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Outline

Array Signal Model and DOA Estimation

Sparse Array Design and Processing

New Directions and Applications

Concluding Remarks

Sparse Sensor Array
Processing for 

High-Resolution
Sensing
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• Array processing uses multiple sensors
(antennas, microphones, transducers)
and plays a fundamental role in wireless
communications, radar and sonar
sensing, autonomous driving, speech
separation, and medical imaging

• Beamforming
• Signal enhancement
• Interference cancellation
• Multi-user detection
• Multiple-input multiple-output (MIMO)

systems
• Increased channel capacity

• Sensing: Localization/imaging
• Ground-to-air radar
• Automotive radar
• Sonar
• Ultrasonic imaging

Applications of array processing
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Radar sensing often requires high-resolution results
in four dimensions (4-D imaging):
• Range: range resolution and accuracy are

determined by signal bandwidth
• Doppler frequency: corresponding to radial

velocity with its resolution determined by pulse
repetition frequency

• Azimuth angle
• Elevation angle

Four-dimensional sensing

This talk focuses on the angle estimation problem:
• Angular resolution is determined by the array aperture
• Number of detectable signals is determined by the number

of degrees of freedom (DOFs) which is related to the
number of sensors

• Mainly consider azimuth angle estimation using linear arrays Doppler frequency 

R
an

g
e

Clutter

Target

• Extension to 2-D array for 2-D direction-of-arrival (DOA) estimation



8

A
S
P
Lab

Signal model for a ULA

Consider an 𝑁-element uniform linear array (ULA) with inter-element spacing 𝑑.

Time delay for far-field signals: 𝜏 ൌ ሺ𝑑 sin𝜃ሻ/𝑐
c: speed of propagation 

Phase delay: 𝜙 ൌ 2𝜋𝑓௖𝜏 ൌ 2𝜋𝑓௖𝑑 sin𝜃 /𝑐 ൌ 2𝜋 𝑑/𝜆 sin𝜃𝑓௖: carrier frequency𝜆 ൌ 𝑐/𝑓௖: wavelength

Received signal vector under the 
narrowband signal assumption 𝑠ሺ𝑡 െ 𝜏ሻ ൎ 𝑠ሺ𝑡ሻ: 

𝒂ሺ𝜃ሻ: steering vector

θ

d

Wavefront: flat 
for a far-field 
signal

Signal arrival

𝑠 𝑡 𝑠 𝑡 𝑒௝థ 𝑠 𝑡 𝑒௝ ேିଵ థ
 𝑁 2 1 𝑑 sin𝜃𝒙 𝑡 ൌ 𝑥ଵሺ𝑡ሻ𝑥ଶሺ𝑡ሻ⋮𝑥ேሺ𝑡ሻ ൌ 𝑠 𝑡 1𝑒௝థ⋮𝑒௝ ேିଵ థ ൌ 𝑠 𝑡 𝒂ሺ𝜃ሻ

𝜙 ൌ 2𝜋 𝑑/𝜆 sin𝜃
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Signal model for a ULA

Array signal model in the presence of 𝐾 stationary
signals          𝒙 𝑡 ൌ ෍𝑠௞ 𝑡 𝒂 𝜃௞ ൅ 𝒏 𝑡௄

௞ୀଵ ൌ 𝑨𝒔ሺ𝑡ሻ ൅ 𝒏ሺ𝑡ሻ
where𝒂ሺ𝜃௞ሻ ൌ  1, e௝థೖ , e௝ଶథೖ ,⋯ , e௝ ேିଵ థೖ ୘

: steering vector           𝜙௞ ൌ 2𝜋 𝑑/𝜆 sin𝜃௞: phase delay between adjacent sensors𝐀 ൌ ሾ𝒂 𝜃ଵ ,𝒂 𝜃௄ ,⋯ ,𝒂 𝜃௄ ]: array manifold matrix  𝒔 𝑡 ൌ 𝑠ଵ 𝑡 ,⋯ , 𝑠௄ 𝑡 ୘: signal vector

𝜃ଵ 𝑠ଵሺ𝑡ሻ 𝑠ଶሺ𝑡ሻ𝜃ଶ
𝑤ଵ∗

+𝑦 𝑡 ൌ 𝒘ୌ𝒙ሺ𝑡ሻ
𝑤ଶ∗ 𝑤ே∗

Beamforming for signal enhancement / interference cancellation: apply a weight vector𝒘 to 𝒙ሺ𝑡ሻ such that 𝒘ୌ𝒂ሺ𝜃ௗሻ for some desired signal takes a high value and 𝒘ୌ𝒂ሺ𝜃௜ሻ  for
some interference signals takes a small value

DOA estimation: determine the directions of signal arrivals, 𝜃ଵ,⋯ , 𝜃௄, from the received
signal vector 𝒙ሺ𝑡ሻ over (typically) multiple samples 𝑡 ൌ 1,⋯ ,𝑇.
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DOA estimation

Traditional DOA estimation approach through
beamforming (~Fourier transform):
• For 𝐱ሺ𝑡ሻ ൌ 𝑠ሺ𝑡ሻ𝐚ሺ𝜃଴ሻ , the magnitude of 𝑦ሺ𝑡, 𝜃ሻ ൌ𝒂ୌሺ𝜃ሻ𝒙ሺ𝑡ሻ ൌ 𝑠ሺ𝑡ሻ𝒂ୌሺ𝜃ሻ𝒂ሺ𝜃଴ሻ is peaked at 𝜃଴.

• This approach (~Fourier transform) has a low
resolution.

Subspace-based DOA estimation techniques based
on the subspace analysis of the covariance matrix are
commonly used to achieve a high resolution.
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Beamforming-based DOA 
estimation has a low resolution

(Example of 6-element ULA)

𝑹𝒙𝒙 ൌ E 𝒙 𝑡 𝒙ୌ 𝑡
ൌ Eሾ𝑥ଵሺ𝑡ሻ𝑥ଵ∗ሺ𝑡ሻሿ Eሾ𝑥ଵሺ𝑡ሻ𝑥ଶ∗ሺ𝑡ሻሿ Eሾ𝑥ଵሺ𝑡ሻ𝑥ଷ∗ሺ𝑡ሻሿ Eሾ𝑥ଵሺ𝑡ሻ𝑥ସ∗ሺ𝑡ሻሿEሾ𝑥ଶሺ𝑡ሻ𝑥ଵ∗ሺ𝑡ሻሿ Eሾ𝑥ଶሺ𝑡ሻ𝑥ଶ∗ሺ𝑡ሻሿ Eሾ𝑥ଶሺ𝑡ሻ𝑥ଷ∗ሺ𝑡ሻሿ Eሾ𝑥ଶሺ𝑡ሻ𝑥ସ∗ሺ𝑡ሻሿEሾ𝑥ଷሺ𝑡ሻ𝑥ଵ∗ሺ𝑡ሻሿ Eሾ𝑥ଷሺ𝑡ሻ𝑥ଶ∗ሺ𝑡ሻሿ Eሾ𝑥ଷሺ𝑡ሻ𝑥ଷ∗ሺ𝑡ሻሿ Eሾ𝑥ଷሺ𝑡ሻ𝑥ସ∗ሺ𝑡ሻሿEሾ𝑥ସሺ𝑡ሻ𝑥ଵ∗ሺ𝑡ሻሿ Eሾ𝑥ସሺ𝑡ሻ𝑥ଶ∗ሺ𝑡ሻሿ Eሾ𝑥ସሺ𝑡ሻ𝑥ଷ∗ሺ𝑡ሻሿ Eሾ𝑥ସሺ𝑡ሻ𝑥ସ∗ሺ𝑡ሻሿ

Single signal

Two signals
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Subspace-based DOA estimation

Eigen-decomposition of the covariance matrix          𝑹𝒙𝒙  ൌ   ෍𝜆௜𝒗𝒊𝒗𝒊ୌ௄
௜ୀଵ         ൅      ෍ 𝜎௡ଶ𝒗𝒊𝒗𝒊ୌே

௜ୀ௄ାଵ   ൌ   𝑼𝒔𝚺𝒔𝑼𝒔ୌ   ൅   𝑼𝒏𝚺𝒏𝑼𝒏ୌ
Observations: 
• The signal subspace and the noise subspace are orthogonal: 𝑼𝒔ୌ𝑼𝒏 ൌ 𝟎. 
• Valid signal steering vectors are orthogonal to the noise subspace: 𝑨ୌ𝑼𝒏 ൌ 𝟎. 

Pseudo spatial spectrum of MUSIC (MUltiple SIgnal Classification): 

• MUSIC is popular because only 1-D search is needed.
• An 𝑁-element ULA can detect 𝑁 െ 1 signals.   
• Knowledge of the number of signals 𝐾 is required. 

Signal subspace      Noise subspace 

𝑃 𝜃 ൌ 1𝒂ୌ 𝜃 𝑼௡𝑼௡ୌ𝒂 𝜃 ൌ 𝒂ୌ 𝜃 𝑼௡ ିଶ

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas and
Propagation, 1986.

30୭ 45୭
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Uniform and sparse sampling

Nyquist theorem: For periodic signals, sampling
interval should satisfy 𝑇௦ ൑ 𝑇୫୧୬/2.

𝑇 𝑡
Sparse sampling:
If we know that there are multiple
periodic components, their
parameters may be estimated
from sparse samples using
compressive sensing.
• For a limited number of

sinusoids, several sparse
samples are sufficient to
estimate parameters, i.e.,
frequencies, initial phases,
and magnitudes.

• Requires dictionary matrix with
columns of low correlations

𝒚    ൌ                       𝜱                             𝒙 Frequency
indexes𝑓଴𝑓ଵ
⋮
𝑓ேିଵ

Sampling time𝑡ଵ 𝑡ଶ ⋮  𝑡ெM x 1
measurements

M x N
dictionary matrix

N x 1 sparse signalK non-zero entriesx may be solvable when 𝐾 ൏  𝑀 ≪ 𝑁
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Uniform and sparse sampling

d

𝜆 ൌ 𝑐/𝑓௖
𝑇 𝑡Similarly, array sensors are typically placed with

inter-element spacing of 𝑑 ൌ 𝜆/2 (ULA).
Sparse arrays:
• In direct DOA estimation, we may sparsely place

the array sensors with 𝑁 ൐ 𝐾 satisfied.
• Achieve a larger aperture but do not increase

the number of DOFs
• High sidelobe effects

• Underdetermined DOA estimation: A more
popular approach is to utilize second-order
statistics to perform DOA estimation with 𝑁 ൏ 𝐾
• It increases both the array aperture and the

number of DOFs
• May achieve consecutive lags to effectively

suppress sidelobe issues

Wavelength

 𝒙 𝑡 ൌ ෍𝑠௞ 𝑡 𝒂 𝜃௞ ൅ 𝒏 𝑡௄
௞ୀଵ𝒂ሺ𝜃௞ሻ ൌ  1, e௝థೖ , e௝ଶథೖ ,⋯ , e௝ ேିଵ థೖ ୘

𝜙௞ ൌ 2𝜋 𝑑/𝜆 sin𝜃௞
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Difference coarray

Subspace-based DOA estimation exploits the data covariance matrix 𝑹𝒙𝒙.
For a ULA with uncorrected signals: 
• 𝑹𝒙𝒙 is Toeplitz (diagonal-constant) and Hermitian 
• 𝑹𝒙𝒙 is highly redundant: Only 𝑁 elements are unique in the 𝑁 ൈ 𝑁 covariance matrix
• We may not need 𝑁 sensors to estimate the 𝑁 ൈ 𝑁 covariance matrix

d

𝑹𝒙𝒙 ൌ Eሾ𝑥ଵ𝑥ଵ∗ሿ Eሾ𝑥ଵ𝑥ଶ∗ሿ Eሾ𝑥ଵ𝑥ଷ∗ሿ Eሾ𝑥ଵ𝑥ସ∗ሿEሾ𝑥ଶ𝑥ଵ∗ሿ Eሾ𝑥ଶ𝑥ଶ∗ሿ Eሾ𝑥ଶ𝑥ଷ∗ሿ Eሾ𝑥ଶ𝑥ସ∗ሿEሾ𝑥ଷ𝑥ଵ∗ሿ Eሾ𝑥ଷ𝑥ଶ∗ሿ Eሾ𝑥ଷ𝑥ଷ∗ሿ Eሾ𝑥ଷ𝑥ସ∗ሿEሾ𝑥ସ𝑥ଵ∗ሿ Eሾ𝑥ସ𝑥ଶ∗ሿ Eሾ𝑥ସ𝑥ଷ∗ሿ Eሾ𝑥ସ𝑥ସ∗ሿ

Consider the same array example with one
sensor removed:
• All the entries of the covariance matrix can

be restored: e.g., E 𝑥ଶ𝑥ଷ∗ ⇒  E 𝑥ଵ𝑥ଶ∗
• The 4-element ULA and the 3-element

sparse array are different coarray
equivalent because they generate the
same number of correlation lags.

• For physical array 𝔾, The difference lags
are given as: ℂீ ൌ ሼ𝒛|𝒛 ൌ 𝒖 െ 𝒗,𝒖,𝒗 ∈ 𝔾ሽ. Correlation lags (difference coarray)
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Minimum redundancy array

Approaches for sparse array design with consecutive
lags lead to the minimum redundancy array (MRA):
For a given number of physical sensors, maximizes
the number of consecutive virtual sensors in the
resulting difference coarray.
• Restricted arrays: All lags are consecutive
• General arrays: Not all lags are consecutive

The redundancy is defined as 𝑅 ൌ భమேሺேିଵሻேౣ౗౮ , where 𝑁୫ୟ୶
is the maximum number of obtained consecutive lags.
• 𝑅 is found to be 1.217 ≲ 𝑅 ≲ 1.674.

However, MRA cannot be systematically designed.

A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas and Propagation, 1968.
M. Ishiguro, "Minimum redundancy linear arrays for a large number of antennas," Radio Science,
1980.
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Systematical sparse array design: Nested array

Systematical design: Nested array is a simple sparse array configuration which consists of 
two uniform linear subarrays, one of which has a unit spacing.   

P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Trans. Signal Processing, 2010.

[Pal and Vaidyanathan’10]

• Depending on the applications, the high number of
consecutive physical sensors may cause a high mutual
coupling effect, degrading the performance.

• Mutual coupling brings highest impact when the spacing
between the sensor is small (e.g., half-wavelength spacing).

• The coprime array is proposed as an alternative.
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Systematical sparse array design: Coprime array

Coprime array: utilizes a pair of uniform linear
subarrays with 𝑀 and 𝑁 being coprime integers
(greatest common divisor gcd ሺ𝑀,𝑁ሻ  ൌ  1)

Example: 𝑀 ൌ 3 and 𝑁 ൌ 5 (6 elements)

Physical array

Coarray

P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime sampler and arrays,” IEEE Trans. Signal Processing, 2011

• Unlike nested arrays, coprime arrays have holes in the resulting lags.

• Direct MUSIC only uses consecutive lags [െ7:1:7] and detect up to 7 signals.
• In this context, optimum design of parse arrays is to

• Have a high number of consecutive lags

• With low mutual coupling (few elements are separated by lag-1 and lag-2)
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Direct MUSIC-based DOA estimation

Vectorizing 𝑹𝒙𝒙 yields 𝒛 ൌ vec 𝑹௫௫  ൌ 𝑨෩ 𝒃 ൅ 𝜎௡ ଶ ଙ̃ ൌ 𝑨௢𝒃௢𝑨෩ ൌ 𝒂 𝜃ଵ ⨂𝒂∗ 𝜃ଵ , … ,𝒂 𝜃ொ ⨂𝒂∗ 𝜃ொ : Manifold matrix for the difference coarray𝒃 ൌ 𝜎ଵଶ, … ,𝜎ொଶ ୘
: Source power vectorଙ̃ ൌ vecሺ𝑰ேሻ𝑨௢ ൌ ሾ𝑨෩, 𝑰෨ሿ𝒃௢ ൌ 𝒃୘,𝜎୬ଶ ୘

𝒛 acts as received data of a virtual array (difference coarray)
• Manifold matrix corresponds to more virtual sensors than

physical antennas
• Only has a single snapshot corresponding to vector 𝒃
• To perform direct MUSIC, we can use consecutive lags to

form a full-rank Hermitian and Toeplitz matrix which acts as a
covariance matrix

𝑹෩௫௫ ൌ 𝑧଴ 𝑧ଵ ⋯ 𝑧଻𝑧ିଵ 𝑧଴ ⋯ 𝑧଺⋮ ⋮ ⋱ ⋮𝑧ି଻ 𝑧ି଺ ⋯ 𝑧଴
P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.
C.-L. Liu and P. P. Vaidyanathan, "Remarks on the Spatial Smoothing Step in Coarray MUSIC," IEEE Signal Processing Letters, 2015.



19

A
S
P
Lab

Sparse array design and processing

1955-1968

Minimum-
redundancy array

1978

Minimum 
hole array

2010-2011

Systematical: Nested 
& coprime arrays

2015

Generalized
coprime 
arrays*

MUSIC:
Only utilize 

consecutive lags

Sparsity-based
DOA 

estimation:
Utilize all lags

2018

Array 
interpolation*: 

Fill in missing 
sensors/lags 

2021

Non-redundant
sparse arrays

Sparse array designs
DOA estimation methods

2013

ONR 
program 

on coprime 
sampling

MISC array:
More segments 

means better

1990

Array
synthesis

2013-2017

Multi-frequency 
array*: 

Frequency diversity

2023

Coarray
tensor: 

High-dimension 
DOA estimation

2013-2015 2019
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Problems:
• Coprime array: have holes in the lags
• Nested array: high mutual coupling

Modified coprime and nested arrays:
• CACIS (Coprime array with compressed

inter-element spacing): compresses the
interelement spacing of one subarray𝑀ෙ ൌ 𝑀/𝑝 with 2 ൑ 𝑝 ൑ 𝑀 to increase
the number of consecutive lags

Sparse array: Generalized coprime and nested arrays

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015.
J. Liu, Y. Zhang, Y. Lu, S. Ren and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Trans. Signal Processing, 2017.

• Augmented nested array: Split the
densely located elements in inner
subarray to reduce the mutual
coupling. Several variations.
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Modified versions:
• Improved MISC (I-MISC)
• Enhanced MISC (EMISC)
• Symmetry improved MISC (S-IMISC)
• Extended MISC (xMISC)

Sparse array: MISC family

Z. Zheng, W-Q. Wang, Y. Kong, and Y. D. Zhang, "MISC Array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling
effect," IEEE Trans. Signal Processing, 2019.
W. Shi, Y. Li, and R. C. de Lamare, ”Novel sparse array design based on the maximum inter-element spacing criterion,” IEEE Signal Processing Letters, 2022.
X. Sheng, D. Lu, Y. Li, and R. C. de Lamare, “Enhanced MISC-based sparse array with high uDOFs and low mutual coupling,” IEEE Trans. Circuits and Systems II:
Express Briefs, in press.
X. Li, H. Yang, J. Han, and N. Dong, “A novel low-complexity method for near-field sources based on an S-IMISC array model,” Electronics, 2023.
S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

with 𝑃 ൌ 2 𝑁/4 ൅ 2 (𝑁 ൒ 5)

MISC (4 segments)

I-MISC (6 segments)

MISC (maximum interelement spacing constraint): Achieve a high number of
consecutive lags with low mutual coupling
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S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

DOF ratio: 𝛾 𝑁 ൌ 𝑁ଶ𝒮௨𝒮௨: one-side uniform DOF (uDOF)

Coupling leakage:

ℒ 𝑁 ൌ 𝑯െ diag 𝑯 ி𝑯 ி𝑯: mutual coupling matrix whose 
elements depends on the distance 
between elements

Simulations assumed𝑯 ௝,௟ ൌ ቊ𝑐|௝ି௟|,   if 𝑗 െ 𝑘 ൑ 𝑉0,          otherwise     
with 𝑐଴ ൌ 1, 𝑐ଵ ൌ 0.2𝑒௝గ/ଷ, ௖௖್೗ ൌ ௟௕

Sparse array: Performance evaluation

(𝑁=30)
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Sparsity-based DOA estimation

Sparsity-based DOA estimation: 𝒛 ൌ vec 𝑹௫௫  ൌ 𝑨෩ 𝒃 ൅ 𝜎௡ ଶ ଙ̃ ൌ 𝑨௢𝒃௢
• The linear coarray model well fits into the compressive sensing (CS) problem by

defining dense dictionary matrix 𝑨௚ over a grid, e.g., ሾെ90: 1: 90ሿ:min𝒛  𝒃௚ ଴  subject to  𝒛 െ 𝑨௚𝒃௚ ൑ 𝜖
• The positions of the nonzero solutions of 𝒃௚ represent the signal DOA

• This approach does not require a specific array structure and all difference lags
can be utilized in sparsity-based DOA estimation: Unique lags

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015.

𝑀ෙ ൌ 𝑀/𝑝 with 2 ൑ 𝑝 ൑ 𝑀
CADiS (Coprime array with displaced subarrays):
• Displaces two subarrays to increases unique

lags and reduces mutual coupling
• In general, the resulting lags are disconnected

in the center region
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In CADiS configurations, the self-lags are less likely to coincide with the cross-lags:
(a) 𝐿 ൐ 𝑀 െ 2 𝑁 achieves the maximum number of unique lags

(b) 𝐿 ൌ 𝑀ෙ ൅ 𝑁 yields the largest number of consecutive lags

Sparse array: CADiS

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015.

𝑀ෙ ൌ 3,𝑝 ൌ 2,𝑁 ൌ 7, 𝐿 ൌ 𝑀ෙ ൅ 𝑁
𝑀ෙ ൌ 3, 𝑝 ൌ 2,𝑁 ൌ 7, 𝐿 ൌ 𝑀ෙ ൅ 𝑁, 𝜂௖ ൌ 33, 𝜂௨ ൌ 89
𝑀ෙ ൌ 2, 𝑝 ൌ 3,𝑁 ൌ 7, 𝐿 ൌ 𝑀ෙ ൅ 𝑁, 𝜂௖ ൌ 38, 𝜂௨ ൌ 87
𝑀ෙ ൌ 1, 𝑝 ൌ 6,𝑁 ൌ 7, 𝐿 ൌ 𝑀ෙ ൅ 𝑁, 𝜂௖ ൌ 85, 𝜂௨ ൌ 85

• A smaller value 
of 𝑀ෙ reduces the 
unique lags and 
reduces the 
number of holes 

• The lags become 
consecutive 
when 𝑀ෙ ൌ 1
(nested array)
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Sparse arrays: Comparison

Consider 𝑀 ൌ 6 and 𝑁 ൌ 7 with 𝑀 ൅𝑁 െ 1 ൌ 12 physical sensors
• CADiS generally outperforms CACIS
• The CS based method achieves better DOA estimation performance

(a)  CACIS with 𝑀ෙ ൌ 3 (𝜂௖ ൌ 47)

(b)  CACIS with 𝑀ෙ ൌ 2 ሺ𝜂௖ ൌ 59ሻ
MUSIC (𝑸 ൌ 𝟐𝟔)

(a)  CACIS with 𝑀ෙ ൌ1 (𝜂௖ ൌ 71)

(b)  CADiS with 𝑀ෙ ൌ 1 ሺ𝜂௖ ൌ 85ሻ
MUSIC (𝑸 ൌ 𝟑𝟔)

(a)  CACIS with 𝑀ෙ ൌ 2 ሺ𝜂௨ ൌ 65ሻ

(b)  CADiS with 𝑀ෙ ൌ 2 (𝜂௨ ൌ 87)

CS (𝑸 ൌ 𝟑𝟑)
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A major problem with the CS-based DOA estimation approach is that the DOAs must be
on the defined grid, e.g., [−90o : 1o : 90o].

Signals arriving from other DOAs will suffer the off-grid problem, e.g., signal from 43.6o.

• Less sparse solution
• Difficult to converge

Solutions in the context of CS: 
• Finer grid resolution
• Grid refining
• Off-grid estimation
• Atomic decomposition

An attractive method is to complete the covariance matrix (matrix completion) so that
conventional subspace-based methods (e.g., MUSIC) can be applied.

Off-grid problem

1o grid DOA estimationെ4o െ4.6o
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Matrix completion

Netflix problem: Predict unknown scores.

The data is low-rank, but the dictionary is
unknown (unlike CS).

Let Ω be the region where the elements of
matrix 𝑴 are observed (i.e., ሼ𝑀௜௝| 𝑖, 𝑗 ∈ Ωሽ ),
matrix completion finds a low-rank full matrix𝑿 which matches 𝑴:min𝑿  rank 𝑿  subject to     𝑋௜௝ ൌ 𝑀௜௝    ∀ ሺ𝑖, 𝑗ሻ ∈ Ω
Because the problem involves matrix rank, it is non-convex and NP-hard.
Therefore, the matrix rank is often relaxed, e.g., to its nuclear norm:

: nuclear norm of matrix 𝑿 (𝜎௜ are singular values)

min𝑿  ||𝑿||∗ subject to     𝑋௜௝ ൌ 𝑀௜௝    ∀ ሺ𝑖, 𝑗ሻ ∈ Ω
||𝑿||∗ ൌ෍𝜎௜௥

௜ୀଵ
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Structured matrix completion of covariance matrix

A matrix cannot be completed when an entire row or
column is missing in the observed matrix.
• Cannot complete covariance matrix of physical array
• However, for ULA, we can recover the covariance matrix

utilizing its Toeplitz and Hermitian structure
• In this case, the completed covariance matrix can be

defined by only one column vector 𝒛 as 𝒯ሺ𝒛ሻ, and the
nuclear norm minimization becomes

𝑩ஐ: mask matrix with 𝑩ஐ ௜௝ ൌ ቊ1,   if 𝑖, 𝑗 ∈ Ω0,   otherwise𝜏: regularization parameter

min𝐳  𝒯 𝒛 െ𝑴 ∘ 𝑩ஐ ிଶ ൅ 𝜏||𝒯ሺ𝒛ሻ||∗
subject to      𝒯 𝒛 ≽ 𝟎

0 2 4 6 8 10 12

0

2

4

6

8

10

12

C. Zhou, Y. Gu, Z. Shi, and Y. D. Zhang, "Off-grid direction-of-arrival estimation using coprime array interpolation," IEEE Signal Processing Letters, 2018.
C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, "Direction-of-arrival estimation for coprime array via virtual array interpolation," IEEE Trans. Signal
Processing, 2018.
S. Liu, Z. Mao, Y. D. Zhang, and Y. Huang, "Rank minimization-based Toeplitz reconstruction for DoA estimation using coprime array," IEEE Communications
Letters, July 2021.

• Other methods: atomic norm minimization and dual-variable rank minimization.
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Matrix completion-aware sparse array design 

Matrix completion
• Fills in information in missing lags
• Changes missing holes in the lag from obstacles in consecutive-lag construction into a

resource for aperture extension
• Enabling off-grid DOA estimation with larger array apertures

With such capability, how shall we consider the “optimality” of a sparse array? We introduce
optimized non-redundant array (ONRA):
• Redundancy-free: Each lag only appears once
• Introduce holes in the lag for reducing mutual coupling and enlarging array aperture

Direct 
MUSIC

MUSIC with 
matrix 
completion

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.
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Non-redundant sparse array: Comparison

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.

• Comparison for 6-sensor arrays (DOA estimation for
13 sources; LASSO)

• ONRA has very low mutual coupling effect as the
minimum interelement spacing is 2 units

Coprime array (9 lags; max lag 9)      Nested array (12 lags; max lag 11 )       MISC array (14 lags; max lag 13)           ONRA (16 lags; max lag 22) 

RMSE for two closely spaced source case
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• Difference coarray is obtained from array data
covariance matrix, which requires (time-
domain) snapshots.

• Can we utilize resources in the other domain,
e.g., frequency?

• Multi-frequency sparse array exploits two
or more frequencies to obtain virtual arrays.

Multi-frequency sparse array

Sparse ULA Equivalent structure with two coprime frequencies

𝐷 ൌ 𝑀௜ 𝜆௜2 , 𝑖 ൌ 1,⋯ , 𝐼
Integers 𝑀ଵ and 𝑀ଶ are coprime 

S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation exploiting a uniform linear array with multiple co-prime frequencies,” Signal Processing, 2017.
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Example: 3 antennas, 3 frequencies

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.

• Same physical array appears as different virtual arrays in 
different frequencies, rendering 7 virtual sensors 

• Covariance matrix of 37 ൈ 27 is reconstructed  

• 8 targets uniformly distributed in [−14o, 14o] are detected 
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Extension to 2-D (planar) sparse arrays: Sparse array design and processing concepts
apply for 2-D array but need additional considerations.
• Sparse arrays may have additional rooms for sensor reduction
• Covariance statistics becomes a tensor with high redundancies
• Multi-dimensional processing may require decoupling for reduced complexity

2-D sparse arrays

I. Aboumahmoud, A. Muqaibel, M. Alhassoun and S. Alawsh, "A Review of sparse sensor arrays for two-dimensional direction-of-arrival estimation," IEEE Access, 2021. 
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Consider a coprime planar array with coprimality
deployment along both x-axis and y-axis.
• The signal received at the two sparse uniform rectangular

arrays form two 3-D tensors, which are combined and
interpolated into a complete 3-D tensor.

• The coarray tensor can be flexibly manipulated for
dimension expansion and enhanced signal detectability.

• Tensor canonical polyadic decomposition (CPD) is used to
perform DOA estimation.

Coarray tensor DOA estimation

H. Zheng, C. Zhou, Z. Shi, Y. Gu, Y. D. Zhang, "Coarray tensor direction-of-arrival estimation," IEEE Trans. Signal Processing, 2023.

Sparse tensors

Coarray
tensor CPD

Tensor reshaping
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Automotive radar:
• We may only use few (even one) data samples
• A large aperture in both azimuth and elevation is important to

identify objects and enable drive-over and drive-under
• Consider a sparse 2-D multiple-input multiple-output (MIMO)

radar using 12 transmit antennas and 16 receive antennas
• MIMO radar enjoys sum coarray with 196 virtual antennas
• Data completion is important to reduce the sidelobes

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing,
2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal
Processing Society Webinar Series, Sept. 2023.
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Consider frequency diverse array (FDA) which localize
targets in both angle and range dimensions by using a
small frequency increment across the array elements.
A decoupled atomic norm minimization (DANM)
approach is developed to achieve effective interpolation
of the doubly-Toeplitz covariance matrix.

Joint DOA-range estimation

Z. Mao, S. Liu, Y. D. Zhang, L. Han, and Y. Huang, "Joint DoA-range estimation using space-frequency virtual difference coarray," IEEE Trans. Signal Processing, 2022.

Detect 74 targets using a coprime FDA with 7 sensor and 7 frequencies
Bayesian CS           Spatial smoothing                 DANM                  
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Sparse array design and processing

2015

Generalized
coprime 
arrays*

Sparsity-based
DOA 

estimation:
Utilize all lags

2018

Array 
interpolation*: 

Fill in missing 
sensors/lags 

2021

Non-redundant
sparse arrays

Sparse array designs
DOA estimation methods

MISC array:
More segments 

means better

2013-2017

Multi-frequency 
array*: 

Frequency diversity

2023

Coarray
tensor: 

High-dimension 
DOA estimation

2013-2015 2019

Two/multi-dimensional arrays
• Array design 

• Extreme sparse arrays

• Tensor-based processing

Bandwidth exploitation
• DOF for wideband signals

• Low-complexity 

• Rational sparse arrays

Signal coherency
• Coherent/correlated signals

• Mixed uncorrelated/coherent 
signals

Analysis of performance, 
bounds, and robustness
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Modern sensing applications require higher
resolution (larger aperture), resolve more
signals (more DOFs), low mutual coupling effect
(avoid close placement).

The fundamental goals of sparse array design
and processing are to answer these needs while
keeping a low system complexity.

Sparse array designs are enabled by the signal
processing techniques, such as compressive
sensing, matrix completion, and tensor analysis.

While the last decade witnessed significant
process in this area, many challenging issues
remain to be explored.

Concluding remarks

Multi-frequency 
sparse array

Non-redundant 
sparse array

Unique lags

Interpolated lags
ቅ
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