1 βke
jπ((m1−1) sin(χk )+(m2−1) sin(φk )).

The noisy block Hankel matrix completion problem is formulated as7:

min ∥XE∥∗ s.t. ∥PΩ (X−Mo)∥F ≤ δ.

7S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal
Processing, vol. 15, no. 4, pp. 879-891, 2021.
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2D Sparse Array Completion

(a) (b)

Figure 5: The spectrum of two targets with azimuth and elevation angles of (χ1, φ1) = (−20◦, 5◦) , (χ2, φ2) = (20◦, 10◦) under the sparse
array. The targets’ angles are marked with crosses. (a) There are high sidelobes in the spectrum due to the existing of large number of holes
in the sparse array. (b) Sidelobe is suppressed in the competed array.
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Identifiability of Hankel Matrix: Coherence8

Let U and V be left and right subspaces of the singular value decomposition of Hankel matrix Y ∈ CN×N , which has rank K . The coherence
of U (similarly for V) equals

µ (U) =
N

K
max

1≤i≤N
∥U(i, :)∥2 ∈

[
1,

N

K

]
.

Matrix Y has coherence with parameters µ0 and µ1 if

(B1) max (µ (U) , µ (V )) ≤ µ0 holds for some positive µ0.

(B2) The maximum element of matrix
∑

1≤i≤K uiv
H
i is upper bounded by µ1

√
K/N in absolute value for some positive µ1.

Theorem

(Coherence of Hankel Matrix Y): Consider the Hankel matrix Y constructed from a uniform linear array and assume that the set of target
angles {θk}k∈N+

K
consists of almost surely distinct members, with minimal spatial frequency separation

x = min
(i,j)∈N+

K
×N+

K
,i ̸=j

d
λ (sin θi − sin θj ) satisfying |x| ≥ ξ ̸= 0. If K ≤

√
N

βN (ξ) where βN (ξ) = 1
N

sin2(πNξ)

sin2(πξ)
is the Fejér kernel, the matrix Y

satisfies the conditions (B1) and (B2) with coherence parameters µ0
∆
=

√
N√

N−(K−1)
√

βN (ξ)
and µ1 ≜ µ0

√
K with probability 1.

When entries of matrix Y are observed uniformly at random, there are constants C and c such that if

m ≥ C max
(
µ
2
1, µ

1/2
0 µ1, µ0N

1/4
)
ζKN logN

holds for some ζ > 2, the minimizer to the nuclear norm optimization is unique and equals to Y with probability of 1 − cN−ζ .
8S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal

Processing, vol. 15, no. 4, pp. 879-891, 2021.
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Identifiability of Hankel Matrix: Sparse Array Topology
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Figure 6: Examples of SLAs: (a) two SLAs and the corresponding bipartite graphs (b) G1 and (c) G2.

For the above two different SLAs, the Hankel matrices with missing elements are

Y1 =


1 γ ∗ γ3

γ ∗ γ3 ∗
∗ γ3 ∗ ∗
γ3 ∗ ∗ γ6

 , Y2 =


1 ∗ γ2 ∗
∗ γ2 ∗ γ4

γ2 ∗ γ4 ∗
∗ γ4 ∗ γ6

 .

Let G = (V , E) be a bipartite graph associated with the sampling operator PΩ, where V = {1, 2, · · · ,N} ∪ {1, 2, · · · ,N} and (i, j) ∈ E

iff (i, j) ∈ Ω. Let G ∈ RN×N be the biadjacency matrix of the bipartite graph G with Gij = 1 iff (i, j) ∈ Ω. It can be seen that G1 is

connected, while G2 is not.
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Identifiability of Hankel Matrix: Sparse Array Topology

Necessary condition: connectivity of the bipartite graph associated with the sampling operator PΩ is a necessary
condition for matrix completion.

Sufficient conditions of matrix completion involve the matrix coherence properties and the spectral gap of the graph G,
which is defined as the difference σ1 (G)− σ2 (G) between the largest singular value σ1 (G) and the second largest
singular value σ2 (G) of G 9.

If the spectral gap of matrix G is sufficiently large, the nuclear norm minimization method exactly recovers the
low-rank matrix satisfying the coherence condition. It can be verified that G2 depicted in Fig. 6(c) is a 2-regular graph
with vertex connectivity σ1 (G) = σ2 (G) = 2. Thus the spectral gap of G2 is zero and Y cannot be recovered from Y2.

The spectra gap condition provides a guidance for choosing the location of sparse array elements. The sparse arrays
can be optimized such that the bipartite graph associated with the sampling operator PΩ, i.e., the locations of virtual
array elements, has a large spectra gap.

9S. Bhojanapalli and P. Jain, “Universal matrix completion,” International Conference on Machine Learning, Beijing, China, pp. 1881-1889, June 2014.
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High-Resolution DOA Estimation with Single Snapshot
The array response can be written as

y = A(θ)s+ n,

where A(θ) = [a(θ1), a(θ2), · · · , a(θK )] is N × K array manifold matrix with a(θ) =

[
1, e

2πd2
λ

sin θ, · · · , e
2πdN

λ
sin θ

]T
,

and n denotes a spatially white noise term.

For single-snapshot case, yyH is rank-one, so subspace-based DOA estimation methods cannot be directly applied.

Similarity to Difference Coarray Domain Formulation

In multi-snapshot DOA estimation problems with

y(t) = A(θ)s(t) + n(t),

the covariance matrix is computed as

R = E [y(t)yH(t)] = A(θ)RsA
H(θ) + σ2

nI

Vectorizing R yields

vec(R) = Ã(θ)vec(Rs) + σ2
nvec(I)

where Ã(θ) is the Khatri–Rao product between A∗(θ) and A(θ).

This rank-one DOA estimation problem is well considered in sparse array design utilizing difference coarray.
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Subspace-based DOA Estimation Methods
When the array data is complete or completed, spatial smoothing of
rank-one yyH can restore the rank so subspace-based DOA estimation can
be applied. 10 11

Alternatively, single-snapshot MUSIC can be implemented through the
SVD of H(y) 12:

H (y) =


y1 y2 · · · yL
y2 y3 · · · yL+1

y3 y4 · · · yL+2

...
...

. . .
...

yM1
yM1+1 · · · yM

 = UΣVT ,

with U = [Us Un] and V = [Vs Vn] dividing them into signal and noise
subspaces.

The MUSIC spectrum can be computed as J(θ) =
||a(θ)||22

||UH
n a(θ)||22

, where a(θ) is

the steering vector corresponding to DOA θ.

10T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 33, no. 4, pp. 806–811, Aug. 1985.

11P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education
Workshop, Sedona, AZ, Jan. 2011.

12W. Liao and A. Fannjiang, “MUSIC for single-snapshot spectral estimation: Stability and super-resolution,” Applied and Computational Harmonic Analysis, vol.
40, pp. 33–67, 2016.
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Compressive Sensing-based DOA Estimation

Compressive sensing methods can solve rank-one problem and do not require the array data to be consecutive. 13.

For example, the solution can be formulated as a LASSO expression to find sparse solutions of ŝ 14 15 :

ŝ = arg minx ||x||1 subject to ||y − A(Ω)x||2 < ϵ

where A(Ω) is the dictionary manifold matrix of the array defined over a dense angular grid and ϵ is a user-specific
error bound.

At a higher complexity, sparse Bayesian learning approach may provide higher sparse reconstruction ability and is more
flexible to incorporate side information. 16

By modeling x ∼ CN (0,diag(α)) and n ∼ CN (0, βI), sparse Bayesian learning method maximizes the posterior
probability

Pr(x|y,A(Ω),α, β)

where α and β are determined by maximizing their marginal likelihood.

13S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime array configurations for direction-of-arrival estimation,” IEEE Transactions on Signal Processing,
vol. 63, no. 6, pp. 1377–1390, March 2015.

14Y. D. Zhang, M. G. Amin, and B. Himed, “Sparsity-based DOA estimation using co-prime arrays,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, Vancouver, Canada, May 2013.

15S. Fortunati, R. Grasso, F. Gini and M. S. Greco, “Single snapshot DOA estimation using compressed sensing,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Florence, Italy, 2014.

16Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Complex multitask Bayesian compressive sensing,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, Florence, Italy, May 2014.
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DOA Estimation for Spatially Continuous Targets
For targets with spatial continuity, sparse Bayesian learning can take the spatial dependency of targets into account,
thereby providing enhanced accuracy than subspace-based methods, such as MUSIC.

To encourage the group sparsity with neighboring entries, a spike-and-slab prior
on x can be placed as 17

Pr(x|π, β) =

|x|∏
i=1

[(1− πi )δ(ri ) + πiCN (ri |0, β)]

where π = [π1, · · · , πG ]
T determines the probability of the nonzero elements of x.

The value of πi of each entry can be adjusted based on the neighboring entries, rendering “strong rejection”, “weak
rejection”, and “strong acceptance” for the three cases illustrated below.

Such approach provides close solutions for continuous target, whereas MUSIC spectra tend to only emphasize edges.

17S. Qin, Y. D. Zhang, Q. Wu, and M. G. Amin, “DOA estimation of nonparametric spreading spatial spectrum based on Bayesian compressive sensing exploiting
intra-task dependency,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Brisbane, Australia, April 2015.
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Single-Snapshot DOA Estimation Using Machine Learning Methods

Data-driven deep learning (DL) for DOA estimation typically model it as a multi-label classification task for on-grid
angles.

DL-based DOA estimation achieves fast inference time, enhanced super-resolution capabilities, and better performance
at low SNR 18.

By considering imperfect channel conditions and array calibration errors in the training phase, DL-based DOA
estimation can be made more robust to these factors 19.

Data-driven DL approach requires a large amount of data to train the network and lacks generalization and
interpretability.

For iterative optimization problems, algorithm unrolling replaces the iteration steps of optimization algorithm with
recurrent neural network layers 20.

18G. K. Papageorgiou, M. Sellathurai and Y. C. Eldar, “Deep networks for direction-of-arrival estimation in low SNR,” IEEE Transactions on Signal Processing,
vol. 69, pp. 3714-3729, 2021.

19M. S. R. Pavel, M. W. T. S. Chowdhury, Y. D. Zhang, D. Shen, and G. Chen, “Machine learning-based direction-of-arrival estimation exploiting distributed
sparse arrays,” Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2021.

20V. Monga, Y. Li and Y. C. Eldar, “Algorithm Unrolling: Interpretable, Efficient deep learning for signal and image processing,” IEEE Signal Processing
Magazine, vol. 38, no. 2, pp. 18-44, March 2021.
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Iterative Adaptive Approach (IAA) Algorithm

Iterative Adaptive Approach (IAA) 21 22 minimizes the weighted least-square (y− sla(θl ))
HQ−1(θl )(y− sla(θl )), where

Q(θl ) = R− Pla(θl )a
H(θl ) is the interference covariance matrix. The solution is ŝl =

aH (θl )R
−1y

aH (θl )R
−1a(θl )

.

Iteration: For P discretized angles, IAA iteratively computes R =
P∑
l=1

|ŝl |2aH (θl ) a (θl ) and ŝl =
aH (θl )R

−1y

aH (θl )R
−1a(θl )

until

converge.

y
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21W. Roberts, P. Stoica, J. Li, T. Yardibi and F. A. Sadjadi, “Iterative Adaptive Approaches to MIMO Radar Imaging,” IEEE Journal of Selected Topics in Signal
Processing, vol. 4, no. 1, pp. 5–20, Feb. 2010.

22T. Yardibi, J. Li, P. Stoica, M. Xue and A. B. Baggeroer, “Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted
Least Squares,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, pp. 425-443, Jan. 2010.
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Unrolling Iteration Adaptive Approach (UAA) Networks
Unrolling iterative adaptive approach (UAA) 23 unrolls the IAA algorithm into multiple deep neural network layers that
avoids the high computational costs associated with matrix inversions.
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Figure 7: RMSE of estimated DOA of a single, randomly generated off-grid target versus input SNR.

20-element ULA with inter-element spacing of half-wavelength to generate beam vectors for maximal 3 targets with a
minimum separation of ∆ϕ = 6◦.

For each Monte Carlo trial, an off-grid source with a direction randomly drawn from interval [−30◦, 30◦] is generated.

23R. Zheng, H. Liu, S. Sun, and J. Li, “Deep learning based computationally efficient unrolling IAA for direction-of-arrival estimation,” European Signal
Processing Conference (EUSIPCO), Helsinki, Finland, Sept. 2023.
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Sparse Step-Frequency MIMO Radar Design for Autonomous Driving
State-of-the-art automotive radar systems exploit FMCW signals at millimeter-wave frequencies.
To achieve a high range resolution for autonomous driving, the transmit signals are designed to occupy a large
bandwidth.
For conventional automotive FMCW radars, the frequency linearly sweeps over the entire bandwidth, thereby making
the signal susceptible to interference from other automotive radars.
The sparse step-frequency waveform (SSFW) radar transmits several pulses within a large bandwidth, where some
frequencies are unused during a CPI.
An SSFW radar can avoid or reduce multiuser interference by skipping the spectrum bands that are occupied by other
radars.
Consider a sequence of N pulses whose carrier frequencies are a sparse subset chosen from P available frequencies,
M = {fn|fc + n∆f , n ∈ {0, 1, · · · ,P − 1}}, that are equally distributed in [fc , fc + B]. The maximum unambiguous
range is Ru = c/(2∆f ) whereas the range resolution is given by ∆R = c/(2P∆f ) = Ru/P.

cf
cf f+ 

2cf f+ 

3cf f+ 

4cf f+ 
5cf f+ 

6cf f+ 
7cf f+ 

cf B+

Receive duration

Unused band

B

Transmit pulse

t

T
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Sparse Step-Frequency MIMO Radar Design for Autonomous Driving

The transmit antenna transmits a sequence of N pulses whose carrier frequencies are sparsely distributed over the
available bandwidth of B. The carrier frequencies fn ∈ [fc , fc + B], n = 1, 2, · · · ,N, are randomly chosen from the set
M = {fn|fc + hn∆f , hn ∈ {1, 2, · · · ,P}} with P = ⌊B/∆f ⌋ equally spaced subcarriers.

The range and Doppler are estimated via IDFT over fast time samples and FFT over slow-time samples, respectively.

Since the carrier frequencies are uniformly divided and randomly chosen, the range spectrum would have high
sidelobes. As a result, targets with a small RCS may be obscured by the range sidelobes of stronger targets.

We introduce a joint two-phase optimization technique to achieve desirable range sidelobe level24. The sparse carrier
frequencies among the set fn ∈ [fc , fc + B] are first optimally selected using the the particle swarm optimization (PSO)
technique such that the peak sidelobe level (PSL) of the range spectrum is minimized.

We then introduce a complex weight vector to further minimize the range spectrum PSL25.

The IDFT of the weighted fast-time samples can be written as Fm (l) = 1
P

P−1∑
n=0

wny (m, n) e j2π
l
P
n.

In the frequency domain, the obtained range spectrum will be the convolution of frequency response of sparse weights
w and frequency response of the original range data ym. Therefore, the spectrum of the sparse weights w is desired to
have low sidelobe levels over the entire sidelobe region so that the possible high range sidelobes in the resulting
convolution would be minimized.

24S. Sun, L. Xu and N. S. Jeong, “Sparse step-frequency MIMO radar design for autonomous driving,” IEEE Radar Conference, Atlanta, GA, May 2021.
25S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal

Processing, vol. 15, no. 4, pp. 879-891, 2021.
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Sparse Step-Frequency MIMO Radar Design for Autonomous Driving
We discretize the entire unambiguous range Ru into a fine grid of Q points, rq , q = 1, · · · ,Q, separated by ∆R, and
set rf = Ru/2 as the range corresponding to mainlobe. The sidelobe area is then described by set
Q = {r1, · · · , rf −∆R, rf +∆R, · · · ,Ru}. Define a range steering vector with respect to range rq as
b(rq) = [b1 (rq) , · · · , bP(rq)]T , where

bn (rq) =

{
e−j2π

2rq
c

fn , if fn ∈ M,
0, if fn /∈ M.

The power spectrum of the ranges corresponding to sidelobe in Q is constrained to be below a threshold η determined
by peak sidelobe level (PSL), i.e., η = 10Vmax/10, where Vmax is the maximum allowed PSL in dB. The weight
optimization can be viewed as a range sidelobe minimization problem and is formulated as

min
w,α

α

s.t.
∣∣wHb (rq)

∣∣ ≤ η + α, rq ∈ Q,
wHb (rf ) = 1

The above optimization problem is convex and can be solved efficiently.

Waveform orthogonality for RSSFW: All transmit antennas simultaneously transmit the RSSFW waveform at the same
sparse carrier frequencies. We adopt phase coding in slow time to achieve waveform orthogonality via Doppler division
multiplexing (DDM)26. Each pulse has the same phase code in one burst cycle, and the phase code varies with
different burst pulse cycles.

26S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges,” IEEE
Signal Processing Magazine, vol. 37, no. 4, pp. 98-117, 2020 (Feature Article).
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Sparse Step-Frequency MIMO Radar Design for Autonomous Driving

Figure 8: Illustration of range and Doppler spectrum for two targets with equal power located at range of 100 m with velocity of −10 m/s.
(a) spectra without weighting; (b) spectra with weighting.
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Sparse Step-Frequency MIMO Radar Design for Autonomous Driving
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Figure 9: Comparison of range spectrum with and without weighting. (a) Two targets with equal power located at the same range of
R = 100 m. (b) Two targets are located at different ranges of 100 m and 200 m with normalized power of 1 and 0.1, respectively.
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Concluding Remarks

Radar provides reliable 4D imaging solutions for autonomous driving
▶ Much lower cost compared to Lidar but achieves comparable resolution
▶ Operational in all weather and lighting conditions

Sparse 2D array and waveform designs provide viable solutions to achieve high imaging resolution
▶ Extremely sparse 2D array to achieve the required aperture under the cost constraint
▶ Sparse time and frequency occupancy supports multi-radar operations with low interference

Sophisticated signal processing methods become critical for 4D imaging and target detection
▶ Missing samples in space, time, and frequency inevitably cause high level of sidelobes obstructing target detection
▶ Fast time-varying environment requires single- or few-snapshot 4D imaging
▶ Data completion, CS, and ML methods and their combinations can be exploited

Significant challenges remain for future research and development:
▶ Optimum design of extremely sparse 2D arrays that fit into practical requirements
▶ High-resolution imaging in the presence of clutter and spatially clustered targets
▶ More effective utilization of time and frequency resources for 4D imaging
▶ Low-complexity signal processing methods with reliability and robustness
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Thank You!

https://ssun.people.ua.edu
http://yiminzhang.com

LISC @ UA houses a 2021 Lexus RX450 Hybrid SUV as vehicle platform for autonomous driving, mounted with multimodal sensors
(Velodyne LiDAR, mmWave Radars, FLIR Blackfly S Stereo Cameras, Novatel PwrPak7D RTK GPS/GNSS and Epson G370N IMU)
and rack-mounted computers.
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