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2(c) Y. D. Zhang

Nonstationary Frequency Modulated (FM) Signals
Examples of instantaneous 
narrowband nonstationary
signals:
 Linear FM (LFM, chirp)
 Polynomial phase signal
 Nonparametric FM signals

They are frequently 
encountered in many radar and 
other applications:  
 Radar & sonar sources 

(LFM)
 Target return (Doppler)
 Smart jammer
 Others (birds, whales…)

GPS jammer (anti-tracker)

OTH radar return

FM-CW radar
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Motion Classification in Through-the-Wall Radar

Two arm swing     One arm swing       No arm swing
3(c) Y. D. Zhang
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Radar Applied in Assisted Living
Radar 
units

Remote monitoring
 Old-age dependency ratio (population aged 65-years or

over to that aged 20-64) to reach 30% in 2020

 Direct medical costs for fall-related senior injuries reach
$55 billion by 2020

 Radar-based technology is attractive
 Non-invasive monitoring
 Privacy
 Insensitive to light and object obstruction
 Low-cost

 Fall detection heavily relies on time-frequency analysis4 4(c) Y. D. Zhang
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Doppler Signatures in Assisted Living

Walking without cane Walking with cane

Stand up and sit down Fall

5(c) Y. D. Zhang
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GPS Smart Jamming

 Nonstationary jammers are difficult to remove by a
single domain mitigation algorithm.

 Joint time-frequency domain algorithm removes
jammers with minimum distortion to GPS signal.

 Jammer estimation and excision becomes much more
challenging there existing missing data samples.

6(c) Y. D. Zhang
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Introduction

Various applications of nonstationary signals demand:
 Instantaneous frequency (IF) estimation

 Waveform reconstruction and removal

 Detection and classification

 DOA estimation 

 Separation of signals with close IF signatures

 All these for signals with undersampled data

This presentation focuses on nonparametric FM signals
characterized by their IF signatures.
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1: Time-Frequency Analysis of FM Signals and
Applications in DOA Estimation and Tracking
 Time-Frequency Representations
 Spatial Time-Frequency Distribution
 Time-Frequency MUSIC for DOA Estimation
 Separation of Closely Spaced FM Signals

2: Sparse Reconstruction of FM Signals from
Observations with Missing Samples
 Effect of Missing Data in TFD
 Adaptive Kernel Design and Sparse Reconstruction
 Multi-Sensor TFD Reconstruction and DOA Estimation

8(c) Y. D. Zhang

Outline of presentation
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 Classical time-frequency analysis techniques can
be classified as
 Linear - e.g., short-time Fourier transform (STFT),

fractional Fourier transform
 Bilinear - e.g., Wigner-Ville distribution, Cohen’s

class

 STFT: Simple but generally does not provide high resolution

Time-Frequency Analysis

10(c) Y. D. Zhang
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Instantaneous autocorrelation function (IAF)

Wigner-Ville distribution (WVD)
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 Bilinear time-frequency distribution introduces the 
undesired cross-terms. 

 A number of approaches has been developed to 
reduce the cross-terms. 

 Cohen’s class of reduced-interference distribution
(RID): applies a kernel in the ambiguity domain.

 Ambiguity function

Bilinear Time-Frequency Distribution

12(c) Y. D. Zhang
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Signal Representation in Different Domains

13(c) Y. D. Zhang

13

0 50 100
-2

-1

0

1

2

t

w
av

ef
or

m
 - 

re
al

 p
ar

t

t

f

0 50 100
0

0.1

0.2

0.3

0.4

0.5





-0.5 0 0.5

-50

0

50

t



0 50 100

-50

0

50

Waveform Time-frequency distribution

Ambiguity function IAF

Cross-terms
Auto-terms

Auto-terms
Cross-terms

time tDoppler 

de
la

y 


fre
qu

en
cy

  f

FFT (, t)FFT (, t)

FF
T 

(f,
 

)
FF

T 
(f,

 
)



Center for 
Advanced 

Communications
Villanova 
University

Time-Frequency Kernels

14(c) Y. D. Zhang

 Auto-terms are located around the origin of the
ambiguity domain, and cross-terms tend to be away
from the origin.

 Time-frequency kernel is a low-pass filter in the
ambiguity domain.

 The kernel (m,) defines different types of TFDs:
 Data-independent: e.g., Choi-Williams distribution

 Data-dependent: e.g., adaptive optimal kernel
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Time-Frequency Analysis

Wigner-Ville distribution

STFT

Choi-William distribution
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N sensors

far-field narrowband FM signal d(t)

Array Signal Processing

16(c) Y. D. Zhang
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Array Signal Model

where
x(t) : array signal vector (N x 1)
y(t) : noise-free array signal vector (N x 1)
d(t) : signal vector (P x 1)
A() : steering matrix (N x P)
n(t) : additive noise vector (N x 1)

)()()()()()( ttttt ndAnyx 

General form with P signals and additive noise vector
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STFD vs. Covariance Matrix
Covariance matrix of x(t)

Definition of spatial time-frequency distribution (STFD) 
matrix:

where the cross-TFD between xi(t) and xj(t) is

for i, j=1, …, P.
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STFD vs. Covariance Matrix
Covariance matrix of x(t)

STFD matrix of x(t) at a (t, f ) point

STFD matrix of x(t) averaged over a T-F region 

Same relationship: 
Cov. matrix  A() source cov. matrix

STFD matrix A() source TFD matrix

Advantage: STFD is defined in the selected T-F region,
allowing signal selection and enhancement.
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Consider selecting P0 FM signals 
out of P.

STFD matrix averaged over the 
autoterm points defined over P0
signals

Dxx=Ao ()[(L/no) Ro
dd](Ao )H()+I

 : noise power
L : length of window used in pseudo WVD
Ao(), Ro

dd : defined at Po selected signals

Key advantages of STFD: 
 SNR enhancement
 Signal discrimination
 Process more sources than array sensors 

STFD Matrix vs. Covariance Matrix

20(c) Y. D. Zhang
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Conventional MUSIC
MUSIC algorithm estimates the DOAs by finding the P
largest peaks of the localization function

: noise subspace of covariance matrix

Time-frequency MUSIC
Time-frequency MUSIC algorithm estimates the DOAs
by finding the Po largest peaks of the localization
function

: noise subspace of STFD matrix

2
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21(c) Y. D. Zhang

Ĝ

tfĜ
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Effect of Signal Enhancement

 MUSIC performance 
comparison (8 sensors, 

SNR=-20 dB, L=129)

 Advantages of enhan-
ced SNR are limited to
low SNR because of
sample coherence.
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Effect of Signal Discrimination

 MUSIC performance comparison 
(8 sensors, SNR= -5 dB, L=129)

Ra

f

t

Rb

Rd

Rc

 With source discriminations in T-F domain, we can 
 achieve significant performance improvement for 

closely spaced sources
 handle more sources than sensors
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 Dynamic frequency range: 3 – 30 MHz
 Challenges in antenna and array design
 Mutual coupling & impedance matching
 Degrees-of-freedom of waveforms

 Narrowband Signals: typical BW 10 – 50 KHz
 Low resolution (typical cell size: 10 km x 10 km)
 Doppler signature analysis

 Low SCR and SNR
 Mitigation of ground/sea clutter

 Multipath Propagation
 Suppression of unstable

F-layer multipath
 Target association

 A major challenge is the
estimation of target altitudes.

 One way is through the Doppler
analysis of the local multipath. 24(c) Y. D. Zhang

Over-the-Horizon Radar challenges
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When R >> H >>h,
25(c) Y. D. Zhang

Local multipath model
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Doppler signature of local multipath
Example: a maneuvering
aircraft makes a 180o turn
in 30.72 sec to change
height and direction.

The time interval corres-
ponds to 6 revisits, and
each revisit contains 256
samples.

The frequency difference
between the three
signatures reveals the
target speed in the
elevation direction.

26(c) Y. D. Zhang
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Spectrogram & Adaptive Optimal Kernel

27(c) Y. D. Zhang

The relative altitude estimation amounts to Doppler 
difference estimation. The challenges lie in
 Nonlinear Doppler
 Close Doppler separation
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Knowledge-based Time-Frequency Analysis
Knowledge-based processing: 
Turn challenges into opportunities!
 Nonlinear Doppler

> to be stationarized
 Close Doppler separation

> can be stationarized together
 Known number of components 

and their symmetry

28(c) Y. D. Zhang
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Signal Estimation Based on Warping
 The signal is segmented into multiple half-

overlapping short-time periods.

 In each segment, the Doppler is characterized using
a local polynomial phase modeling of order 3.

 Parameters are estimated using multilag high-order
ambiguity function (mlHAF).

29(c) Y. D. Zhang
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Target Trajectory & Doppler Signature
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Signal Filtering MUSIC

Received signal vector at the array

where
L:   Number of multipaths

: Transmit signal magnitude

: Radar cross section (RCS) for the ith path

: Phase term of the ith path (mainly due to 
target Doppler)

ai:   steering vector for the ith path

zi:   additive Gaussian noise

i
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31(c) Y. D. Zhang
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Signal Filtering MUSIC

Stationarization with the estimated phase of the kth signal

Weighted summation (i.e., LPF to 
only keep the selected component) 
for DOA estimation:
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Altitude Estimation through Direction Finding

MIMO-based

6 Tx antennas, 10 Rx antennas
(minimum redundancy array)

input SNR = -10 dB

33(c) Y. D. Zhang

-20 -15 -10 -5 0
10

-1

10
0

10
1

input SNR (dB)

R
M

S
E

 o
f e

st
im

at
ed

 ta
rg

et
 a

lti
tu

de
 (k

m
)

 

 
DOD-based
DOA-based
MIMO-based



Center for 
Advanced 

Communications
Villanova 
University

34(c) Y. D. Zhang

Proposed Technique

Extended Kalman
Filter (EKF)
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Extended Kalman filter (EKF) is
tailored to solve this problem:

 Obtained individual array data
for each component

 Resolved 
Doppler 
signatures 
are used as 
part of the 
measurement data

 The maximum a-
posteriori (MAP) 
criterion is used 
to estimate the 
initial altitude and 
motion direction.
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Simulation Results (SNR=-10 dB)
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 The spatial time-frequency distribution (STFD)
provides a natural framework for improved array
processing of nonstationary signals.

 The time-frequency signature characterization can
be used for source discrimination and SNR
enhancement.

 TF-MUSIC was shown as an example for DOA
estimation with source discrimination capability.

 Signal stationarization is useful to resolve closely
separated Doppler signatures and used for DOA
estimation and target tracking.

Conclusion – Part I

36(c) Y. D. Zhang
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1: Time-Frequency Analysis of FM Signals and
Applications in DOA Estimation and Tracking
 Time-Frequency Representations
 Spatial Time-Frequency Distribution
 Time-Frequency MUSIC for DOA Estimation
 Separation of Closely Spaced FM Signals

2: Sparse Reconstruction of FM Signals from
Observations with Missing Samples
 Effect of Missing Data in TFD
 Adaptive Kernel Design and Sparse Reconstruction
 Multi-Sensor TFD Reconstruction and DOA Estimation

37(c) Y. D. Zhang

Outline of presentation
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 Missing data may arise from
 Line-of-sight obstruction and/or propagation fading
 Removal of data samples contaminated by impulsive

noise
 Intentional undersampling for reduced hardware

complexity

 Missing data samples yield missing entries in the
IAF and produces noise-like artifacts in TFD.

 These artifacts can be mitigated by applying time-
frequency kernels or using data interpolation.

 Sparse signal reconstruction methods improve
performance over the direct application of Fourier
transform.

Introduction

38(c) Y. D. Zhang
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y1(t)

Signal Model

39(c) Y. D. Zhang

• Consider K narrowband FM signals impinging on an
array consisting of N sensors

• Consider a thinned sampling of the array
observations with a random pattern applied to each
array sensor

where

• : observation mask

• : set of observed time instants with 
cardinality                              

• : number of missing samples   
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Effect of Missing Data

41(c) Y. D. Zhang
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 Missing data samples yield spreading artifacts that
are randomly distributed over the entire T-F
domain, and the overall variance increases as the
number of missing data samples increases.

 For T-F points where Wxx(t, f ) is zero or insignificant,
the variance is uniformly distributed over f, whereas
the variance depends on t because of the zero-
padding effect.
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 The artifacts due to missing data samples
 Spread over the entire T-F and AF domain

 Resembles that due to noise

 Can be mitigated through a proper T-F kernel

 T-F Kernels
 Mitigate both artifacts and cross-terms

 Best kernels keep the signal signature and filter out
other regions

 Signal-adaptive kernels (e.g., AOK) are desirable

42(c) Y. D. Zhang

Outline of presentation
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D. L. Jones, R. G. 
Baraniuk, An 
adaptive optimal-
kernel time-
frequency 
representation, 
IEEE Trans.
Signal Process. 43 
(10) (1995) 
2361{2371.

Data-Dependent Kernel

43(c) Y. D. Zhang

 Adaptive Optimal Kernel (AOK)
 Kernel is important in time-frequency analysis to

suppress cross-terms while preserving auto-terms

 AOK is a well-known data-dependent kernel, which
is obtained by solving the following optimization
problem defined in the polar coordinate system:
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Jones & Baraniuk, An adaptive optimal-kernel time-frequency 
representation, IEEE T-SP, 1995.
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Data-Dependent Kernel

44(c) Y. D. Zhang

• AOK substantially mitigates the missing data artifacts
and clearly shows auto-term characteristics

• Localized Choi-Williams distribution (CWD) kernels
emphasize the locality and yield missing or weak TFD
entries around missing data positions
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Sparsity-Aware AOK
 Notice the vertical strips

(impulsive noise) due to
missing data.

 Sparsity-aware AOK:

Sparsity-aware AOK

Original AOK

Jokanovic, Amin, Zhang, and Ahmad, “Time-frequency kernel 
design for sparse joint-variable signal representations,” 
EUSIPCO 2014.
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45(c) Y. D. Zhang



Center for 
Advanced 

Communications
Villanova 
University

Sparse Reconstruction
 TFDs can be reconstructed based on their sparsity

in the T-F domain.

 AF and TFD are related by 2-D DFT matrix
 Large-dimensional dictionary matrix
 Global sparse reconstruction (cannot specify t to

perform local reconstruction)

Flandrin, Borgnat, Time-frequency energy distributions meet 
compressed sensing, IEEE T-SP, 2010. 46(c) Y. D. Zhang
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Sparse Reconstruction
• We use the 1-D DFT relationship between IAF and 

TFD

• TFD reconstruction can be performed locally for
each t.

][][][ ttt εΦwc 

47(c) Y. D. Zhang
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Structure-Aware Bayesian Compressive Sensing

 Bayesian CS maximizes the posterior probability
over all unknown parameters.

 To encourage the TF signature sparsity, we place a
spike-and-slab prior to :

for frequency domain index , where
: prior probability of a nonzero element
: precision of Gaussian distribution

 Let to make the inference analytical,
where and

 A small value of  tends to generate a zero entry.

][tw
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48(c) Y. D. Zhang
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Structure-Aware Bayesian Compressive Sensing

Discouraged pattern       Neutral pattern   Encouraged pattern

OMP                                             Proposed 49(c) Y. D. Zhang
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Jammer Suppression in GPS Receiver
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Multi-Sensor Data-Dependent Kernel

51(c) Y. D. Zhang

 The simple averaging of TFDs and AFs over
different antennas disfavors cross-terms and
enhances auto-terms
 Auto-terms have same phase across all sensors
 Cross-term phase depends on contributing signals
 Particular effective when different sampling patterns

are adopted in each sensor

 Modified AOK based on averaged AF

where
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Simulation Results: Baseline

52(c) Y. D. Zhang

60% of missing samples (single sensor, SNR=10 dB)
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Simulation Results: Effect of Reduced SNR

53(c) Y. D. Zhang

(b) four sensors 
with same 
missing pattern

(c) four sensors 
with different 
missing 
patterns

(60% of missing samples, SNR=4 dB)
 With array again from 4 sensors (6 dB), the performance 

is similar to the baseline case for both cases. 

(a) single sensor
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Simulation Results: With More Missing Samples

54(c) Y. D. Zhang

(70% of missing samples, SNR=10 dB)
 Similar performance achieved with different missing patterns,

whereas array gain does not improve the same pattern case.

(b) four sensors 
with same 
missing pattern

(c) four sensors 
with different 
missing 
patterns

(a) single sensor
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Example of DOA Estimation

55(c) Y. D. Zhang

4 sensors, 50% of missing samples, SNR=0 dB

Pseudo WVD                              Reconstructed

Sparse TF-MUSIC                         MUSIC
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Conclusion – Part II

 Missing data generates noise-like artifacts
 Data-dependent kernels are effective to suppress

such artifacts
 For multi-sensor array, adaptive kernel should be

obtained from the combined observation at all
sensors

 Sparse reconstruction enables effective TF
signature estimation from randomly sampled FM
signals

 If applicable, sensors should use different sampling
patterns to combat the effect of missing samples

 Sparse TF-MUSIC is developed with demonstrated
effectiveness

56(c) Y. D. Zhang
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Related Topics

 Performance and bound 
 How much we can undersample

 Classification 
 With full data
 Performance loss with partial data

 Best & practical sampling scheme
 Uniform undersampling
 Burst

 Optimum signal recovery strategy
 Kernel design
 Interpolation
 Sparse reconstruction
 Other approaches

57(c) Y. D. Zhang
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Contact info: http://yiminzhang.com/
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