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• Radio frequency (RF) spectrum is a finite resource to be shared by various
applications.

• The explosive growth in wireless communications and other applications
resulted in soared demand for wireless broadband, making spectrum
increasingly congested.

• Spectrum sharing among disparate wireless systems is a solution to this
problem: Particular interest between radar and communications.

• Many different ways are considered for spectrum sharing:

• Joint radar-communications: Radar-centric or communication-centric

• Coexistence: Radar and communication subsystems transmit respective 
waveforms

• Passive radar: Radar is secondary with no control to the sources of opportunity

Spectrum sharing: Introduction
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Transmit system is shared by radar and communication functions

• Advantages: 

• Effective use of the signal spectrum and hardware

• No or minimal mutual interference

• Communication-centric: Achieving radar sensing 
in a primary communication system 

• Automotive radar considers sensing using IEEE 
802.11 family signals designed for wireless network

• Radar-centric: Embedding communication 
information in a primary radar system

I. Joint radar-communications
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Typical radar operations:

• Periodically transmit the same probing 
waveforms 

• Matched filtering of received signals provides 
range information

• Fourier transform of slow-time data yields 
target Doppler (velocity) information

Radar operation

LFM waveform

Compressed pulse
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• Information embedding in radar signals
• Different domains can be used: fast-time, slow-time, spatial
• Depends on the level of radar flexibility

• Fast-time: 
• Traditional linear frequency modulated (LFM)
• Coded sparse frequency / frequency-hopping
• Orthogonal frequency-division multiplexing (OFDM)
• Phase-modulation continuous-wave (PMCW)

• Factors to be considered
• Transmit waveform and receiver filter maintain identical 𝑠 𝑡 ∗ ℎ 𝑡 ? 
• Narrowband vs wideband intermediate frequency (IF) signals
• Tolerance to peak-to-average power ratio (PAPR)
• Ambiguity characteristics

Information embedding in radar signals
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Slow-time:

• On/off, phase …

Spatial: 
• Sidelobe levels (SLLs), phase, index modulation… 

• We mainly focus on spatial domain signaling that
does not require major changes to the radar signal
waveforms and the receiver structure

• Radar mainbeams remain the same 

• May change SLLs and/or signal phase 

Information embedding in radar signals

JRC transmit array

radar 
signal

communication
signal

R. M. Mealey, “A method for calculating error probabilities in a radar
communication system,” IEEE Trans. Space Electronics and Telemetry, 1963.

Image: Mealey
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Consider a communication user at a sidelobe
direction 𝜃 and the steering vector is 𝐚 𝜃 .

Design two beamforming vectors 𝐰 and 𝐰 with𝐰 𝐚 𝜃 Δ ,        𝐰 𝐚 𝜃 Δ
Convex optimization-based design (similar for 𝐰 ):min𝐰 max  𝐺 𝜃 𝑒 𝐰 𝒂 𝜃 , 𝜃 ∈ 𝚯 subject to  𝐰 𝒂 𝜃 𝜖, 𝜃 ∈ 𝚯             𝐰 𝒂 𝜃 Δ            𝐺 𝜃 : Designed transmit radar beampattern𝜙 𝜃 : Phase profile of choice𝜖: Maximum SLL𝚯 and 𝚯: Mainbeam and sidelobe regions

Sidelobe-based information embedding

Illustrative example: Δ 20 dB, Δ 50 dB𝜖 20 dB, 𝜃 50

𝚯 𝚯

A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function radar-communications: Information embedding
using sidelobe control and waveform diversity,” IEEE Trans. Signal Processing, 2016.
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Transmitted signal vector using waveform 𝜓 𝑡 :𝐱 𝑡 1 𝑏 𝐰∗ 𝑏𝐰∗ 𝜓 𝑡𝑏: Information bit

Multiple orthogonal waveforms 𝜓 𝑡 , …, 𝜓 𝑡 :𝐱 𝑡 1 𝑏 𝐰∗ 𝑏 𝐰∗ 𝜓 𝑡
𝑏 , …, 𝑏 : Information bits

Features:
• Can support multiple communication users
• Low bit error rate (BER) only in specified 

communication directions
• Secure against eavesdropping in other directions

Multi-waveform signaling

3 communication receivers  
at 50 , 30 , and 40
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Limitation of amplitude-based signaling:
• Communication enabled only in sidelobe region
• Sensitive to channel fading

Phase-based information embedding
• Enable information delivery to both mainbeam and sidelobe regions
• Less sensitive to channel fading

For single-pulse signaling, a reference waveform 𝜓 𝑡 is used to provide
reference phase 𝐬 𝑡 𝐰∗𝜓 𝑡 𝐰∗𝜓 𝑡𝜓 𝑡 : Waveform orthogonal to 𝜓 𝑡𝐰 : Beamforming weights provides the reference phase𝐰: Beamforming weight vector carrying phase information

Phase-based signaling

A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Phase-modulation based dual-function radar-
communications," IET Radar, Sonar and Navigation, 2016.
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Multiuser QAM scheme

min𝐰 max  𝐺 𝜃 𝑒 𝐰 𝐚 𝜃 , 𝜃 ∈ 𝚯 subject to  𝐰 𝐚 𝜃 𝜖, 𝜃 ∈ 𝚯                                             𝐰 𝐚 𝜃 Δ , 𝑒 , ∀𝜃 ∈ 𝚯
• To support 𝐶 communication users with

QAM of 𝐿 amplitude levels and 𝑄 distinct
phases, it requires 𝑁 𝐿𝑄 beamforming
weight vectors.

• Total number of embedded information is𝐶 log 𝐿𝑄 bit per pulse.
  ………..

Antenna Array

radar beam

sidelobe 
communication

unused
sidelobes

possible
sidelobe 
levels

communication 
sidelobes 

possible phases

A. Ahmed, Y. D. Zhang, and Y. Gu, "Dual-function radar-communications using QAM-based sidelobe
modulation," Digital Signal Processing, 2018.

• Information embedding in radar waveforms can be extended to deliver
separate information to multiple users with QAM scheme.
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Optimum sensor selection

             min𝐰           𝐰 𝜂 𝐯⊙𝐰 ,                                          subject to      𝐺 𝜃 𝑒 𝐰 𝐚 𝜃 𝛾 ,𝜃 ∈ 𝚯,𝑛 1,⋯ ,𝑁                                𝐰 𝐚 𝜃 𝜖, 𝜃 ∈ 𝚯                                                                 𝐰 𝐚 𝜃 Δ 𝑒 ,∀𝜃 ∈ 𝚯         𝜂: Parameter trading off between two objectives𝐯: Weighting coefficients for re-weighted minimization

A. Ahmed, S. Zhang, and Y. D. Zhang, “Antenna selection strategy for transmit beamforming-based joint
radar-communication system,” Digital Signal Processing, 2020.

E. J. Candes, M. B. Wakin, S. P. Boyd, “Enhancing sparsity by reweighted l1 minimization,” Journal of
Fourier Analysis and Applications, 008

• For a large transmit array, we can perform antenna selection to reduce the
number of RF chains.

• The following optimization uses a small number of antennas and exploits
the minimum transmit power:

Sensor Index

Ga
in

Beamformer 1

Sensor Index

Ga
in

Beamformer 2
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Remarks: Joint radar-communications

• We considered information embedding in radar-centric systems.

• In general, radar-centric information embedding can use fast-time, slow-
time, and spatial domain resources in the radar system.

• We mainly focused on spatial domain information embedding that requires
minimal modifications of existing radar operations and radar systems.

• Other forms of information embedding are possible as radar systems
become more flexible in accepting different operation modes and system
configurations.
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Coexistence of radar and communication
systems permits flexible operations.

• Mutual interference exists between radar
and communications

• Important to perform robust beamforming
to mitigate mutual interference

Received array signal vector:𝐱 𝑡 𝐱 𝑡 𝐱 𝑡 𝐧 𝑡𝐱 𝑡 𝐚 𝜃 𝑠 𝑡 : Desired signal vector𝐚 𝜃 : Steering vector of desired signal𝐱 𝑡 : Interference signal vector

Desired beamformer:𝑦 𝑡 𝐰 𝐱 𝑡 𝑠 𝑡

II. Radar-communication coexistence
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Consider minimum variance distortionless response (MVDR) beamformer:min𝐰  𝐰 𝐑 𝐰 subject to    𝐰 𝐚 𝜃 1
𝐑 E 𝐱 𝑡 𝐧 𝑡 𝐱 𝑡 𝐧 𝑡 : Interference-plus-noise covariance matrix

• MVDR minimizes interference-plus-noise power while keeping the desired
signal unaffected.

• The solution is given as 𝐰MVDR 𝐑 𝐚 𝜃𝐚 𝜃 𝐑 𝐚 𝜃
• In practice, the interference-plus-noise covariance matrix 𝐑  is difficult to

obtain.

Adaptive beamforming: MVDR
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Replacing 𝐑  with the data covariance matrix, 𝐑𝐱𝐱 E 𝐱 𝑡 𝐱 𝑡  , yields
minimum power distortionless response (MPDR) beamformer:min𝐰  𝐰 𝐑𝐱𝐱𝐰 subject to    𝐰 𝐚 𝜃 1
with solution given as 𝐰MPDR 𝐑𝐱𝐱 𝐚 𝜃𝐚 𝜃 𝐑𝐱𝐱 𝐚 𝜃
• MPDR is commonly used because it is easier to implement and is equivalent

to MVDR in the statistical sense with accurate estimate of 𝐑𝐱𝐱 and 𝐚 𝜃
• However, MPDR is not robust and its performance degrades when

• The estimated covariance matrix 𝐑𝐱𝐱 is inaccurate due to, e.g., insufficient
snapshots

• The presumed signal steering vector is inaccurate due to, e.g., imperfect
estimation, multipath fading, or calibration errors

Adaptive beamforming: MPDR
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Robust beamforming techniques by looking at
• Covariance matrix
• Steering vector

Examples:
• Diagonal loading in covariance matrix𝐑 𝐑𝐱𝐱 𝜉𝐈𝜉: diagonal loading factor (chosen ad hoc way)

• Worst-case beamforming accounting for errors in steering vectormin𝐰  𝐰 𝐑𝐱𝐱𝐰 subject to  min𝐞  𝐰 𝐚 𝐞 1𝐚 : Presumed steering vector of the desired signal

Robust beamforming: Existing methods
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Robust adaptive beamforming based on reconstruction of the interference-
plus-noise covariance matrix.

The interference-plus-noise covariance matrix can be estimated through
direction-of-arrival (DOA) and power estimation for all signals except the
desired one (or outside the desired signal region).

𝐑 𝜎 𝐚 𝜃 𝐚 𝜃 𝜎 𝐈
𝐾: number of interferers𝜎 : Interference power𝜎 : noise power

Robust beamforming: Proposed method

Y. Gu, N. A. Goodman, and Y. D. Zhang, “Adaptive beamforming via sparsity-based reconstruction of
covariance matrix,” in A. De Maio, Y. C. Eldar, and A. Haimovich (eds.), Compressed Sensing in Radar
Signal Processing, Cambridge University Press, 2019. Available at http://yiminzhang.com
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Example: 10-antenna uniform linear array (ULA), 1 desired signal with
presumed direction 5 and 2 interferers from 50 and 20 . 30 snapshots.

Random DOA mismatch                Coherent local scattering            Incoherent local scattering
(uniform in [1 , 9 ])                   (4 paths 𝑁 5 , 4 )                (4 paths 𝑁 5 , 4 )

• Proposed method consistently offers robust output signal-to-interference-plus-noise
ratio (SINR) performance and outperforms existing methods

Robust beamforming: Proposed method

Y. Gu, N. A. Goodman, and Y. D. Zhang, “Adaptive beamforming via sparsity-based reconstruction of
covariance matrix,” in A. De Maio, Y. C. Eldar, and A. Haimovich (eds.), Compressed Sensing in Radar
Signal Processing, Cambridge University Press, 2019. Available at http://yiminzhang.com
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When steering vector has mismatch, we can estimate the true steering vector:min𝐞                 𝐚 𝐞 𝐑 𝐚 𝐞Subject to       𝐚 𝐞 0                                                                                 𝐚 𝐞 𝐑 𝐚 𝐞 𝐚 𝐑 𝐚
• This is a convex quadratically constrained quadratic program (QCQP) problem.

Example: Radio astronomy images using adaptive angular response (AAR)

Robust beamforming

S. Zhang, Y. Gu, and Y. D. Zhang, "Robust astronomical imaging in the presence of radio frequency
interference," Journal of Astronomical Instrumentation, 2019.

True image               Mismatch image              Worst-case image          QCQP-based image 
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For sparse arrays, the difference lags between sensor positions yield a large
virtual array (difference coarray).

Consider a ULA, possibly with missing elements.

Due to the Toeplitz and Hermitian properties of the covariance matrix, the
following two arrays yield the same covariance matrix.

Sparse array and sparsity-based DOA estimation

𝐑𝐱𝐱 E 𝐱𝐱 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗ 𝐸 𝑥 𝑥∗

Correlation lags (difference coarray)
ULA

Sparse array
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Sparse array and sparsity-based DOA estimation

Assume 𝑄 uncorrelated signals, 𝑠 𝑡 , impinging from angles Θ 𝜃 , … ,𝜃 .

Received signal vector at an 𝑁-element array 𝐱 𝑡 𝐚 𝜃 𝑠 𝑡 𝐧 𝑡 𝐀𝐬 𝑡 𝐧 𝑡
𝐀= 𝐚 𝜃 , … , 𝐚 𝜃 : Manifold matrix with 𝐚 𝜃 1, … , 𝑒 /𝐬 𝑡 𝑠 𝑡 , … , 𝑠 𝑡 : Signal vector𝐧 𝑡 ~𝐶𝑁 0,𝜎 𝐈 : Noise vector

Covariance matrix of 𝐱 𝑡 𝐑𝐱𝐱 E 𝐱 𝑡 𝐱 𝑡 𝐀 𝐑𝐬𝐬𝐀𝐑𝐬𝐬 E 𝐬 𝑡 𝐬 𝑡 diag 𝜎 , … ,𝜎
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Sparse array and sparsity-based DOA estimation

Vectorizing 𝐑𝐱𝐱 yields 𝐳 vec 𝐑  𝐀 𝐛 𝜎  𝐈 𝐀 𝐛𝐀 𝒂 𝜃 ⨂𝒂∗ 𝜃 , … ,𝒂 𝜃 ⨂𝒂∗ 𝜃 : Manifold matrix for the difference coarray𝐛 𝜎 , … ,𝜎 : Source power vector𝐈 vec 𝐈𝐀 𝐀, 𝐈𝐛 𝐛 ,𝜎𝐳 amounts to the received data of a virtual array (difference coarray)
• Manifold matrix corresponds to more virtual sensors than physical antennas
• Only has a single snapshot corresponding to vector 𝐛
Sparse array design and DOA estimation problems: 

• How to design the sparse arrays? 
• How to perform DOA estimation from the coarray data 𝐳? 
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Sparse array and sparsity-based DOA estimation

1955-1968

Minimum-
redundancy array

1978

Minimum 
hole array

2010-2011

Systematical sparse 
array design: Nested 
array & coprime array

2015

Generalized
coprime arrays

MUSIC & spatial 
smoothing:
Only utilize 

consecutive lags

Sparsity-based:
Utilize all lags

2019

Array 
interpolation: 
Fill in missing 

sensor positions 

2021

Redundancy-free
sparse arrays

Sparse array designs
DOA estimation methods

2013

ONR 
program on 

coprime 
sampling
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Minimum-redundancy array: For a given number of antennas, maximizes the
number of consecutive virtual sensors in the resulting difference coarray

• Finding the array configuration is not 
easy except for some “nested” structures 

• Redundancy 𝑅 𝑁 𝑁 1 /𝑁 varies 
and is 1.217 𝑅 1.332 for large 𝑁

• Restricted array: All lags are consecutive

• General array: Lags contain holes

Sparse array: Classical sparse arrays

J. Arsac, “Nouveau reseau pour l’observation radioastronomique de la brilliance sur le soleil a 9350 Mc/s,” Comptes
Rendus de l'Académie des Sciences, 1955.
A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas and Propagation, 1968.



26

A
S
P
Lab

Coprime array: utilizes a pair of uniform linear subarrays with 𝑀 and 𝑁 being
coprime integers

MUSIC-based DOA estimation:
• Spatial smoothing is applied to 𝐳𝐳 to obtain a 

full-rank matrix (only consecutive lags are used)

Example: 𝑀 3 and 𝑁 7

Sparse array: Coprime array

Physical array

Coarray

P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime sampler and arrays,” IEEE Trans. Signal Processing,
2011
P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process.
Workshop/ IEEE Signal Process. Educ. Workshop, 2011
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Sparsity-based DOA estimation:min𝒛  𝐛   subject to  𝐳 𝐀 𝐛 𝜖
• All difference lags can be utilized in sparsity-based DOA estimation

Generalized coprime arrays: Flexible sparse array design
• CACIS compresses the interelement spacing of one subarray: More consecutive lags
• CADiS displaces two subarrays: Increases unique lags and reduces mutual coupling

Sparse array: Generalized coprime array

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival
estimation," IEEE Trans. Signal Processing, 2015.

𝑀 𝑀/𝑝 with 2 𝑝 𝑀
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Array interpolation for sparse arrays: Missing entries in
the covariance matrix can be interpolated through
matrix completion exploiting the Toeplitz property.min𝐰 rank 𝒯 𝐰 s.t. 𝒯 𝐰 ∘ 𝐁 𝐑 𝛿 𝒯 𝐰 ≽ 0𝒯 𝐰 : Hermitian and Toeplitz matrix with 𝐰 as the first column𝐁: Binary matrix with 1 in observed entries𝐑: Observed covariance matrix with missing entries

• rank 𝒯 𝐰 is nonconvex and can be relaxed as nuclear
norm ‖𝒯 𝐰 ‖∗ trace 𝒯 𝐰 𝒯 𝐰

• Supports gridless DOA estimation using, e.g., MUSIC
• More robust to noise and number of samples

Sparse array and sparsity-based DOA estimation
Original covariance matrix

Filling thru Toeplitz property

Filling thru matrix completion

C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, "Direction-of-arrival estimation for
coprime array via virtual array interpolation," IEEE Trans. Signal Processing, 2018.

Missing 
entry 

Filled     
entry 

Interpolated 
entry 

Present  
entry 

𝐰
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Optimized redundancy-free sparse array design
• Array interpolation supports optimized array design that

• Redundancy-free to achieve the highest DOFs: Non-zero lags appear at most once
• Allow holes in lags: Further add DOFs and reduce mutual coupling

• 𝑁-element linear array with positions at 0 𝑝 𝑑 𝑝 𝑑 ⋯ 𝑝 𝑑, 𝑑 𝜆/2

𝐴 : Desired array aperture𝛽 1: Minimum spacing between two adjacent antennas

• Can be solved using mixed-integer programming

Sparse array and sparsity-based DOA estimation

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.

min∈ ,∀        𝑝                   subject to      𝑝 𝐴                                                                                𝑝 𝛽 𝑝 , 𝑖 1,⋯ ,𝑁 1                                                                                 𝑝 𝑝 𝑝 𝑝 ,   𝑖 𝑗, 𝑘 𝑙, 𝑗 𝑙
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Example: 6-antenna linear array (desired array aperture 22𝑑; min. spacing 2𝑑)

Minimum-redundancy array Minimum hole array Proposed

Sparse array and sparsity-based DOA estimation

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.

RMSE for two closely spaces source case

RM
SE

 (d
eg

re
e)

Mutual coupling parameter |𝑐 |
Proposed

MHA

MRA
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Sparse array and sparsity-based DOA estimation

Compressed 
sampling

Analog                                   Digital 

• Massive MIMO can reduce the number of RF
chains using compressed sampling:𝒚 𝑡 𝚽𝒙 𝑡 𝚽𝐀𝒔 𝑡 𝚽𝒏 𝑡𝚽 ∈ 𝐶 : compressed sampling matrix (𝑀 ≪ 𝑁)

• Analog compression matrix 𝚽 is optimized by
maximizing the mutual information between
signal direction 𝜃 and compressed output 𝒚:                      𝐼 𝒚;𝜃 ℎ 𝒚 ℎ 𝒚 𝜃ℎ 𝒚 : Differential entropy of vector 𝒚ℎ 𝒚 𝜃 : Conditional differential entropy 

of 𝒚 given 𝜃
Y. Gu and Y. D. Zhang, "Compressive sampling
optimization for user signal parameter estimation in
massive MIMO systems," Digital Signal Processing,
2019.

𝚽
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Sparse array and sparsity-based DOA estimation

• 50-element ULA with 𝜆/2 spacing
• 10 RF chains (𝑁/𝑀 5)
• 9 sources from 8 :2:8 with 20 dB input SNR
• 100 snapshots

Root mean square error (RMSE) of DOA estimates
• Insignificant SNR loss (Random CS suffers 7 dB SNR loss)
• Clear advantage in low SNR and small number of

snapshots



33

A
S
P
Lab

Robust DOA estimation exploiting machine learning

Deep learning can be used to provide robust
DOA and channel estimation.
Consider a partially calibrated distributed array
using non-coherent processing:

• A neural network is trained to perform DOA
estimation with antenna gain/phase errors

• As a result, it provides robust DOA estimation in
the presence of such errors

-60 -40 -20 0 20 40 60
 (deg)

0

0.2

0.4

0.6

0.8

1

C
la

ss
ifi

er
 b

in
ar

y 
ou

tp
ut

-60 -40 -20 0 20 40 60
 (deg)

-100

-80

-60

-40

-20

0

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (d

B)

M. S. R. Pavel, M. W. T. S. Chowdhury, Y. D. Zhang, D. Shen, and G.
Chen, "Machine learning-based direction-of-arrival estimation
exploiting distributed sparse arrays," Asilomar Conference on
Signals, Systems, and Computers, 2021.

MUSIC pseudo-spectrum

Angular indices from DL
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Remarks: Radar-communication coexistence

• Coexistence of different wireless systems introduces mutual interference.

• We considered robust beamforming to enable effective interference
cancellation and desired signal preservation.

• DOA estimation, long considered as a radar task, has become an important
part of communications to perform robust beamforming and channel
estimation.

• Sparse array designs and sparsity-based processing provide great potentials
to enhance sensing and communication capability and performance with
reduced complexity.

• Machine learning methods can be trained to be robust to environment
changes and calibration errors.
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Exploits signals of opportunity that are designed for other applications such 
as broadcasting, wireless communications, and satellite navigation. 

Pros:

• No dedicated spectrum needed for radar
• Low-cost implementation
• Multimodes and multistatic diversity
• Silent electromagnetic operations

Cons:

• Narrow signal bandwidth
• Waveforms not optimized for radar sensing
• Third-party illuminators

III. Passive radar

H. Li, Y. D. Zhang, and B. Himed, “Signal Processing for Passive Radar,” tutorial given at 2019 IEEE Radar
Conference, https://ieeexplore.ieee.org/document/8835736
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Passive radar

Typical EIRPModulation, BandwidthFrequencyIlluminators

Up to 250 kW (UK)
4500 FM Tx ≥ 5kW (US)

FM, 50 kHz (Composite signal)~ 100 MHzAnalog FM Radio

10kWCOFDM, 220 kHz~220 MHzDigital Audio 
Broadcast

100WGMSK, FDM/TDMA/FDD, 200 kHz900 MHz, 1.8 GHzCellular Phone
(GSM)

100WTD-CDMA , 3.84 MHz 
TD-SCDMA, 1.28 MHz

~2 GHzCellular Phone 
(3G)

1 MW (UK)VSB AM (vision), 64µs Repetition Rate; FM (sound), 5.5 
MHz

~550 MHzAnalog UHF TV

8 kW, (WKTV-DT 29 : 
ERP=708kW)

DVB-T(C-OFDM), Europe/Australia
ISDB-T (OFDM, 2D Interleaving), Japan, S. America
ATSC (8VSB), USA
DTMB(TDF-OFDM), China
6MHz

~750 MHzDigital TV

52dBW~11-12GHz
~2.33 GHz

DBS TV,
Satellite Radio
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Passive radar

 Surveillance channel
• Receiver channel to monitor target activity

• Interference suppression

 Reference channel
• Dedicated receiver channel to monitor the source 

signal

• Provide a reference for cross correlation

• Also used to cancel directed source signal observed 
in surveillance channel
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Sparsity and group sparsity-based processing is attractive in passive radar
• Low bandwidth
• Availability of multiple sources of opportunity
• Sparse scene or motion parameters

We have demonstrated the usefulness of sparsity and group sparsity-based
techniques for
• Radar imaging
• Moving target tracking
• Clutter suppression

Tutorial and review article:

Passive radar

H. Li, Y. D. Zhang, and B. Himed, “Signal Processing for Passive Radar,” tutorial given at 2019 IEEE Radar
Conference, https://ieeexplore.ieee.org/document/8835736

Y. D. Zhang, M. G. Amin, and B. Himed, "Structure-aware sparse reconstruction and applications to
passive multi-static radar," IEEE Aerospace and Electronic Systems Magazine, 2017.
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Passive radar: SAR imaging

SAR geometry

Wavenumber-domain 
observations

X. Mao, Y. D. Zhang, and M. G. Amin, "Low-complexity sparse reconstruction 
for high-resolution multi-static passive SAR imaging,"  EURASIP  Journal  on 
Advanced Signal Processing, 2014.

• In synthetic aperture radar (SAR), the image is
obtained as the Fourier transform of the
wavenumber-domain observations.

• In passive radar-based SAR, the observed
wavenumber regions are randomly sampled, thus
are sparse and discontinuous.

• Conventional Fourier-based techniques (back-
projection) do not provide high quality SAR
imaging:
 Narrow bandwidth results in low range resolution
 Random sampling yields sidelobes and noise
 Overall problem is ill-posed

Example: 3 illuminators
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Passive radar: SAR imaging

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, "High-resolution passive SAR imaging exploiting structured
Bayesian compressive sensing," IEEE Journal of Selected Topics in Signal Processing, 2015.

In passive radar SAR:
• Cannot design dictionary matrix
• Limited flexibility of observations
• High coherence between closely

spaced pixels

Group sparsity-based methods
exploit multistatic observations to
achieve high-resolution image:
• Improves both azimuth and range

resolution
• Easily handle angle-dependence

of the target reflectivity

Wavenumber domain SAR image
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Passive radar: SAR imaging

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, "High-resolution passive SAR imaging exploiting structured
Bayesian compressive sensing," IEEE Journal of Selected Topics in Signal Processing, 2015.

DVB-T signal with 7.8 MHz bandwidth: Range resolution of 20 m
3 illuminators at 45 , 0 , 45 ; Azimuth angle width: 5
Complex Bayesian compressive sensing compared with backprojection

Multi-angle SAR Backprojection result Compressive sensing result
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Passive radar: Target localization and tracking

S. Subedi, Y. D. Zhang, M. G. Amin, and B. Himed, "Group sparsity based multi-target tracking in passive multi-static
radar systems using Doppler-only measurements," IEEE Trans. Signal Processing, 2016.
S. Subedi, Y. D. Zhang, M. G. Amin, and B. Himed, "Cramer-Rao type bounds for sparsity-aware multi-sensor multi-
target tracking," Signal Processing, 2018.

• Consider a passive multistatic radar consisting of an illuminator and multiple receivers. 
• We use Doppler-only observations that allow data fusion 

with very low data traffic.  
• Observations include noise, clutter, and missed samples. 
• Group sparse reconstruction followed by multi-target 

tracking (MTT) filter. 
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Passive radar: Space-time adaptive processing

• Space-time adaptive processing (STAP) is a key to 
detect slowly moving targets for airborne radar. 

• Clutter Doppler in airborne radar: 
• Angle-dependent: Require joint space-time processing

• Different to ground radars (clutter Doppler near zero)

• Estimation of clutter covariance matrix:
• A high number of samples are required to ensure full

rank of clutter covariance matrix
• Cannot repeat time-domain samples because radar is

moving
• Use nearby range cells where signals are absent 

(assuming homogeneity)
• Number of neighboring range cells are limited in 

passive radar due to its low range resolution
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Passive radar: Space-time adaptive processing

• STAP weight vector is determined by 𝐰 𝐑 𝐲 , where 𝐑 is the clutter covariance
matrix, and 𝒚0 is the steering vector toward the target Doppler and angle.

• Feasible for wideband radar but not for passive radar with narrow signal bandwidth.

Guard cells   

Cell under test

Secondary cells

Guard cells   

…

Secondary cells

Secondary cells

…

Secondary cells
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Passive radar: Space-time adaptive processing

Azimuth (slow time)
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Fourier-based estimation 
does not provide high-
resolution clutter estimation

CS-based methods 
reconstruct clutter in 
angle-Doppler domain

Consider sparsity-based clutter reconstruction in angle-Doppler domain.
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Passive radar: Space-time adaptive processing

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, "Space-time adaptive processing and motion parameter estimation
in multistatic passive radar using sparse Bayesian learning," IEEE Trans. Geoscience and Remote Sensing, 2016.

• Due to the sparsity of the clutter in angle-Doppler domain, clutter spectrum can be 
sparsely recovered using only one or few samples.

• Must ensure that target signal is removed in the clutter covariance matrix
• Proposed method: 

• Estimate clutter region from group sparsity-based clutter angle-Doppler profile 
estimation using secondary data

• Clutter angle-Doppler profile estimation from cell under test data
• Clutter covariance matrix constructed using𝐑 𝑤 𝜈 ,𝜙 𝐡 𝜈 ,𝜙 𝐡 𝜈 ,𝜙 𝛽𝐈𝑤 𝜈 ,𝜙 : Clutter coefficient of 𝑚th clutter component𝐡 𝜈 ,𝜙 : Spatio-temporal signature of 𝑚th clutter𝑁: number of antennas𝐿: Number of azimuth samples𝑀: Number of clutter components
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Passive radar: Space-time adaptive processing

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, "Space-time adaptive processing and motion parameter estimation
in multistatic passive radar using sparse Bayesian learning," IEEE Trans. Geoscience and Remote Sensing, 2016.

• Carrier frequency 800 MHz with 20 MHz bandwidth
• 20-element uniform linear array with half-wavelength 

spacing
• Azimuth sampling frequency 600 Hz
• Simulation with 4 nearby secondary samples
• Clutter profile is discretized into 90 Doppler bins in 
−300-300 Hz and 40 angle bins in −180o - 180o

• Gaussian noise is added with clutter-to-noise ratio of 
40 dB

• Insufficient samples to perform conventional sample 
matrix inversion-based approach
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Remarks: Passive radar

• Passive radars provide a green solution for sensing: No emission, low-cost

• Attractive in various applications

• Spectrum is not available

• Covert and difficulty of jamming

• Dense deployment (low-cost, no interference) for, e.g., drone detection

• More interests from defense and homeland security

• Concerns remain regarding performance and operational guarantee



49

A
S
P
Lab

Concluding remarks

We considered spectrum sharing:

• Joint radar-communications: Signaling in radar-centric systems

• Radar-communication coexistence: Robust beamforming and DOA 
estimation

• Passive radar: Sparsity-based processing for target imaging, localization, 
and STAP for clutter suppression

Future directions:

• Sensing and communication function will be more closely integrated:
Multi-function radar; UAV network; automotive radar and V2X

• Array processing exploiting convex and mixed-integer optimization,
sparsity-based processing, information-theoretical learning, and machine
learning will pay critical roles



50

A
S
P
Lab

Aboulnasr 
Hassanien

Contributing team members

Yujie
Gu

Shuimei
Zhang

Qisong
Wu

Ammar
Ahmed

Saurav 
Subedi

Si 
Qin

Saidur
Pavel

Waqeeb
Chowdhury



Yimin D. Zhang

Department of Electrical 
and Computer Engineering

Temple UniversityAdvanced
Signal
Processing
Laboratory

Advanced
Signal
Processing
Laboratory
http://asplab.net

Please reach me at 
http://yiminzhang.com 

Signaling 
Strategies and 

Array Processing 
for Sensing and 

Communications


