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Part I 
Fundamentals of Passive Radar
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• Motivation

• Bistatic Radar

• Passive Radar

• Experimental Systems

• Unifying Theory

• Conclusions

Outline
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Global RF Sensing

• Long Range Wide Area Surveillance
• Distributed Sensing
• Fast In/Fast Out Sensing



6Approved for Public Release - PA#: 88ABW-2018-1622

•Problems •Technology Challenges •Potential Solutions

RF Sensing Tech Areas

• SW Defined Radar / EW
• Modular Open Systems
• Modular Software

• Simultaneous Tx/Rx
• Cooperative Radar / EW
• Modular Subsystems

• Rapidly Flexible
• Mission-Tailored
• RF Modes

• Persistent Sensing
Within Layered IADS 
Airspace

• Passive Multimode
• Netted UAV Sensors
• Conformal AESAs

• Silent EM operation
• Precision Time Reference
• On-board Processing

• Waveform Diversity
• MIMO (close-in)
• Knowledge Aided Algos

• SOA Jammers
• Self-interference
• Multistatic Clutter

• Wideband Algorithms
• On-board Processing 
• Clutter Characterization

• Short on-time Transmit
• LPI, LPD Waveforms

• Wideband Compressive 
Receiver Techniques

• Improved Algorithms

• Geolocation of 
Frequency-agile RF 
Emitters

• Interference Tolerance
• Simultaneous Tx/Rx
• Silent EM operation

• Multi-Diversity Systems
• Wideband LPI Waveforms
• Passive Multimode 

• Reduced Spectrum
• Overlapping Need 

for Spectrum

• Long Stand-Off Sensing 
Against

• Layered IADS

• Power / Aperture
• Area Coverage/Resolution
• Reduced SINR

• Wideband Agile Radars on 
smaller Air Vehicles

• Space Based Radar
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• Motivation

• Bistatic Radar

• Passive Radar

• Experimental Systems

• Unifying Theory

• Conclusions

Outline
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• Improved surveillance
• Extended detection and tracking ranges
• Detect more targets
• Safeguard and reduce number of high value assets  

Bistatic Radar Concept

Silent receiver

High Value Asset
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Bistatic Radar Range Equation

RT=1
RR=1

RR=0.25

• Monostatic = 1 0 dB
• Bistatic = 0.0625 -11.5 dB
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• Determines many of the operating characteristics
– Radar range equation
– Doppler velocity equation
– Radar Cross Section
– Coverage area

• Bistatic angle: Angle between the illumination and target paths

• Bistatic angle vs. radar mode
– β<20° – Pseudo-monostatic
– 20°<β<145° – Bistatic
– 145°<β<180° – Forward

Bistatic Geometry
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• Geometry-dependent

Bistatic Ambiguity Functions

- H.D. Griffitths, “Passive Bistatic Radar and Waveform Diversity,” NATO RTO-EN-SET 119, 2009
- Tsao, et al, “Ambiguity function for bistatic radar,” IEEE Trans. AES, Vol.AES-33, pp1041-1051,1997
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Bistatic Airborne Radar Challenges

• Bistatic geometry produces a non-linear, range-varying clutter ridge
– Standard STAP using a range-averaged estimated covariance matrix suffers a severe degradation
– Advanced techniques are required to mitigate clutter non-stationarities

Doppler frequency equations:

•Monostatic radar:

•Bistatic radar:

•straight line 
•clutter ridge

•range-varying 
•clutter ridge

Rθ
Tθ

RR TR

RTB RRR +=
Ground clutter patch

Bistatic range contours
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Bistatic Clutter Paths

 Bistatic Clutter Spectrum is Range-Dependent and Geometry-Dependent.
 Clutter Spectral Misalignment Main Source of Clutter Dispersion
 Align spectral centers: Angle-Doppler compensation, increased degrees of freedom (less training data), 

data efficient approaches, waveform diversity

Mainbeam Tx -Mainbeam Rx

Sidelobe Tx -Mainbeam Rx
Sidelobe Tx - Sidelobe Rx

Mainbeam Tx -Sidelobe Rx

Tx

Iso-range
Rx
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• Multi-channel bistatic radar data has been collected to support 
STAP algorithm development

– USAF tethered aerostat radar system (TARS) was transmitter
– AFRL / Northrop Grumman multi-channel airborne radar measurements 

(MCARM) system was receiver

• Bistatic collection experiment used:
– Horseshoe beach, Florida aerostat site
– Gainesville, Florida BAC1-11 basing and flight routes

• Data collection performed from 13 May to 21 May, 1995

AFRL Bistatic MCARM

Bistatic Transmitter

AFRL/Northrop Grumman
BAC1-11 MCARM 

Horseshoe Beach
TARS Aerostat

Bistatic Receiver



15Approved for Public Release - PA#: 88ABW-2018-1622

MCARM Bistatic System

• Antenna
– L-band phased array
– 6 feet x 4 feet
– 16 columns
– 8 rows (4 upper + 4 lower)
– 16 columns x 2 elevation ports

• Receiver
– 24 digital receivers
– 11 columns by 2 rows used for bistatic data 

collection
– Operated in passive mode

• Data collection
– DCRSI Recorded
– 24 channels
– ~0.1 sec of data every 12 seconds
– Cued to record as tars beam passed over 

multi-target simulator

Northrop Grumman
Airborne Surveillance 

Technology Testbed
(BAC1-11)

MCARM Array at
Antenna Test Range
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Bistatic Flight # 9 Flight Path
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Clutter Range-Doppler Intensity

(a) Angle Index = 94 (b) 65

(c) 20
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STAP Processing

(a) All Pulses, Ang. Ind. 94, CSR = 14.3 dB (b) Same as (a), Full Doppler Window

(c) All Pulses, Ang. Ind. 20, CSR = 14.3 dB (d) Pulses = #1600, Ang. Ind. 94, CSR=16dB
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• Motivation

• Bistatic Radar

• Passive Radar

• Experimental Systems

• Unifying Theory
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Outline
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• Strengths
– Lower cost, no dedicated transmitter and moving parts
– Physically small and hence, easily deployed in places where 

conventional radars cannot be
– Many IOs are available: HF broadcast, VHF/UHF, FM, DAB/DVB, satellite, 

cellular, WIFI, WiMAX, …
– Spatial diversity available for enhanced detection/classification 

capability by multi-static configurations

• Weaknesses
– Rely on third-party illuminators
– Probing waveforms not optimized for sensing

Passive Radar
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• Earliest passive bistatic radar experiment, performed in 
February 1935 by Sir Robert Watson-Watt and Arnold Wilkins

– Detected a Hayford bomber using a shortwave BBC Empire broadcast as 
the signal of opportunity

History – Daventry Experiment
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• First operational bistatic radar developed by Germany during WWII (by Dr. 
Wachter in 1942)

• System hitchhiked on the British Chain Home transmissions, which were 
located in South-East England

History – Klein Heidelberg

• P= 350 kW (later 750 kW)
• f= 20–30 MHz

•www.doramusic.com/Chain%2520Home.jpg

Additional dipole antenna at 
15 m height to receive direct 

transmitted signal

• 40 m Wasserman S tower
• 18 dipole elements in front of reflector 

plane
• 3 column x 6 element array
• beam-width of 45°
• angular accuracy 5°
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• With the advent of high speed A/D converters, with superior 
dynamic range, faster digital processing and GPS, research into 
bistatic radar has been reignited

– Several NATO Panels

– Over 400 papers published in last 20 years

– Several experimental and demonstration systems

New Resurgence
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• Hitchhiker or Hitchhiking Bistatic Radar
– Non-cooperative transmitter is from another radar

• Passive coherent location

• Passive covert radar

• Parasitic radar

• Piggy-back radar

Classification of Passive Sensors
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Typical Illumination Sources

Typical EIRPModulation, bandwidthFrequency,
Bandwidth

Illuminators

Up to 250 kW (UK)
4500 FM Transmitters≥5kW (US)

FM, 50 kHz (Composite signal)~ 100 MHzAnalog FM Radio

10kWCOFDM, 220 kHz~220 MHzDigital Audio Broadcast

100WGMSK, FDM/TDMA/FDD, 200 kHz900 MHz, 1.8 GHzCellular Phone (GSM)

100WTD-CDMA , 3.84 MHz 
TD-SCDMA, 1.28 MHz

~2 GHzCellular Phone (3G)

1 MW (UK)VSB AM (vision), 64µs Repetition Rate; FM 
(sound), 5.5 MHz

~550 MHzAnalog UHF TV

8 kW, (WKTV-DT 29 : ERP=708kW)DVB-T(C-OFDM),Europe/Australia
ISDB-T (OFDM, 2D Interleaving), Japan, S. 
America
ATSC(8VSB), USA
DTMB(TDF-OFDM), China
6MHz

~750 MHzDigital TV

52dBW~11-12GHz
~2.33 GHz

DBS TV,
Satellite Radio
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• Illumination-dependent,

• But also content-dependent

Bistatic Passive Ambiguity Functions

FM Radio
Music

FM Radio
News

Analog TV

FM - Speech

FM - Jazz

Analog TV -
Video

Analog TV -
Sound
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Bistatic Clutter

Tx

Iso-range
Rx
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• Motivation

• Bistatic Radar

• Passive Radar

• Experimental Systems

• Unifying Theory

• Conclusions

Outline
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• NATO-DRG - Study on Passive and Noise Radar (Symposium in 1994)

Early Developments

TV-radar with Video 
carrier of Crystal Palace 

Tx, UCL TV-radar with Video 
carrier and line sync. 
Pulses, Thales patent

Silent sentry - SS1, 
Lockheed-Martin

Silent sentry – SS3, 
Lockheed-Martin

http://servv89pn0aj.sn.sourcedns.com/~
gbpprorg/mil/radar/sentry.pdf
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PAssive RAdar DEmonstrator 
(PARADE) Cassidian, Germany

 Mercedes Sprinter 

 Loading space: 3265mm x 1780mm x 1940mm

 Gross vehicle weight: 5000kg

 Motor power: 160PS

 Lifting height: 12m

 Allowable load: 200 kg 

 Integrated antenna mast

A. Schroeder, et al., “CASSIDIAN multiband mobile passive radar system ” Proc. IRS 2011, Sep 2011
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Passive Radar At FHR, Germany

CORA Experimental DAB 
and DVB-T radar
Software defined radar

DELIA: Dab Experimental 
radar with LInear Array 

PETRA II: Passive 
Experimental Tv RAdar

Use of digital illuminators

http://www.fhr.fraunhofer.de/en.html
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Homeland Alerter (HA)-100
Thales, France

• Passive radar target location
• Uses up to 8 FM-Radio Stations
• Vertical polarisation

www.thalesgroup.com/en/homeland-alerter-100
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• Transportable system
• FM radio signals
• 8 element circular array 
• Ground and Airborne

PaRaDe - Warsaw University of 
Technology, Poland

• M. Malanowski, et al., “Experimental results of the PaRaDe passive radar field trials”, Proc. IRS 
2012, Warsaw, Poland, 2012

• B. Dawidowicz, et al., “Detection of Moving Targets with Multichannel Airborne Passive Radar” 
IEEE AESS Mag., Vol. 1, Issue 11, 2012
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Aulos – SELEX SI

• Mobile experimental 
system

• 8-Element circular array

• Signal processing on 
CPU and GPU

Aulos FM PCL System by SELEX Sistemi Integrati

• http://www.microwavejournal.com/articles/18896-aulos-a-passive-covert-radar-system
• http://www.selex-si-uk.com/pdf/Aulos.pdf
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Example Results – CORA System

• Two target resolution performance

Courtesy Dr. Heiner Kushel, FHR, Germany
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Unified Framework

Active MIMO Radar (AMR)

Passive MIMO Radar (PMR) PMR – No References

Passive Source Localization (PSL)

Known
Signals

Unknown
Signals

Direct-Path
Ignored

Direct-Path
Exploited

Transmitting
Target

Illuminated
Target

Passive radar unifies active radar and passive source localization  sensor 
networks within a common theoretical framework
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Unified Framework

Passive 
MIMO Radar

Passive 
MIMO Radar

Active   
MIMO Radar

Active   
MIMO Radar

Known Signals

Unknown Signals Direct-Path Unavailable Transmitting Target

Illuminated TargetDirect-Path Available

Passive MIMO 
without Ref.

Passive MIMO 
without Ref.

Passive Source 
Localization

Passive Source 
Localization

High-DNR
High-ρ

Low-ρ Equivalent
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Detection Comparison
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• Introduction/Motivation

• Bistatic Radar

• Bistatic & Multistatic Passive Radar

• Experimental Systems

• Unifying Theory

• Conclusions

Outline
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• Reviewed the bistatic radar concept

• Extended concept to passive radar, to include illuminators of 
opportunity

• Addressed issues of geometry and waveforms

• Reviewed some experimental systems

• Introduced a theory that unifies Passive and Active MIMO radar

• Passive radar will play a major role in future systems

Conclusions
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Part 2 
Signal Detection and Estimation for 

Passive Radar
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary
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Data Model

• We examine the impact of noise and 
direct path interference (DPI) on 
conventional passive detection
– Reference is distorted by noise
– DPI is much stronger (by up to 100 

dB) than target signal
– DPI may not be fully cancelled: 

small array aperture, mismatch 
between array null and DPI 
direction…

• Signal model: IO waveform

DPI target echo w/ delay & Doppler
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The Problem

• Cross-correlation (CC) detector:

– Simple, no need for prior knowledge of IO waveform
– Equivalent to the optimum matched filter (MF) (used in active 

radar) if the RC is noiseless
– Performance degrade in the presence of noise and DPI

• Question: To what extent can the CC cope with noise and DPI?
– Given a targeted performance, compute upper bounds for the 

noise level (in RC) and DPI level that can be tolerated by CC
– Using the MF as a benchmark, the targeted performance is 

measured by a SNR loss 𝛿 dB from the MF (in terms of the extra 
SNR needed for the CC to achieve the same 𝑃 )
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Performance of CC with Noisy Reference 
and DPI

• Define SNR in both channels and interference-to-noise ratio (INR) in SC

• Main Result: To ensure a performance loss of no more than 𝛿 dB 
relative to the MF for a given SNRs, the INRs and SNRr for the CC 
detector must satisfy (in dB) 

J. Liu, H. Li, and B. Himed, "On the performance of the cross-correlation detector for passive radar applications," 
Signal Processing, vol.113, pp.32-37, Aug. 2015
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Discussions

• Previous bounds are necessary/sufficient, but coupled between noise 
and DPI. Decoupled bounds can be found which are only necessary

• Corollary: To ensure a performance loss of no more than 𝛿 dB relative 
to the MF for a given SNRs, the following conditions are necessary 

• 1st bound specifies the highest tolerable DPI. If not met, CC cannot 
achieve the targeted performance, irrespective of the noise level of 
the reference. Note the bound only depends on 𝛿

• 2nd bound denotes the highest tolerable noise level in the reference, 
irrespective of the level of the DPI. In this case, the bound depends on 
both δ and the SNRs
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Numerical Results

Contour of 𝑃 of the CC detector with different SNRs loss relative to 
the MF detector. The lines denote simulation results, and the symbols 
‘+’ are the results obtained from analysis
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Numerical Results

𝑃 of the CC detector with different 
values of SNRs The symbols ‘o’  denote the 
simulation results, and the lines denote 
the results obtained from analysis

Case 1) with noise in RC and DPI in SC;        
Case 2) with no noise in RC but with DPI in SC; 
Case 3) with noise in RC but no DPI in SC;   
Case 4) with no noise in RC and no DPI in SC
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Remarks

• Derived approximate expressions for the 𝑃 and 𝑃 of the CC 
detector in the presence of noise in the reference and the direct-
path interference (DPI) in the surveillance channel

• Obtained analytical expressions showing to what extent the noise 
in the RC and the DPI in the SC must be mitigated in order to 
achieve a targeted performance loss of the CC detector, relative to 
the optimal MF detector 

• Our result shows that the CC detector, albeit simple to implement, 
is quite sensitive to the presence of noise in the RC and DPI               
There is a clear need for more sophisticated passive techniques 
that explicitly account for the noise in reference and DPI
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary
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Problem Statement

• Reference channel (RC):
• Surveillance channel (SC):– 𝑠(𝑛) is the unknown transmitted signal, 𝑛𝑟 and 𝑛𝑡 are time delays– Ω is a Doppler shift, 𝛼 and 𝛽 are channel coefficients– 𝑣 and 𝑤 are Gaussian noise 
• After delay/Doppler compensation and collecting multiple samples in 

vectors: 

• The problem of interest is to solve the hypothesis testing using 
observations 𝐱 and 𝐱 , with unknown IO waveform 𝐬, amplitude 𝛼 and 𝛽

• We consider generalized likelihood ratio test (GLRT) based detectors in     
4 different cases with 𝐬 being modeled as deterministic or stochastic and 
the noise power 𝜂 being known or unknown

G. Cui, J. Liu, H. Li, and B. Himed, "Signal detection with noisy reference for passive sensing," Signal Processing, 
vol.108, pp.389-399, Mar. 2015
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• Deterministic IO waveform 𝐬, unknown noise power 𝜂:

• Deterministic 𝐬, known 𝜂:

• Stochastic 𝐬, known 𝜂:

• Stochastic 𝐬, known 𝜂:

Summary of 4 GLRTs with Noisy Reference
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Numerical Results

• For comparison, we consider two detectors

– cross-correlation (CC) detector:

– matched filter (MF) detector:

• SNR in the surveillance and reference channels:
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Numerical Results
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Remarks

• Examined detection for passive radar equipped with a reference 
channel and a surveillance channel

• Four GLRT detectors with noisy reference
– Deterministic signal model, known noise power
– Deterministic signal model, unknown noise power
– Stochastic signal model, known noise power
– Stochastic signal model, unknown noise power

• The four GLRT except the one developed with unknown noise 
power in the stochastic model outperform the CC detector, 
especially at low SNRr

• Detection performance of the four detectors depends on the SNRr
in the reference channel
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• Stack the measurement vectors corresponding to different pulses 
to obtain 𝑀 𝑁 data matrices 𝒀  and 𝒀

• Similarly, define the 1 𝑁 vectors 𝝁 𝜇 , … ,𝜇 and 𝝁𝜇 , … , 𝜇 . Therefore, we have

• By exploiting the rank-1 structure of the data matrices, the SVD 
detector is given by  

where 𝝁 and 𝝁 denote the denote the dominant left singular 
vectors of matrices 𝒀  and 𝒀

An SVD Detector 

S. Gogineni, P. Setlur, M. Rangaswamy, and R.R. Nadakuditi. "Passive Radar Detection With Noisy Reference Channel 
Using Principal Subspace Similarity." IEEE Trans. Aerospace and Electronic Systems, vol.54, no.1, pp. 18-36, Jan. 
2018
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The SVD detector performs better than the cross correlation detector 
because the left singular vector acts like a joint estimate of the unit-
norm transmit pulse

An SVD Detector 

𝑀 11 and 𝑁 50 
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary
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• Consider a distributed passive 
radar with 𝐾 RX’s. Signal received 
at 𝑘-th RX under 𝐻1 is given by

• After delay and Doppler compen-
sation for a specific hypothesized 
parameter set, the problem is 

Signal Model

• Two cases are examined: 
– (1) noise variance 𝜎 known; (2) 𝜎 unknown  

channel/target RCS IO waveform

𝑁 × 1 test signal 𝑁 × 1 unknown waveform vector

𝑁 × 1 noise vector𝒩(0,𝜎 𝐈)
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GCC with Known 𝟐
• This case was considered in [Bialkowski et al.’11]. The detector is called 

generalized canonical correlation (GCC) detector

• Gram matrix 𝚽 = 𝐗 𝐗 has a complex central Wishart distribution under 𝐻 .  The distribution of the principal eigenvalue 𝜆 of a complex central 
Wishart distribution was studied in [Khatri’64], from which the probability of 
false alarm of GCC can be determined in closed form

• Under 𝐻 , 𝚽 is a complex non-central Wishart random matrix. The 
distribution of 𝜆 was examined in in [Kang-Alouini’03]. Using the result, we 
can determine the probability of detection of GCC
K.S. Bialkowski, I.V.L. Clarkson, and S.D. Howard, “Generalized canonical correlation for passive multistatic radar 
detection,” in Proc. IEEE Statistical Signal Process. Workshop, Jun. 2011
C. G. Khatri, “Distribution of the largest or the smallest characteristic root under null hypothesis concerning complex 
multivariate normal populations,” Ann. Math. Statist., vol. 35, Dec. 1964
M. Kang and M.-S. Alouini, “Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC 
systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 418–426, Apr. 2003
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• GCC is sensitive to the accuracy of the noise variance. When 𝜎 is 
unknown, an alternative is the GLRT given by

• The test statistic can be written in a form similar to GCC by using an 
estimate of the noise variance 

• The probability of false alarm can be determined, which indicates GLRT 
is CFAR, but a closed-form expression of the probability of detection is 
unavailable

GLRT with Unknown 𝟐

J. Liu, H. Li, and B. Himed, “Two target detection algorithms for passive multistatic radar," IEEE Trans. Signal 
Processing, vol.62, no.22, pp.5930-5939, Nov. 2014
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Numerical Results

• The following detectors are considered
– GLRT (unknown 𝜎 ):

– Generalized coherence (GC) detector (unknown 𝜎 ) [Cochran et al.’95, 
Sirianunpiboon et al.’12]

– GCC (known 𝜎 ):

– Energy detector (known 𝜎 ): 

D. Cochran, H. Gish, and D. Sinno, “A geometric approach to multichannel signal detection,” IEEE Transactions on 
Signal Processing, vol. 43, no. 9, Sep. 1995
S. Sirianunpiboon, S. D. Howard, and D. Cochran, “A Bayesian derivation of generalized coherence detectors,” in 
Proc. Int. Conf. Acoust., Speech, Signal Process., Kyoto, Japan, Mar. 2012
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Threshold Setting

GCC GLRT
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Effect of (Channel #)

GLRT
outperforms GC 
with  𝐾 ≥ 4

GLRT 
outperforms ED 
with 𝐾 ≥ 6

𝑃F𝐴 =  0.01
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Accurate Knowledge of 𝟐

𝐾 = 2, SNR = −5 dB

𝑃 = 0.01

𝐾 = 8, SNR = −5 dB
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Inaccurate Knowledge of 𝟐

𝐾 = 2, 𝑈 = 3 dB 𝐾 = 8, 𝑈 = 1 dB

PFA = 0.01

An estimated noise variance 𝑈𝜎 is used to set threshold: 𝑈
stands for the amount of uncertainty in the estimate 



68Approved for Public Release - PA#: 88ABW-2018-1622

Remarks

• Introduced a GLRT detector for passive radar with multiple receivers
– No need for noise variance, CFAR, closed-form 𝑃

• Studied the GCC (generalized canonical correlation) detector and 
obtained expressions for 𝑃 and 𝑃

• Numerical results indicate
– GLRT outperforms the generalized coherence (GC) detector, which 

also does not need 𝜎 , and the energy detector, which does 
require 𝜎 , when 𝐾 (# of channels) is sufficiently large 

– GCC is the best detector when 𝜎 is accurately known, but is 
sensitive to the accuracy of the knowledge
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary
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Signal Model

• Consider a multistatic passive radar with one IO and 𝐾 receivers
• The signal received at 𝑘-th receiver in the presence of direct-path 

interference (DPI):

• To simplify, apply delay compensation 
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Signal Model

• Take 𝑀 samples at Nyquist rate and write the signal in vector form

where 𝒟 𝜏 ,𝑓 denotes the delay-Doppler shifting operator:

• The target detection problem is a composite hypothesis testing

• Unknown parameters: 𝐱,  𝜷 = 𝛽 , … ,𝛽 ,𝜶 = 𝛼 , … ,𝛼 , and 
channel noise 𝜂 (detection is performed on each delay-Doppler bin one 
by one with known delay and Doppler)
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GLRT

• Consider the GLRT for the detection problem:

• GLRT requires the maximum likelihood estimates (MLEs) of the 
unknown parameters

• The estimation of the IO waveform 𝐱 under ℋ and ℋ hypotheses is 
most critical
– There is a multiplicative ambiguity among the amplitudes 

parameters {𝜶,𝜷} and the IO waveform 𝐱
– To resolve the ambiguity, we can impose a constraint ‖𝐱‖ = 1, 

which does not affect the GLRT
X. Zhang, H. Li, and B. Himed, "A direct-path interference resistant passive detector," IEEE Signal Processing Letters, 
vol.24, no.6, pp.818-822, Jun. 2017
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Iterative Algorithm for IO Waveform 
Estimation

• It can be shown under under ℋ ,

• If the dependence 
of 𝚯 𝐱 on 𝐱 is 
neglected, the cost 
function is 
maximized by the 
principal 
eigenvector. This 
leads to an iterative 
algorithm
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GLRT

• Let 𝛾 denote the final update of the principal eigenvector. The noise 
power estimate under ℋ is given by 

• Under ℋ , the MLEs of the IO waveform and noise power are

• GLRT test statistic is given by 𝜂 /𝜂 , which can be equivalently written 
as

– Denominator is the MLE of the noise power under ℋ
– Numerator is the difference of two principal eigenvalues obtained 

under ℋ and ℋ , respectively
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Clairvoyant MF Detector

• For comparison, consider a clairvoyant matched filter (MF) in the 
presence of DPI, which assumes knowledge of the IO waveform 𝐱

• Derivation of clairvoyant MF follows similar steps in GLRT except that 
the estimation of 𝐱 is no longer needed

• The MLE of the noise power under ℋ is

• The MLE of the noise power under ℋ is

• The test variable of the clairvoyant MF is the ratio of the two noise 
power estimates:
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Numerical Results

• The GLRT detector is compared with the clairvoyant MF and two other 
detectors

• LAM (Largest-to-Arithmetic mean) detector [Liu et al.’14] which neglects 
the presence of DPI. The test variable is given by

• Modified generalized canonical correlation (mGCC)
– Extends the original GCC [Bialkowski et al.’11] with DPI cancellation 
– It first obtains an estimate of the DPI, which is subtracted from the 

observed signal
– The residual is then input into the original GCC detector, which 

computes the principal eigenvalue of the Gram matrix as test 
variable

J. Liu, H. Li, and B. Himed, “Two target detection algorithms for passive multistatic radar," IEEE Trans. Signal 
Processing, vol.62, no.22, pp.5930-5939, Nov. 2014
K.S. Bialkowski, I.V.L. Clarkson, and S.D. Howard, “Generalized canonical correlation for passive multistatic radar 
detection,” in Proc. IEEE Statist. Signal Process. Workshop, Jun. 2011
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𝒅 versus SNR

𝑀 = 20,𝐾 = 3,𝑃 = 10
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𝒅 versus DNR

𝑀 = 20,𝐾 = 3,𝑃 = 10
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Remarks

• Examined the target detection problem for a multistatic passive 
radar in the presence of DPI

• Presented a GLRT detector by treating the IO waveform as a 
deterministic process 
– Utilized an iterative method for IO waveform estimation and 

DPI cancellation
• Also introduced a clairvoyant MF method as a benchmark
• Numerical results show the GLRT outperforms the mGCC and 

LAM detectors
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary
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Motivation

• Limitations of prior art:
– Conventional passive detection employs a two-step process:             

(1) interference cancellation; (2) detection assuming no interference
 In practice, non-negligible residual DPI may still exist since DPI is much 

stronger than target echo (by many 10s to even over 100 dB)
– Most existing methods treat the IO signal as an unknown 

deterministic or stochastic process with uncorrelated samples
 It is more challenging to obtain accurate IO waveform estimate under 

above assumption
 In practice, IO waveform often exhibits some temporal correlation

• Main contributions:
– New passive esitmators and detectors in the presence of non-

negligible residual DPI
– Exploiting waveform correlation to improve sensing performance
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Problem Formulation

• RC observation:
• SC observation:

• Above equations can be written as

• Suppose 𝑥(𝑡) has a duration of 𝑇 seconds, observation interval 𝑇 ≥𝑇 𝜏 , sampling frequency 𝑓 ≥ 2 𝐵 𝑓 , and 𝑀 samples are 
collected for each channel

• Discrete-time model of received signals (in time domain):
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• After 𝑀-point discrete Fourier transform (DFT), we have

where

• The problem of interest is to jointly estimate the unknown parameters 𝛽, 𝛼, 𝜏, and 𝑓 from the observations

Problem Formulation

circulant matrix 
containing Doppler 

information
diagonal matrix 
containing delay 

information
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• Direct maximum likelihood estimation is computationally involved

where

• The cost function is highly non-linear. A brute force search over the 
multi-dimensional parameter space is computationally difficult

• We consider the expectation-maximization (EM) algorithm

Maximum Likelihood Estimator
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EM Algorithm

• The hidden variables are the IO waveform samples 𝐱
• “Complete” data: hidden variables + observed signals

• In (𝑙 + 1)-st iteration: 𝑙 = 0,1,2, …
– E-step:

– M-step:

• E-step: computes the expectation of the log-likelihood function (LLF) 
of the “complete” data 𝐳, taken with respect to the hidden variable 𝐱

• M-step: maximize the expectation with respect to the unknown 
parameters

• Algorithm iterates between above E- and M-step until convergence
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EM Estimator: E-Step

• Compute the MMSE estimate of the IO waveform and its associated 
covariance matrix

where the Schur complements are

• Update coefficients of the cost function used in M-step:

where

X. Zhang, H. Li, J. Liu, and B. Himed, "Joint delay and Doppler estimation for passive sensing with direct-path 
interference," IEEE Trans. Signal Processing, vol.64, no.3, pp.630-640, Feb. 2016
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EM Estimator: M-Step

• In M-step, we need to solve the following optimization problem

• Using person-by-person optimization, 

• For the first two problems, the estimates can be obtained by using 
Newton’s method. The 3rd problem has a closed-form solution
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Numerical Results

• We compare the following estimators:
– EM estimator
– Cross-correlation (CC) method
– Modified CC (MCC) method: coarse DPI cancellation + CC

• Cramér–Rao lower bound (CRLB) is employed to benchmark the 
performance of the estimators

• For delay and Doppler frequency estimation, we use Monte Carlo 
simulations to measure the mean-square errors (MSEs); for 
amplitude estimation, we use the normalized standard deviation 
(NSD)
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SNRr 0 dB, DNRs 10 dB
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SNRr 30 dB, DNRs 20 dB
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SNRs 0 dB, DNRs 10 dB
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SNRr 5 dB, SNRs 0 dB
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Remarks

• Examined the joint delay-Doppler estimation problem for 
passive radar with noisy reference and direct-path interference 
(DPI)

• Delay and Doppler were treated as continuous parameters with 
no discretization

• Proposed an expectation maximization (EM) based and a 
modified cross-correlation (MCC) estimators by exploiting the 
correlation of the IO waveform
– EM significantly outperforms MCC and CC
– MCC is computationally more efficient than EM and 

outperforms CC, due to DPI cancellation
– EM achieves the CRLB as SNR increases
– MCC  and CC are more sensitive to the noise in the RC and 

DPI
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary
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Signal Model

• The 𝑘-th channel observation is

• The discrete-time model is

where

• After 𝑀-point DFT, the frequency-domain signals are
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The Problem

• The composite binary hypothesis test is given by

where the delay-Doppler operator (unitary matrix) associated with 
the 𝑘-th channel

• Two algorithms are developed in the following, depending on whether 
the noise powers 𝜂 are known or unknown
– Delay and Doppler are assumed known, as detection is performed 

in each range/Doppler cell
– Joint delay/Doppler estimation was examined 

X. Zhang, H. Li, and B. Himed, "Multistatic detection for passive radar with direct-path interference," IEEE 
Trans. Aerospace and Electronic Systems, vol.53, no.2, pp.915-925, Apr. 2017
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GLRT with Known Noise Power

• In this case, the problem becomes 

• The GLRT is given by

• Directly maximizing the likelihood functions is computationally 
difficult. The EM estimator is employed instead for parameter 
estimation
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GLRT with Known Noise Power

• Consider the expectation-maximization (EM) algorithm to obtain 
parameter estimates

• “Complete” data: 𝐳 = 𝐱 , 𝐲
• Expectation Step (E-step):

• Maximization Step (M-step):

• The unknown parameters 𝜽 = {𝜶,𝜷} under 𝐻 , and 𝜽 = 𝜷 under 𝐻
• The EM algorithm starts with an initial “guess” of the unknown 

parameters 𝜽( ) and stops until the convergence is achieved

𝜽( )
E

M𝜽( )

𝐲
𝑄(𝜽;𝜽( ))

LLF 𝜽𝐱
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GLRT with Known Noise Power

• Test variable (GLRT )

parameter estimation 
under 𝐻 parameter estimation under 𝐻

E

M

= 0 under 𝐻 = 0 under 𝐻



100Approved for Public Release - PA#: 88ABW-2018-1622

GLRT with Unknown Noise Power

• In this case, the channel noise powers are unknown and may be 
different from one channel to another:

where

• The GLRT is given by

• Again, we use the EM algorithm to develop the second GLRT detector
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GLRT with Unknown Noise Power

• Test variable (GLRT )

parameter estimation 
under 𝐻 parameter estimation under 𝐻

= 0 under 𝐻 = 0 under 𝐻

M

E
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Numerical Results

Let                                                                          denote the ordered 
eigenvalues of a 𝐾-dimensional matrix and   

K. S. Bialkowski, I. V. L. Clarkson, and S. D. Howard, “Generalized canonical correlation for passive 
multistatic radar detection,” IEEE SSP Workshop, 2011
J. Liu, H. Li, and B. Himed, “Two target detection algorithms for passive multistatic radar,” IEEE TSP, 2014
H. Urkowitz, “Energy detection of unknown deterministic signals,” Proceedings of the IEEE, 1967 
D. Cochran, H. Gish, and D. Sinno, “A geometric approach to multichannel signal detection,” IEEE TSP, 1995

RLET detector [Liu et al. ’14]

energy detector [Urkowitz ’67]

GC detector [Cochran et al. ’95]

GCC detector [Bialkowski et al. ’11]
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Numerical Results

waveform with high correlation waveform with low correlation
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Numerical Results
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Numerical Results
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Remarks

• Examined the target detection problem for multistatic passive radar in 
the presence of noise and DPI

• Two GLRT detectors based on the EM algorithm are proposed for 
scenarios with known/unknown channel noise power
– exploit the correlation of the IO waveform for detection
– mitigate residual DPI
– outperform several popular existing passive detectors

• Future directions:
– Joint estimation of the waveform correlation and detection
– Clutter mitigation
– Computationally efficient detectors
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Outline

• Cross-correlator in the presence of noisy reference and DPI
• Passive detection with noisy reference
• Passive detection with multiple receivers

– Part I: No DPI
– Part II: With DPI

• Exploit waveform correlation for passive detection and 
estimation
– Part I: Joint delay-Doppler estimation
– Part II: Multi-static detection with DPI
– Part III: A parametric approach

• Summary



108Approved for Public Release - PA#: 88ABW-2018-1622

• The composite binary hypothesis test is given by (time domain)

• Use a 𝑃-th order autoregressive (AR) process to fit the IO waveform 𝐱
whose temporal correlation is parameterized by the AR coefficients 𝐚 = 𝑎 1 ,𝑎 2 , … ,𝑎 𝑃 and the zero-mean driving noise variance 𝜎

• For detection, we assume that delay/Doppler is known; the amplitude 
parameters 𝛽 and 𝛼 are unknown; the channel noise power is 
unknown

The Problem
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• A 𝑃-th order AR process is

where the zero-mean driving noise is

• The covariance matrix of the IO waveform is Hermitian, Toeplitz, and 
fully determined by its first column, i.e., the auto-correlation function 
(ACF) sequence, related to {𝐚,𝜎 } by Yule-Walker equation

where
• Levinson-Durbin algorithm (LDA) + step-down (SD) procedure

AR Modeling

X. Zhang, H. Li, and B. Himed, "Multistatic passive detection with parametric modeling of the IO waveform," 
Signal Processing, vol.141, pp.187-198, Dec. 2017
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GLRT

• In this case, the problem becomes 

where

• The GLRT is given by

• Directly maximizing the likelihood functions is computationally 
difficult, since the covariance matrix has a complicated structure

• Resort to the EM algorithm to obtain the MLEs
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GLRT

• The “complete” data is 𝐳 = 𝐱 , 𝐲
• E-step:

where

• Here, we use the asymptotic form for the likelihood function of the IO 
waveform, instead of the exact likelihood function, to avoid some 
cumbersome mathematical operations [Kay ’88, Wang et al. ’13]

S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice Hall, 1988

P. Wang, H. Li, and B. Himed, A parametric moving target detector for distributed MIMO radar in non-
homogeneous environment, IEEE Trans. Signal Processing, vol.61, no.9, pp.2282-2294, May 2013
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GLRT

• Test variable

Final parameter estimates under 𝐻 Final parameter estimates under 𝐻

= 0 under 𝐻

same as GLRT
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Parameter Initialization

• The EM algorithm requires an initialization of the unknown parameters– {𝐚,𝜎 } are initialized such that the covariance matrix 𝐂( ) = 𝐈
– IO waveform is initialized by using a principal eigenvector (PEV) 

method

– amplitudes and channel noise variances are initialized using least 
squares (LS) method𝐻 : 𝐻 :
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Other Passive Detectors

• Provide conventional detectors with ability to handle DPI

• Clairvoyant matched filter in the presence of DPI: assumes IO 
waveform is known and serves as an upper bound

estimate
of DPI 

DPI
cancellation

conventional
detectors

PEV 
method mGCC

mED
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Numerical Results

• Methods in the comparisons
– pGLRT: proposed parametric GLRT detector
– iGLRT: ideal GLRT with knowledge of covariance matrix 𝐂
– sGLRT: simple GLRT with 𝐂 = 𝐈
– Clairvoyant MF
– mED
– mGCC
– mMF

• Two types of IO waveforms used to test the detectors
I. Stochastic process with Gaussian-shaped power spectral density 

(PSD)
II. Frequency modulated (FM) waveform
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Numerical Results - I

Highly correlated waveform Lowly correlated waveform
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Numerical Results - I
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Numerical Results - I
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Numerical Results - II
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Remarks

• Examined the target detection problem in the presence of 
direct-path interference (DPI) for passive multistatic radar using 
non-cooperative illuminators of opportunity (IO)

• Proposed a parametric passive detector by modeling the 
unknown waveform as an auto-regressive process whose 
temporal correlation is jointly estimated and exploited for 
passive detection

• Developed an expectation-maximization (EM) based estimator 
for parameter estimation associated with the parametric 
passive detector

• Extended several conventional passive detectors, originally 
introduced for application in DPI-free environments, to provide 
them with an ability to cope with DPI
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Summary on Signal Detection & Estimation

• Target detection and estimation in passive radar is much more 
challenging than its counterpart in active radar
– Transmitter is non-cooperative: source waveform is unknown and not 

optimized for sensing
– Strong DPI
– Target echo, DPI, and clutter depend on the unknown IO  waveform

• Analyzed the popular CC detector which uses a noisy reference for delay-
Doppler processing
– Very sensitive to noise in reference and DPI

• Presented several recently developed passive detectors and estimators 
by
– Accounting for noisy reference
– Mitigating residual DPI
– Exploiting waveform correlation for passive detection
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Part 3 
SAR Imaging and STAP
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Outline

• Passive multi-static SAR imaging: Challenges

• Signal sparsity and compressive sensing

• Sparsity-based high-resolution SAR imaging

– Group sparse SAR imaging

– Structure-aware SAR imaging

• Sparsity-based space-time adaptive processing (STAP)

• Conclusions
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Passive Multi-Static SAR Imaging

Passive multi-static SAR imaging

 Bandwidth of each signal is very narrow

 Correspond to multiple illuminators and/or receivers

 Discontinuous observations in 2-D wavenumber domain

 Depend on the Tx positions, Rx observation trajectory, frequency
and bandwidth

 Multi-static signals have non-coherent phases

 Conventional methods yield low image resolution and high
sidelobes
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Passive Multi-Static SAR Imaging

Wavenumber domainData collection geometry
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Passive Multi-Static SAR Imaging

 Return signal corresponding to sensing sinusoid

where

are spatial frequency (wavenumber) in x and y directions with

 Observations for different wavenumbers are obtained by varying
the frequency and the observation positions
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Passive Multi-Static SAR Imaging

Example
 8 illuminators with their locations and carrier frequencies in the

following table. The bandwidth of each signal is 20 MHz.

 The receiver changes its azimuth angle from 11o to 17o during the
observation period.

 The scattering coefficients vary independently for bistatic pairs
associated with different illuminators

Angle (o)fc (MHz)IlluminatorAngle (o)fc (MHz)Illuminator

30610554501

205206105502

156307455003

505808254804
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Passive Multi-Static SAR Imaging
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Passive Multi-Static SAR Imaging

Back-projection 
result
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 By using the target sparsity, however, high-resolution imaging can be
obtained from the same observations.

Sparse reconstruction 
result

X. Mao, Y. D. Zhang, and M. Amin, “Low-complexity sparse reconstruction for high-resolution 
multi-static passive SAR imaging,” EURASIP J. Advances Signal Processing, 2014:104
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Outline

• Passive multi-static SAR imaging: Challenges

• Signal sparsity and compressive sensing

• Sparsity-based high-resolution SAR imaging

– Group sparse SAR imaging

– Structure-aware SAR imaging
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Signal Sparsity and Compressive Sensing

Original     2500 KB Compressed  148 KB (6%)

•samplex •compres
s

•N K<<N
transmit/storeCompressive sensing

Can’t we just directly measure the part that won’t end up being thrown away? 

samplex compressN K<<N
transmit/store
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Signal Sparsity and Compressive Sensing

Conventional data acquisition: Sample and then compress
• Based on Nyquist sampling theorem
• Produces a huge amount of data measurements
• Challenging to sampling, storage, and processing devices

Compressive sensing: Built-in compression while sample
• Collect a reduced volume of data
• Without compromising the performance

Importance in radar applications
• Full data not accessible due to limitations in location, bandwidth, 

and time
• Conventional methods, e.g., back-projection, yields inferior 

performance
• Compressive sensing can be used to solve sparse reconstruction 

problems in order to provide high-quality signal reconstruction
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Signal Sparsity and Compressive Sensing

Sparsity: Number of nonzero components is relatively small 
• Signal itself is sparse 
• Signal can be sparsely represented using sparsifying bases

Maritime objects on high seas ISAR imaging of aircraft 



134Approved for Public Release - PA#: 88ABW-2018-1622

Signal Sparsity and Compressive Sensing

Sparsity: Number of nonzero components is relatively small 
• Signal itself is sparse 
• Signal can be sparsely represented using sparsifying bases

Source image Block-based DCT Spatial gradient
(near-sparse)

Details for 8x8 block
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Signal Recovery through Compressive Sensing

   =                     y  Φ x

Sparse signal reconstruction:

given 

find

x may be solvable when K < M << N

y = Φx
x

M x 1
measurements

N x 1
sparse 
signal

K
non-zero 

entries

M x N
dictionary matrix
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M x 1 
measurements

•M x N
•dictionary matrix

   =                      y  Φ x
N x 1 

sparse 
signal

K
non-zero 

entries

M x N
dictionary matrix

M x K

K x 1 
non-zero 

entries

Signal Recovery through Compressive Sensing

M x 1 
measurements

 Effectively (if we only focus on sparse vectors)…

 Vector 𝐱 may be solvable when 𝐾 <  𝑀, provided that each of the 𝑀 × 𝐾
submatrices of matrix 𝚽 has a full rank
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Recovery Algorithms

 Compressive sensing problems are generally expressed as

 However, this problem is non-convex and NP-hard. 

 Greedy algorithms 
• Greedy construction of “support” (=column combination) by adding 

one-by-one/best choice at each iteration: Orthogonal matching pursuit 
(OMP), iterative hard thresholding, … 

 Convex relaxation 
• Approximation of the cost by convex functions (typically l1-norm 

recovery): Basis pursuit (BP), basis pursuit denoising (BPDN), LASSO… 

 Probabilistic inference 
• (Approximate) employment of probabilistic inference: Bayesian 

compressive sensing (sparse Bayesian learning) …

minimize ||𝐱||0 subject to 𝐲 = 𝚽𝐱
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Greedy Algorithms

 Basic idea – Sample vector y stands for a linear combination of 
columns φi of Φ. 

 Construct an appropriate set of columns whose coefficients are non-
zero, which is termed support, in a greedy manner. 
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Initialization: Initialize 𝑘 =  0, and set 

Main iteration: let 𝑘 =  𝑘 +  1, and perform the followings:

- Rating of the columns: 

- Update support: 

- Update provisional solution:

- Update residual: 

- Stopping rule: Stop if                    holds. Otherwise, apply another iteration

Orthogonal Matching Pursuit (OMP)

0 0 0 00, , S= = − = = ∅x r y Φx y

21( ) min
i

k
i ix

i xε −= − rφ

1

1
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∉
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 Compressive sensing problems are generally expressed as

 The non-convex l0-norm problem is often relaxed to l1-norm one 

Consider noisy observations: 

 𝑙1-norm
 is convex
 has corners (to provide sparse solutions)

Convex Relaxation

||x||p

01 2min    subject|| || || |to |  ε<x y –Φx

1min    subject to  || || =x y Φx

0min    subject to  || || =x y Φx

Not sparse    Sparse & convex             Not convex
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Bayesian Compressive Sensing
(Sparse Bayesian Learning)

 Obtain maximum a posteriori (MAP) solution of x from

 Sparse Bayesian learning based on relevance vector machine:

Place Gaussian prior on x

 Inverse Gamma priors are placed over 𝛽 and 𝜸
 Key advantages of Bayesian CS (BCS):

 Close to 𝑙0-norm sparse solution 
 Less sensitive to sensing matrix coherence
 Convenient to consider signal structures through priors

, ~ ( | , )N βy = Φx + ε ε ε 0 I

( | , ) ( | , )p N β=y Φ x y Φx I

( | ) ( | 0, )i i
i

p N x γ= ∏x γ

M. E. Tipping, “Sparse Bayesian shrinkage and selection learning and the relevance vector
machine,” J. Machine Learning Research, pp. 211-244, 2001.
S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sampling,” IEEE Trans. Signal Processing,
vol. 57, no. 1, pp. 92-106, Jan. 2009. [Matlab code available]
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a

b

1 1~ ( | , )i i a bγ γ− −Γ
ix

( | 0, )i iN x γ

Φ

ky

~ ( | 0, )Nε ε β

c d

1 1~ ( | , )c dβ β− −Γ

 Typically, we set 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0 as a default choice to avoid a 
subjective choice and leads to simplifications of computation

 Sparse compressive sensing uses a two-layer hierarchical prior model 
that involves a conditional prior pdf 𝑝(𝐱|𝛄) and a hyperprior pdf 𝑝(𝛄)

 It constructs computationally tractable iterative algorithms that 
estimate both 𝛄 and 𝐱, with the estimate of x being sparse

Bayesian Compressive Sensing
(Sparse Bayesian Learning)
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Iterate

 Upon convergence, 𝐦 is used as the estimate of 𝐱

No analytical solution 
(solve numerically)

 There are different ways to solve this problem
 Type-II maximum likelihood 

( , , | ) ( | , , ) ( , | )p p pβ β β=x γ y x y γ γ y

( | , , ) ( | , )p Nβ =x y γ x m Σ ( , | ) ( | , ) ( ) ( )p p p pβ β β∝γ y y γ γ

1 Tβ −=m ΣΦ y
1 1 1( )Tβ− − −= +Σ Γ Φ Φ

diag( )=Γ γ

2 1[ ]i i iimγ −= + Σ
2tr( ) || ||T

K
β += ΣΦΦ y -Φm

Bayesian Compressive Sensing
(Sparse Bayesian Learning)
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Mutual Incoherence Property (MIP)

 Mutual coherence of a matrix: the largest absolute normalized inner 
products between different columns

 For 𝚽 = [𝝓 ,𝝓 , … ,𝝓 ], its mutual coherence is

 It characterize the dependence between columns of 𝚽 
 For unitary matrices, µ(𝚽) = 0
 For recovery problems, we desire a small µ 𝚽 as it is similar to unitary 

matrices

 In order to achieve high-resolution signal reconstruction, however, the 
mutual coherence could be high

1
2 2

| |
μ( ) max

|| || || ||

H
i j

i j m
i j

φ φ
φ φ≤ ≠ ≤

=
⋅

Φ
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Multi-illuminator SAR Imaging

 Passive SAR image resolution is highly limited by the narrow frequency 
bandwidth (typically a few MHz)

 Sparse observation in the 2-D wavenumber domain depends on the Tx
positions, Rx observation trajectory, frequency and bandwidth
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Multi-illuminator SAR Imaging

 For multi-static passive radar with multiple emitters: 

 Reflection coefficients (𝜎( )) depend on aspect angle (𝑙: Tx)
 Standard linear group CS formulation after vectorize 2-D scene

𝑥,𝑦: coordinate in the scene𝑘( ), 𝑘( ): wavenumber (transmitter-dependent)𝜎( )(𝑥, 𝑦): sparse reflection coefficient to be estimated
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SAR Imaging

 In conventional SAR, sufficient data are observed in the wavenumber 
domain by exploiting a wideband sensing waveform and long 
azimuth time

 Image x can be reconstructed from observation y through 2-D 
inverse Fourier transform, typically implemented via back-projection

2D DFT
matrix

y = Φ x
Observation

Imaging
(back-projection) x̂
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Sparsity in SAR Imaging

In passive radar problems, however, 

 We cannot design matrix Φ (governed by DFT)
 No flexibility of choosing the observations (position, bandwidth)
 High coherence for closely spaced pixels 

 We need to find a solution that is robust to a dictionary matrix with 
high coherence

2D DFT
matrix

Observation

Imaging
(compressive sensing)
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Sparsity-based High-Resolution SAR Imaging

To achieve high-resolution images:
 Exploit wide angle and multi-static observations

• Improves both azimuth and range resolution
• Angle-dependence of the target reflectivity

 Using CS methods with high-resolution reconstruction capability 
(e.g., BCS) 

2D DFT
matrix

Observation

Imaging
(complex BCS)
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Group Sparsity

( ) ( ) ( )  =                    i i iy  Φ x

x(1) x(2)

Same positions, 
generally 
different values
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Group Sparsity in Practice

• Different aspect angles see target at the same position, but with 
different scattering coefficients

• Improve identification of nonzero positions
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Group Sparsity Recovery

• OMP and Lasso use mixed 𝑙2/𝑙1-norm (𝑙2-norm of the absolute values; 
also called 𝑙12-norm) to handle signal group sparsity. 

• 𝑙1-norm relaxation  mixed 𝑙2/𝑙1-norm relaxation

where

2,1min    subject to || || =x y Φx

2,1 2min    subje|| || ||c |t to | ε≤x y –Φx
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 In BCS, group sparse solutions can be achieved using the common prior 
across different groups

 Group sparse problem with 𝑙 = 1, … , 𝐿
 Multitask BCS use the same prior for different groups:

Place Gaussian prior on x

 Notice that the same 𝜸 is used for all 𝐱𝑙

Group Sparse Bayesian Learning
(Multitask Bayesian Compressive Sensing)

, ~ ( , )l l l l l lN βy = Φ x + ε ε 0 I

( | , ) ( | , )l l l l l l lp N β=y Φ x y Φ x I

,( | ) ( | 0, )l l i i
i

p N x γ= ∏x γ

x(1) x(2)
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Treatment of Complex Values

 BCS algorithms were developed based on real values 
S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sampling,” IEEE Trans. Signal 
Processing, vol. 57, no. 1, pp. 92-106, Jan. 2009

 To process complex values as required in radar sensing, many existing 
work decompose the signal model 𝐲 = 𝚽𝐱 as

and treat real(𝐱) and imag(𝐱)independently. However, this 
unnecessarily expands the dimension and sparse entries

 real(𝐱) and imag(𝐱) are group sparse because they are projection of 
the complex x to the real and imaginary axes

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Complex multitask Bayesian compressive 
sensing,” IEEE ICASSP, May 2014, pp. 3375-3379

 BCS based on complex Gaussian distribution is also available:
D. Wipf and S. Nagarajan, “Beamforming using the relevance vector machine,” Int. Conf. 
Machine Learning, pp. 1023–1030, 2007

real( ) real( ) imag( ) real( )
imag( ) imag( ) real( ) imag( )

−     
=     

     

y Φ Φ x
y Φ Φ x
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Multi-static Radar SAR Imaging

Simulation example: three transmitters

 Digital Video Broadcasting–Terrestrial (DVB-T) signal (7.6 MHz 
bandwidth:  20 m mono-static range resolution)

 5o azimuth angle: same reflection coefficients  corresponding to the 
same illuminator, but vary with different illuminators 

 The proposed technique achieves 1-m 
resolution in both range and cross-range

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Multi-static passive SAR imaging based on 
Bayesian compressive sensing,” SPIE Compressive Sensing Conference, May 2014
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Multi-static Radar SAR Imaging

Back-projection               Group Lasso                          Block OMP

True                           CMT-BCS                           MT-CS              

CMT-BCS: Complex multitask Bayesian compressive sensing
MT-CS: Multitask (Bayesian) compressive sensing
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Spike-and-slab prior for sparseness 

Increasing 𝜋𝑖 will increase the probability of 
taking a non-zero value

Structure-Aware SAR Imaging

Support z is shared across L tasks

L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian compressive sensing for cluster structured sparse 
signals,” Signal Processing, vol. 92, no. 1, pp. 259-269, 2012

ε= Φ +y x

1

1
( | , ) (1 ) ( ) ( | 0, )

M

i i i i i
i

p x N xπ δ π β −

=

 = − + ∏x π β

= x θ z

1

1
( ) ( | 0, )
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i

p N θ β −

=
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1

( ) Bern( | )
M
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i
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Structure-Aware SAR Imaging: Clustered BCS

Approach 1: Clustered BCS - Manually setting cluster prior for structure

Pattern 0 Pattern 1 Pattern 2

L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian compressive sensing for cluster structured sparse 
signals,” Signal Processing, vol. 92, no. 1, pp. 259-269, 2012
Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Multi-task Bayesian compressive sensing exploiting 
intra-task correlation,” IEEE Signal Processing Letters, vol. 22, no. 4, pp. 430-434, April 2015
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Structure-Aware SAR Imaging: Kernel BCS

Approach 2: Kernel BCS - Enhance continuous structure through kernel 
design

where 𝐱𝑖 and 𝐱𝑗 are physical locations of the ith and jth pixels within the 
image, and 𝜎0 >  0 is a scale parameter

Closely spaced pixels are likely to have a high correlation in their support

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “High-resolution passive SAR imaging exploiting 
structured Bayesian compressive sensing,” IEEE J. Selected Topics in Signal Processing, vol. 9, no. 
8, pp. 1484-1497, Dec. 2015
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Original image: TerraSAR-X SAR oil tanker imagery 
 Scene size: 64 × 64   
 Range and azimuth resolution: 1.5 m ×2 m. 

Original image from: X. Xing, K. Ji, H. Zou, W. Chen, and J. Sun, “Ship classification in 
TerraSAR-X images with feature space based sparse representation,” IEEE Geosci. 
Remote Sens. Lett., vol. 10, no. 6, pp. 1562–1566, 2013

Simulated Scene: For same DVB-T signals
 2 transmi ers located at −45o and 0o ; 1 moving receiver
 The second synthetic observation dataset is generated by randomly 

adding random magnitude and phase perturbations
 Full data used in Back projection: 512 azimuth x 256 range cells
 Data used for CS: 64 azimuth x 256 range cells

Simulation Example

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “High-resolution passive SAR imaging exploiting 
structured Bayesian compressive sensing,” IEEE J. Selected Topics in Signal Processing, vol. 9, no. 8, 
pp. 1484-1497, Dec. 2015
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Simulation Example

Original SAR image                              Back projection (full data)

Multi-task-CS            Clustered BCS            Kernel BCS



164Approved for Public Release - PA#: 88ABW-2018-1622

Outline

• Passive multi-static SAR imaging: Challenges

• Signal sparsity and compressive sensing

• Sparsity-based high-resolution SAR imaging

– Group sparse SAR imaging

– Structure-aware SAR imaging

• Sparsity-based space-time adaptive processing (STAP)

• Conclusions



165Approved for Public Release - PA#: 88ABW-2018-1622

Air-Borne Radar Clutter Characteristics

 Clutter Doppler frequency depends on 
scan direction

 Target Doppler frequency of depends on 
scan direction and target aspect angle
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Space-Time Adaptive Processing

Array provides spatial dimensionality 

Slow time provides Doppler sensitivity

slow time

fast time
(range)

array sensors
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Space-Time Adaptive Processing

Azimuth (slow time)
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 In practice, the received signal is corrupted by ground clutter 

 Fourier based angle-Doppler image 

 Low resolution 
 Slow targets falling within clutter region cannot be detected  
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Space-Time Adaptive Processing

 Single domain processing does not provide desirable clutter 
suppression capability

 Space-time adaptive processing (STAP) 
• Ground clutter mitigation 
• Joint space and time domain 
• For slow-moving target detection

 Total dimension: NM from N antennas and M pulses 
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Space-Time Adaptive Processing

 STAP weight vector is determined by 

where R is the clutter covariance matrix, and y0 is the steering vector 
toward the target Doppler and angle

1
0

−=w R y

Guard cells   

Cell under test

Secondary cells
Guard cells   

…
Secondary cells

Secondary cells
…

Secondary cells
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Adaptive 
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Space-Time Adaptive Processing

 When array axis coincides with the velocity vector, Doppler is 
• Range-independent and stationary in azimuth-Doppler 
• Linear to the cosine of cone angle
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Space-Time Adaptive Processing

 Key in STAP is to estimate clutter covariance matrix

 Estimation of the clutter covariance matrix requires 2MN i.i.d. 
Gaussian samples from neighboring range cells to achieve output SINR 
within 3 dB loss from Clairvoyant solution (RMB’s rule)
Reed, Mallett & Brennan, “Rapid convergence rate in adaptive arrays,” Trans. Aerosp. Electron. 
Syst., vol. 10, no. 6, pp. 853-863, 1974

 Reduced-rank STAP algorithms require the number of secondary data 
samples to be at least twice the rank of the dominant clutter subspace
J. Guerci, J. Goldstein, and I. Reed, “Optimal and adaptive reduced-rank STAP,” IEEE Trans. 
Aerosp. Electron. Syst., vol. 36, no. 2, pp. 647–663, Apr. 2000

 The number of homogeneous neighboring range cells is limited in 
passive radar due to its low range resolution
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Displacement Phase Center Antenna (DPCA)

 DPCA processing is an alternative technique for clutter suppression

 The basic concept of DPCA is to make the antenna appear stationary 

 In pulse radar, when the antenna phase center displacement between 
two pulses equals to array antenna spacing, return from the shifted 
antenna is subtracted from the unshifted return

 Clutter will be cancelled whereas moving target will remain

 Because passive radar uses continuous broadcast or 
communication signals, it is more flexible to 
adjust the delays for better alignment

Consecutive positions of platform corresponding to 
displacement between antenna elements
B. Dawidowicz ;  K. S. Kulpa ;  M. Malanowski ;  J. Misiurewicz ;  P. 
Samczynski ;  M. Smolarczyk, “DPCA detection of moving targets 
in airborne passive radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 
48, no. 2, pp. 1347-1357, Apr. 2012
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Displacement Phase Center Antenna (DPCA)

Experiment results: two-antenna on aircraft
B. Dawidowicz ;  K. S. Kulpa ;  M. Malanowski ;  J. Misiurewicz ;  P. Samczynski ;  M. Smolarczyk, 
“DPCA detection of moving targets in airborne passive radar,” IEEE Trans. Aerosp. Electron. Syst., 
vol. 48, no. 2, pp. 1347-1357, Apr. 2012

Clutter with 100 m/s spreading
in bistatic velocity

DPCA suppresses clutter by
approximately 30 dB
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CS-based STAP

 A recent approach is to estimate the clutter covariance matrix 
exploiting the clutter sparsity in the angle-Doppler domain

 Group sparsity: Clutter components in nearby range cells are likely to 
share the same support 

 Significantly relaxed when comparing to traditional reduced-rank STAP
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CS-based STAP

 Due to the sparsity of the clutter in angle–Doppler domain, clutter 
spectrum can be sparsely recovered using only one or few samples.

 Sparse clutter profile estimates used to construct the clutter 
covariance matrix
• Clutter at each secondary range cell is separately estimated in 

the Bayesian framework 
J. T. Parker and L.C. Potter, “A Bayesian perspective on sparse regularization for STAP post-
processing,” IEEE Radar Conf., May 2010, pp. 1471–1475

• Clutter profile is estimated separately at each range cell, then the 
maximum value is chosen for each angle–Doppler entry from all 
range cells being evaluated
K. Sun, H. Meng, Y. Wang, and X. Wang, “Direct data domain STAP using sparse representation of 
clutter spectrum,” Signal Process., vol. 91, no. 9, pp. 2222–2236, Sep. 2011.

 Group sparsity of the clutter across range cells not used
 No guarantee to exclude target signals from the estimated clutter 
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Signal Model

 Target signal stacked over L azimuth samples

 Clutter stacked over L azimuth samples
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Single-cell Based CS Approach

 At range cell under test

 Clutter angle-Doppler profile can be estimated through sparse 
reconstruction at the range cell under test

• For weak target, it yields clutter angle-Doppler signature xic

• When target is strong, xis may be included in the estimated 
clutter profile, yielding undesired target suppression

 Additional steps are required to ensure signal-free from the 
constructed clutter covariance matrix

( )i i is ic in= Φ + +y x x y
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CS-based STAP: Proposed

Group sparse clutter angle-Doppler profile 
estimation from secondary data

Angle-Doppler region determination 
based on clutter support

Clutter angle-Doppler profile estimation from 
cell under test data

Clutter covariance matrix reconstruction

STAP - clutter suppression and target detection



179Approved for Public Release - PA#: 88ABW-2018-1622

CS-based STAP: Proposed

 Solve the common clutter support from Nt secondary range cells

 Construct a new dictionary matrix           from       

• only includes entries corresponding to 
the clutter support obtained above

 Sparsely reconstruct clutter in the range under test, confined 
within the clutter support (through the new dictionary matrix) 

 Estimate the clutter covariance matrix from the estimated  

( ) ( ) ( )l l ln n n
i i in in= Φ +y x y

( t ) ( t ) ( t )
,i i cs ic in= Φ +y x y

( t )ˆ icx
( ) ( t ) 2
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M
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Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Space-time adaptive processing and motion 
parameter estimation in multistatic passive radar using sparse Bayesian learning,” IEEE Trans. 
Geoscience and Remote Sensing, vol. 54, no. 2, pp. 944 - 957,  Feb. 2016
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CS-based STAP: Proposed

 Sparse reconstruction enables accurate estimation of the clutter 
covariance matrix 
• from a small number of secondary samples 
• due to intrinsic sparsity of the clutter in the angle-Doppler 

domain

 Target exclusion in the estimated clutter profile
• exploiting the common clutter support across nearby range cells

 Utilization of group sparsity
• complex multi-task BCS methods provide more robust sparse 

reconstruction than other CS methods 

 Offerings
• does not require secondary samples to be i.i.d.
• only require small number of secondary data samples
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Simulation Example

 Carrier frequency 800 MHz with 20 MHz bandwidth

 20-element uniform linear array with half-wavelength spacing

 Azimuth sampling frequency 600 Hz

 30 azimuthal samples are used

 Simulation with Nt = 4 nearby secondary samples

 Clutter profile is discretized into 90 Doppler bins in −300 ~ 300 Hz 
and 40 angle bins in −180o ~ 180o

 Gaussian noise is added with clutter-to-noise ratio of 40 dB

 Insufficient samples to perform conventional sample matrix 
inversion based approach
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Simulation Results

Clutter support obtained from four nearby 
secondary samples using multi-task Bayesian CS

Estimated clutter profile at the range cell under 
test (confined within the clutter support)
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Clutter Support Estimation: 
Comparison with Other CS Methods

True clutter support              From block OMP                 From group Lasso

From M-FOCUSS                From complex multi-task      From Bayesian CS
Bayesian CS (proposed)
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Simulation Results

Output SINR loss
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Outline

• Passive multi-static SAR imaging: Challenges

• Signal sparsity and compressive sensing

• Sparsity-based high-resolution SAR imaging

– Group sparse SAR imaging

– Structure-aware SAR imaging

• Sparsity-based space-time adaptive processing (STAP)

• Conclusions
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Conclusions

 Passive radar may suffer from low resolution in radar imaging, and 
find difficult in achieving robust STAP primarily due to narrow signal 
bandwidth

 CS and sparse reconstruction, particularly with the use of signal group 
sparsity and structures, are capable tools for effective radar imaging 
and STAP

 Bayesian compressive sensing (BCS) techniques
 Achieve l0-norm solution 
 Insensitive to sensing matrix coherence
 Flexibly use priors to exploit sparsity structures

 Group and structure-aware BCS provides powerful capabilities for 
passive radar applications to achieve
 High-resolution SAR imaging
 Effective STAP for clutter mitigation
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Backup Slides
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Performance of CC with Noisy Reference 
and DPI

• Define SNR in both channels and interference-to-noise ratio (INR) in SC

• Main Result: To ensure a performance loss of no more than 𝛿 dB 
relative to the MF for a given SNRs, the INRs and SNRr for the CC 
detector must satisfy (in dB) 

J. Liu, H. Li, and B. Himed, "On the performance of the cross-correlation detector for passive radar applications," 
Signal Processing, vol.113, pp.32-37, Aug. 2015
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Sketch of Proof

• Apply central limit theorem on

• This leads to the false alarm/detection probabilities for the CC

• Above expressions also hold for the MF by setting 𝜎 = 0 and 𝛾 = 0
• Our result follows by setting Type equation here.

and comparing the expressions
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• Deterministic IO waveform 𝐬, unknown noise power 𝜂:

• Deterministic 𝐬, known 𝜂:

• Stochastic 𝐬, known 𝜂:

• Stochastic 𝐬, known 𝜂:

Summary of 4 GLRTs with Noisy Reference
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Deterministic GLRT: Unknown Noise Power

• The likelihood function under hypothesis 𝐻  is
• Maximum likelihood (ML) estimates of 𝛼 and 𝛽:

• Using these estimates, 𝐿 becomes

• The ML estimate of 𝜂:
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• The likelihood function under hypothesis 𝐻0 is

• The ML estimate of  𝛽:
• Using above estimate, 𝐿0 becomes

• The ML estimate of 𝜂: 

• The GLRT detector with unknown noise power 𝜂 is

Deterministic GLRT: Unknown Noise Power
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• The GLRT with known noise power 𝜂 can be obtained in a similar 
way

• Equivalently, the test variable can be written in terms of eigenvalues

Deterministic GLRT: Known Noise Power
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Stochastic GLRTs

• Stochastic model:
– IO signal 𝑠(𝑛) are modeled as i.i.d. complex Gaussian with zero-mean 

and unit variance
– Justified for sources with multiplexing techniques (e.g., DVB-T signal)

• With known noise power, the GLRT is

• With unknown noise power, the GLRT is

• Above two detectors are also referred to as B-GLRTs
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Stochastic GLRTs

• As an example, consider B-GLRT with known noise power 𝜂
• Estimates of 𝑎 and 𝑏 can be obtained by numerically solving the 

following equations: 

where

• Use the Newton-Raphson iterative method to solve the equations, 
and obtain the estimates of 𝑎 and 𝑏
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• Under 𝐻 :  𝚽 = 𝐗 𝐗 has a non-central Wishart distribution. Using the 
result in [Kang-Alouini’03], the probability of detection can be written as

• 𝜃 is the non-zero eigenvalue of rank-1 matrix 𝐬 𝛂𝛂 , and the 𝐾 ×𝐾 matrix 𝛀 𝛿 is given by 

• The Nuttall Q-function can be recursively computed by generalized 
Marcum Q-function and modified Bessel functions

GCC with Known 𝟐

M. Kang and M.-S. Alouini, “Largest eigenvalue of complex Wishart matrices and performance analysis of 
MIMO MRC systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 418–426, Apr. 2003

confluent hypergeometric function

Nuttall Q-function
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• GCC is quite sensitive to the accuracy of the noise variance
• With unknown 𝜎 , the GLRT is given by

• Under 𝐻 , the maximum likelihood estimates (MLEs) are

and 𝐬 is the eigenvector corresponding to the largest eigenvalue of 𝐗𝐗
• Under  𝐻 , the MLE of the noise variance is 

GLRT with Unknown 𝟐

J. Liu, H. Li, and B. Himed, “Two target detection algorithms for passive multistatic
radar," IEEE Trans. Signal Process., vol.62, no.22, pp.5930-5939, Nov. 2014
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GLRT with Unknown 𝟐
• Substituting the MLEs into the likelihood ratio yields the  GLRT 

statistic

• By a simple transformation, above test statistic can be equivalently 
written as 

that is, the largest eigenvalue normalized by the MLE of noise 
variance under  𝐻

• Interestingly, the above test takes the same form as the following 
developed for a different application:

P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spectrum sensing for cognitive radio," IEEE 
Trans. Vehicular Technology, vol.59, no.4, pp.1791-1800, May 2010



201Approved for Public Release - PA#: 88ABW-2018-1622

GLRT with Unknown 𝟐
• It can be shown the false alarm probability is given by

𝛽 , can be computed symbolically (shown next)
• The above result indicates GLRT is a CFAR detector

step function
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GLRT with Unknown 𝟐
• Coefficients 𝛽 , are defined implicitly by

which can be computed by using a symbolic software [Maaref-Aissa’05]

• Specifically, by exploiting the different decaying rates of the summands, 
the coefficients 𝛽 , can be recursively computed, starting from 𝛽 , which has the slowest decaying rate

Then the contribution                                               is removed from the 
derivative, and the remainder is used to compute the 2nd slowest 
decaying term, so on and so forth. 
A. Maaref and S. Aissa, “Closed-form expression for the outage and ergodic Shannon capacity of MIMO MRC 
systems,” IEEE Trans. Commun., vol. 53, no. 7, Jul. 2005
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GCC with Known 𝟐
• This case was considered in [Bialkowski et al.’11; Vankayalapati-Kay’12]. The 

detector is called generalized canonical correlation (GCC) detector

• Its detection performance was not analyzed. Under 𝐻 :  𝚽 = 𝐗 𝐗 has a 
complex Wishart distribution. Using the result in [Khatri’64], the probability 
of false alarm can be obtained as

• The 𝐾 × 𝐾 matrix 𝚿 is given by 

K.S. Bialkowski, I.V.L. Clarkson, and S.D. Howard, “Generalized canonical correlation for passive multistatic radar 
detection,” in Proc. IEEE Statist. Signal Process. Workshop, Jun. 2011
N.Vankayalapati and S.Kay, “Asymptotically optimal detection of low probability of intercept signals using distributed 
sensors,” IEEE Trans. Aerosp. Electron. Syst, vol. 48, no. 1, Jan. 2012.
C. G. Khatri, “Distribution of the largest or the smallest characteristic root under null hypothesis concerning 
complex multivariate normal populations,” Ann. Math. Statist., vol. 35, Dec. 1964
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GLRT

• Consider the GLRT for the detection problem:

• GLRT requires the maximum likelihood estimates (MLEs) of the 
unknown parameters

• There is a multiplicative ambiguity among the amplitudes 
parameters {𝜶,𝜷} and the IO waveform 𝐱. To resolve the 
ambiguity, we impose a constraint ‖𝐱‖ = 1, which does not affect 
the GLRT

• Under ℋ , the likelihood function is given by
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MLE

• The MLEs of {𝜶,𝜷}, conditioned on the IO waveform 𝐱, are given by

• Substituting above estimates back into the likelihood function yields

• Expanding the cost function
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MLE
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Iterative Algorithm for IO Waveform 
Estimation

• Hence, we have

• If the dependence of 𝚯 𝐱 on 𝑥 is neglected, the cost function is 
maximized by the principal eigenvector. This leads to an iterative 
algorithm for estimating the IO waveform:
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MLE

• Let 𝛾 denote the final update of the principal eigenvector. The noise 
power can be estimated as 

• Under ℋ , the target signal is absent with 𝜶 = 𝟎. The MLE of the 
direct-path’s amplitude is given by

• Using above amplitude estimate in the likelihood function leads to

• Finally, the MLE of noise power is 
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GLRT

• Using the MLEs in the likelihood ratio followed by simplification, 
the test variable the GLRT is given by the ratio of noise power 
estimates under ℋ and ℋ , respectively

• Denote 𝜆 ≥ 𝜆 ≥ ⋯ ≥ 𝜆 as the ordered eigenvalues of the 𝐾 ×𝐾 matrix  𝚽 = 𝐘 𝐘. The GLRT can be written as 

– Denominator is the MLE of the noise power under ℋ
– Numerator is the difference of two principal eigenvalues 

obtained under ℋ and ℋ , respectively
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EM Estimator: E-Step

• The LLF can be written as

• Only the second term involves the parameters to be estimated

• In E-step, we need to compute

Bayes’ rule

constant

MMSE estimate 
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EM Estimator: E-Step

• By using the results of MMSE estimation and the block matrix 
inversion formula

where the Schur complements are defined as

• The cost function related to the unknown parameters is

where

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: 
Prentice Hall, 1993
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EM Estimator: M-Step

• In M-step, we need to solve the following optimization problem

• Using person-by-person optimization, we partition the unknown 
parameters into three subsets: {𝜏}, {𝑓 }, and {𝛼,𝛽}, and minimize 
the cost function sequentially over these subsets [a.k.a. expectation 
conditional maximization (ECM)]

• For the first two problems, the estimates can be obtained by using 
Newton’s method; there is a closed-form result for the third 
problem
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EM Estimator: M-Step

• Take 𝜏 as an example, a coarse one-dimensional search is conducted 
to find an initial estimate. Then, the solution is refined by exploiting 
the following necessary condition of optimality

• Newton's method is used to find the root of the first derivative 𝑔(𝜏)
in the neighborhood of the initial estimate. At the 𝑚-th iteration of 
Newton's method, we compute

• This process is repeated until convergence
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EM Estimator: M-Step

• For the third sub-problem, the cost function is a quadratic function 
with respect to 𝛼 and 𝛽. Taking partial derivatives of the cost 
function with respect to the conjugates of {𝛼,𝛽} and setting them 
equal to zero, we have

where


