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DOA Estimation & Signal Model

1th source
2th source

/ The signal model:

K

jth source y(t) — Z a(ek)sk (t) +@—> noise

k=1
= A(0)s(t) + n(t)

The array manifold matrix:
A(0) = [a(8,),a(6;)--a(B,)]

a(@) — [1, eanz//’l, . eZEdN/)l]T

The source vector:

s(t) = [51(), 55(8), -+, 5, (O]

The single snapshot model:
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S. Sun, A. P. Petropulu and H. V. Poor, “MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and
challenges,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 98-117, 2020.

S. Rao, R. Narasimha and S. Sun, “Signal processing challenges in automotive radar,” in Proc. IEEE 50th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Hyderabad, India, April 6-11, 2025.



DL-Based DOA Estimation

* Deep Learning
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Yann LeCun, Yoshua Bengio & Geoffrey Hinton, “Deep learning”, Nature, Vol. 521, pp. 436-444, 2015.

K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,” CVPR, 2016.



DL-Based DOA Estimation

* Deep Learning

 Key Input Representations:
v'Raw time-series data

v/ Covariance matrices

v/ Spectrum

 Key Output Representations:

v/ Sudo-spectrum/spectrum
v'DOAs



DL-Based DOA Estimation

« Multilabel classification (Sudo spectrum)
Input data

Binary Classification

Multiclass Classification
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https.//www.mathworks.com/help/deeplearning/ug/multilabel-image-classification-using-deep-learning.htm|



DL-Based DOA Estimation: Data-Driven Approach

FC2 2048
+ RelU
+ Dropout

FC4 2G+1
+ Sigmoid

FC3 1024

+ ReLU
FC1 4096 + Dropout
Input Layer Convolutional Layer 1 Convolutional Layer 2 Convolutional Layer 3 Convolutional Layer 4 + RelU
+ normalization layer + normalization layer + normalization layer + normalization layer + Dropout
+ ReLU + ReLU + RelU + RelU
256 filters 3x3 256 filters 2x2 256 filters 2x2 256 filters 2x2

G. K. Papageorgiou, M. Sellathurai and Y. C. Eldar, "Deep networks for direction-of-arrival estimation in low SNR," in IEEE Transactions
on Signal Processing, vol. 69, pp. 3714-3729, 2021.



DL-Based DOA Estimation

Probability
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DL-Based DOA Estimation

Detected Angles vs Ground Truth
MUSIC Estimator
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DL DOA Estimation: Multilabel Classification

 Key Disadvantages: Input data
v Fixed Grid Resolution 0.2: 5.3
* Combinatorial Explosion: l
v"With N possible target directions and G grid bins, the DL
number of possible label combinations is: Zﬁ(i)
v Grows exponentially with grid size and number of ‘
sources. |
v For example: A DOA grid from —60° to 60° with up to ﬁ é é

3 targets results in 300,201 possible label

combinations Angle Grid

v



DL-Based DOA Estimation: Regression

 Benefit:

v' Regression directly predicts the continuous angle values from the received
radar/array signals.

v' This allows estimation with finer resolution and avoids grid mismatch
problems

* Disadvantages:

v Fixed Output Dimensionality

Network outputs a fixed number of DOAs. This means the architecture cannot easily
adapt when the number of sources changes at runtime.

v’ Target Permutation Ambiguity

Ordering of output targets is arbitrary (e.g., source at 10° vs. 30° could be swapped in
labels). This creates a permutation ambiguity problem — the loss function must be
permutation-invariant (e.g., using Hungarian matching or set-based loss) to avoid
penalizing correct but reordered predictions.

Input data

0.2; 5.3;10.1

|

DL
Network




Model-Based vs. DL-Based DOA Estimation

u Model-Based Deep Learning-Based

Accuracy High under ideal assumptions High with proper training
Interpretability Transparent and explainable Black-box; less interpretable

Data Requirement Minimal Large datasets needed
Robustness Sensitive to mismatch/noise Robust to noise and imperfections
Computation Expensive at inference Expensive to train, fast inference
Adaptability Hard to adapt to new settings Flexible; supports retraining

Prior Knowledge Use Strong use of physics/model May ignore priors unless guided

Scalability Limited by matrix ops and grid size  Scales well with architecture



Model-Based Deep Learning
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«  Combining traditional mathematical models with data-driven systems.
« Utilizing domain knowledge and tailored mathematical structures.

*  Creating principled and interpretable frameworks.

 Enhancing performance even with limited data availability.

N. Shlezinger, J. Whang, Y. C. Eldar and A. G. Dimakis, "Model-Based Deep Learning," in Proceedings of the IEEE, vol. 111, no. 5,
pp. 465-499, May 2023.



Model-Based Deep Learning

 Subspace based approaches:
v'Model based: MUSIC, ESPRIT
v Model based DL: SubspaceNet

« Compressive Sensing based approaches:
v'Model based: L1 norm optimization- ISTA, OMP
v'Model based DL: LISTA/T-LISTA/CC-LISTA



SubspaceNet
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D. H. Shmuel, J. P. Merkofer, G. Revach, R. J. G. van Sloun and N. Shlezinger, “SubspaceNet: Deep Learning-Aided Subspace Methods
for DoA Estimation,” in IEEE Transactions on Vehicular Technology, vol. 74, no. 3, pp. 4962-4976, March 2025.



SubspaceNet

Better covariance matrix

Signals: ’ / E
Low Rank Feature {Rx[r]}" Post |R(X:v) 6(R(X;v))
Low Snapshot Extraction Processing Root- [
L SNR ~ MUSIC
ow — -
Coherent Sources -

Target Predicted (°) Ground Truth (°)

D. H. Shmuel, J. P. Merkofer, G. Revach, R. J. G. van Sloun and N. Shlezinger, “SubspaceNet: Deep Learning-Aided Subspace Methods
for DoA Estimation,” in IEEE Transactions on Vehicular Technology, vol. 74, no. 3, pp. 4962-4976, March 2025.



Compressive Sensing

Array response can be written as:  y = AX + n,

Y A T
T g -
A. ] B DOA estimation Spectrum
B H
M x1 M x N (M < N) |
]
Received Signal Dictionary Matrix —
N x1

17



Compressive Sensing

 L1-norm optimization problem

1
min |Ax = Y||35 + A|x]|4

v lterative soft threshold algorithm (ISTA)

 Greedy algorithms
v’ Orthogonal matching pursuit (OMP)



Iterative Soft Threshold Algorithm (ISTA)

= L1-norm optimization problem
1 3
min [|Ax — Y[z + Al[x[l4
x 2
- lteratively update x
1 1
xtD =5, (ZAHy + (1 — EAHA> x ()

- FISTA/LISTA



ISTA vs FISTA Example
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Deep Unrolling: LISTA

ISTA

LISTA

Y f
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T-LISTA/CC-LISTA

Lower trainable parameters

Karol Gregor and Yann LeCun, “Learning Fast Approximations of Sparse Coding,”

ICML, 2010.



LISTA vs FISTA

LISTA vs FISTA
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Iterative Adaptive Approach (IAA)

. Iterative adaptive approach (IAA) tries to solve a weighted least square problem.

. The cost function is ||y — sla(el)llé_l(el), where ||X||é_1(91) = X#Q~1(8,)) X and interference and noise covariance
matrix is denoted by Q(6,) = Ry — P,a(6,)a" (6,).
. Here, R is the constructed array covariance matrix Ry = A(0)PA”(6) with P being a diagonal matrix and the

1T 5
P == E 1$(0)]
! T t=1

. The weighted least square solution is

a’ ()R
a (G)R;'a(6)

>
~

y.

Yardibi, Tarik, et al. "Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least
squares." IEEE Transactions on Aerospace and Electronic Systems 46.1 (2010): 425-443.



Iterative Adaptive Approach (IAA)
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Yardibi, Tarik, et al. "Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares." I[EEE
Transactions on Aerospace and Electronic Systems 46.1 (2010): 425-443.
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Unrolling IAA
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R. Zheng, H. Liu, S. Sun, and J. Li, “Deep learning based computationally efficient unrolling IAA for direction-of-arrival estimation,” in
Proc. European Signal Processing Conference (EUSIPCO), Helsinki, Finland, Sept. 4-8, 2023.
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Unrolling IAA

. . .Separability. . . . . . .
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Unrolling IAA

Methods | Inference Time (ms) | # Trainable Parameters
| DBF 0.12 —
—#— UNN IAA 49.9 -
A CNN 1.0 49,216, 317
- - —DeF | | UAA 5.7 127, 4096

O | | | | |
-10 -9 0 9 10 15 20

SNR(dB)
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Model-Based Knowledge-Driven Learning Approach for
Enhanced High-Resolution Automotive Radar Imaging

Fig. 2. Radar point clouds, RA maps in Cartesian coordinates, LIDAR point clouds in bird’s eye view, and camera image (left-to-right).

R. Zheng, S. Sun, H. Liu, H. Chen and J. Li, "Model-Based Knowledge-Driven Learning Approach for Enhanced High-Resolution
Automotive Radar Imaging," in IEEE Transactions on Radar Systems, vol. 3, pp. 709-723, 2025.
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Current Radar Image Super-Resolution

* Image super resolution
v" Increase the pixel density
 Radar image

v" Fixed pixel density

31



Current Radar Image Super-Resolution

* Image super resolution

v" Increase the pixel density

 Radar image

v Fixed pixel density

« Current solution

v" Image-to-image - UNet 2d » m "

v' Range-Azimuth heatmap L o
v Volume-to-volume—> UNet 3d

v' Range-Doppler-Azimuth heatmap
v’ Lack of domain knowledge

« Small aperture - large aperture

E72:% 572
6

o
©

) Te] I
] 128 128
I 5

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1




Proposed Method

. Ground Truth Processing: Use a super-
resolution algorithm (IAA) on a larger antenn
array to create high-resolution images as Radar Signal Processing Pipeline
ground truth.

° i . = Range-
_Slgnal-to-Spectrum ,_Approach. Fra_me rac?lar £ _. Gg), _.@_.
image super-resolution as a one-dimensional & S FFT & Channel  Beam vector
signal to super-resolution spectrum problem. Slow time SIIRE Spectrum

ADC radar data: /;,~ Range-Doppler-Channel data: /-

Incorporate Radar Expertise:

Normalize data for consistency. /
. . . . - Doppler

Tailor loss function to radar imaging specifics. | Domain o
. . =

Signal level augmentation "Werage IS

Azimuth

ASERNEEN

Doppler
Advantages: High-resolution RA heatmap Range-Doppler-Azimuth data: /,,,

Enhanced performance in image resolution.
Reduced need for extensive training datasets.
Lightweight model architecture.

RN NIRN

Scalable across different radar imaging applications.



Iterative Adaptive Approach (IAA)

TABLE II
The IAA-APES Algorithm

A 1

P = H 0 2 k=1 K
“ @ (0ab,)N L = Oyl s
repeat
R = A(0)PAT(6) ?ﬂ S
for k=1,....K eam ocCan
g';((n) = N
. MPDR
b=~ Zm(n)ﬁ
n=1
end for

until (convergence)

Yardibi, Tarik, et al. "Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares." I[EEE
Transactions on Aerospace and Electronic Systems 46.1 (2010): 425-443.
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SR-SPECNet
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SR-SPECNet
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Y1

.

7
Bottom i i

Spectrum

Beam vector

Data Preprocessing

Frequency domain
normalization,
y

Ynorm = o
AH(B)J/)

where a = max( y
ch



SR-SPECNet

V1
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Beam vector

Data Preprocessing

Imaginary
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G

Bottom

Frequency domain
normalization,

ynorm -

where a = max(

Y
a’
AH(B)J/)

Ncp

Spectrum

Signal level Augmentation

Flip: Conjugate of the signal
Shift: yspise = a(A0) & y



SR-SPECNet
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Data Collection Platform

FLIR

Teledyne
Blackfly S

Tl Casce
mmWave Radar

R. Zheng, S. Sun, H. Liu and T. Wu, “Deep-Neural-Network-Enabled Vehicle Detection Using High-Resolution Automotive Radar Imaging,” in
39 |EEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 4815-4830, Oct. 2023.



RA Examples

10-element ULA

LR Network Output

Figure 6. Quialita : soms
tion of Range-Azimuth (RA) maps.

Y.-J. Li, S. Hunt, J. Park, M. O’'Toole, and K. Kitani, “Azimuth super-resolution for FMCW radar in autonomous driving,” in Proc.
40 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023.



Agenda

 Background and Motivation of DL for DOA Estimation
v Overview of deep learning (DL) for DOA estimation
v’ Comparison: data-driven vs. model-based approaches
v"Why hybrid model-based deep learning matters

DL for High-Resolution Radar Imaging
v Unrolling 1AA
v Physics-guided 1D neural networks for radar imaging
v'DOA estimation considering antenna failure
v Off-grid DOA estimation with 1-bit single-snapshot sparse array
v Siamese neural networks for DOA estimation

DL for Integrated Sensing and Communications (ISAC)
DL Enabled Sparse Array Interpolation

v"Unrolling IHT for matrix completion
v Transformer based array interpolation

41



DOA Estimation Considering Antenna Failure

Sparse Augmentation Layer _ _ o
Sparse Signal Augmentation Model DOA Estimation Network
Purpose:

» Introduce controlled sparsity into the dataset.

» Enhance model robustness and prevent overfitting.

[1 111
W
o)
=
L
m
=)
o
)
Q
o
=1
Q

Mechanism:

» Generates a random binary mask.
» Applies mask to input signal to create sparsity.

» Configurable maximum sparsity level Sparse Augmentation Layer  NormalizationLayer " FC Layer © RelU [N Sigmoid

R. Zheng, S. Sun, H. Liu, H. Chen, M. Soltanalian and J. Li, “Antenna failure resilience: Deep learning-enabled robust DOA estimation with
single snapshot sparse arrays,” in Proc. 58th Annual Asilomar Conference on Signals, Systems, and Computers (Asilomar), Pacific Grove,
CA, Oct. 27 — Oct. 30, 2024



Domain Crafted Features

e Importance:

» Enhances model performance by incorporating expert
insights.

@ Features Used:

» Sparse Signal Frequency Embedding
» Active Antenna Position Encoding

e Embedding Process:

A" x input

(6)

output =
Nsia

» A" Hermitian transpose of array manifold matrix.
» Transforms sparse signal and active antenna positions into
frequency domain.

Magnitude(dB)

Magnitude(dB)

Sparse Signal Frequency Embedding

O .
—ULA
-20 - ]
_30 1 1 1 1 |/
-80 -60 -40 -20 0 20 40 60 80
Angle(degree)
0 Active Antenna Position Encoding
— UL
_1 0 L _ SLA .
_30 | | | | 1 | | | 1
-80 -60 -40 -20 0 20 40 60 80
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Numerical Results

o Dataset Gap:

» No public real-world DOA datasets; existing
models use simulated data

o

Velodyne Ultra Puck
VLP-32C

@ Qur Solution:

» Custom dataset created in parking lot setup
» TI radar data from a corner reflector, 15m
away

@ Collection Details:

» 195 high-SNR signals from multiple angles
» Simulated multi-target scenarios via
superposition

Teledyne FLIR
Blackfly §

o Purpose:

» Used exclusively for testing, not training

@ More detail in > .
https://github.com/ruxinzh/Deep_RSA_ T/ Cascaded
DOA/tree/main/real _World_DOA_dataset mmMWave Radar

Source Code: https://github.com/ruxinzh/Deep RSA DOA/
Real Measurement Data: https://github.com/ruxinzh/Deep RSA DOA/tree/main/real World DOA dataset
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https://github.com/ruxinzh/Deep_RSA_DOA/tree/main/real_World_DOA_dataset

Numerical Results
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Numerical Results

Separation

Complexity

Method Inference Time (ms) | Trainable Parameters
DBF 0.3 N/A

IAA 32.8 N/A

MLP 2.3 2,848,829

QOur Method 3.1 4,106,301

1 ULA S
—e—DBF
2 ——|AA
© MLP
a2
= 0.5 —&—Qurs
T
O | |
5 10 15 20 25
A Angle(degree)
SLA
1 A A A o
©
©
0.5
OQ I |
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A Angle(degree)
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Numerical Results
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Agenda

 Background and Motivation of DL for DOA Estimation
v Overview of deep learning (DL) for DOA estimation
v’ Comparison: data-driven vs. model-based approaches
v"Why hybrid model-based deep learning matters

DL for High-Resolution Radar Imaging
v Unrolling 1AA
v Physics-guided 1D neural networks for radar imaging
v'DOA estimation considering antenna failure
v Off-grid DOA estimation with 1-bit single-snapshot sparse array
v’ Siamese neural networks for DOA estimation

DL for Integrated Sensing and Communications (ISAC)
DL Enabled Sparse Array Interpolation

v"Unrolling IHT for matrix completion
v Transformer based array interpolation

48



Off-Grid DOA Estimation with 1-Bit Sparse Array

Benefits of One-bit ADC Quantization
« Reduced hardware cost and power consumption of ADCs.
« Enhanced data compression for storage and transmission, etc.

I: Re{‘} .
’ » RF channel 1 : lllglé —P{l'_l""} 4 )
Q:Im{-}
7 L: Ret ] B (L -1, ...}
channel 2 »| ADC >
Q Im{} Digital
Processor
I: Re{‘}
’ » 1bit K1,-1,..}
» RF channel N ————p
» ADC
Q:Im{-} - /

Y. Hu, S. Sun and Y. D. Zhang, “Enhancing off-grid one-bit DOA estimation with learning-based sparse Bayesian approach for non-uniform
sparse array,” in Proc. 58th Annual Asilomar Conference on Signals, Systems, and Computers (Asilomar), Pacific Grove, CA, Oct. 27 —
Oct. 30, 2024.



Algorithms for One-Bit DOA Estimation

« Grid dependency

* On-grid methods (e.g., one-bit MUSIC) require dense grids for off-grid
signals — high complexity.

« High computational burden

« Sparse recovery algorithms demand many iterations for accurate
estimation.

« Handcrafted parameter tuning

« Parametric methods rely on prior knowledge (e.g., sparsity levels).

* Not robust across varying conditions such as different SNRs.

X. Huang and B. Liao, "One-Bit MUSIC,” in IEEE Signal Processing Letters, vol. 26, no. 7, pp. 961-965, July 2019.

Pengyu Wang, Huichao Yang, Zhongfu Ye, “1-Bit direction of arrival estimation via improved complex-valued binary iterative
hard thresholding,” Digital Signal Processing, vol. 120, 2022.



Algorithms for One-Bit Off-Grid DOA Estimation

Algorithms for One-Bit Off-Grid DOA Estimation

* Require many iterations for accurate estimation.

» Grid search needed for updates — high complexity.

» Typically designed for multiple snapshots — struggle in single snapshot scenarios.

From Deep Learning to Deep Unrolling

 Deep Learning Approaches:

« Strong model fitting capability.

« Purely data-driven — limited by insufficient training data.
« Lack interpretability.

Deep Unrolling Approaches
 Embed model priors into networks to reduce data dependency.

* Inspired by interpretable algorithms; often outperform originals by learning parameters
automatically.

Monga, Vishal, Yuelong Li, and Yonina C. Eldar. "Algorithm unrolling: Interpretable, efficient deep learning for signal and
irmage processing.” IEEE Signal Processing Magazine 38.2(2021): 18-44.



Signhal Model for One-Bit Off-Grid DOA Estimation

@ Scenario Assumptions:

» K narrowband, far-field source signals s = [s¢], k =1,..., K.
» Signals arrive at a linear, omnidirectional antenna array with N\ elements.
> Arrival directions are 8 = [0,], k=1,..., K.

o Objective:

> Estimate the directions of arrival (DOAs) @ using one bit quantized received data.

@ Data Model for One-bit DoA Estimation:

y(t) = csgn (A(@)s(t) +n(t)), t=1,....T (1)
where y(t) is received signal vector, A(@) = [a(01),a(62),...,a(0k)] is array manifold matrix, s(t) is source signal
vector, n(t) is complex Gaussian noise, csgn (-) = sign (R (-)) + Jsign (3 (+)) is complex sign function, and a(f;) =

.2mwdy .27d .
1,¢ > 2 sin O .., € Nosindi | s steering vector.
ULA and SLA:
» For uniform linear array (ULA), d; = (’_21”, i=1,...,N.
» For sparse linear array (SLA), d; = % s;ie{0,1,..., N—1}, i=1,...,M,and M K N.

Single-Snapshot Model:

» In high dynamic automotive scenarios, only one snapshot (T = 1) data is available. The model is simplified to:

y = csgn (A(@)s + n) (2)



On-Grid Model vs. Off-Grid Model

@ On-grid Model:
» The grid size is fixed: AG = ‘9, — 5;_1‘ = const.
» When DoAs are on the grid, there is no grid gap.

» When DoAs are off the grid, the grid gaps always exist.

o Off-grid Model:

» Consider the estimation of the off-grid gap.
» When DoAs are off the grid, the gaps will be reduced.

Target 1(on grid) Target 2(on grid)
Estimated DoAs

Ground Truth

‘_T_‘
Fixed grid size (a)

Estimated DoAs
Ground Truth

Target 1(off grid) Target 2(off grid)

- o
off grid gap (b) off grid gap
Target 1(off grid) Target 2(off grid)

Estimated DoAs
Ground Truth

A\ 4 v
updated grid (c) updated grid

The diagram illustrating on-grid and off grid DOA estimation.



Problem Formulation for One-Bit Off-Grid DOA

e Off-grid Model based on First-order Grid Approximation

» Suppose the grid dividing is sufficiently dense, and the K signals fall into different grid regions.
» Assume that the fixed grid nearest to ith DoA 6; is 6,;, the first-order approximation for off-grid steering vector is:

a(0;) = a(f,:) + b(d,,) (9,- _ é‘n,.) (3)

where b(ém-) = w is the first order derivative of a(gn;), and {67”,-} are the fixed divided grids.

» The first-order approximation of the manifold matrix:

C(B8) = A + Bdiag (B) (4)

where A = [a(él), a(6,),. .. ,a(éN)], B = [b(él), b(6), ..., b(ém)}, B =[B1, B2, ..., Bn] are the grid gaps. The grid gaps
satisfy:

ﬁn_{ Ok — On, , ifn=ny, k € {1,2,.... K} (5)

o 0, othercases

» By absorbing the approximation error in the measurement noise, the model can be rewritten as:

y = csgn (C(B)s +n), (6)



Problem Formulation for One-Bit Off-Grid DOA

e Sparse Bayesian Formulation: 1

» The likelihood function p (y|s; 3) is given by®: 08F
0.6
v R(ym) R (el (8)s) I(m) S (en(B)s) 2
p(yls; 3 H ® X P 04f
1 O’/\/E O’/\/§ sl
» An appropriate prior probability density function (pdf) of s o -
should be chosen to promote sparsity, for example, the
Laplacian distribution, the exponential distribution. Here
we assume: Figure 3: Example of pdf of s w.r.t. different parameters.
N
A ls:|P
— exp( il ),0<p<l (7) "
_ P
= = arg min — H In® (?R( m) R (CE (B) §))
» The pdf of grid gap is given by: iL- R —
r MDY |s,|p 1
pe)~u(-5.3) (8) _Hm( )3 (€5 @%)) + 2
» Taking Maximum A Posteriori (MAP) criterion, with Bayes (9)

rules, the estimator {s*, 3} is given by: where ® (-) is the cumulative distribution function (CDF)

of the standard normal distribution.

{s*’ B*} = arg T%X Inp (y|s; B) + Inp (s) + Inp (B3)

= arg rsmé] —Inp(y|s; B) — Inp(s) — Inp (3)

J. Ren, T. Zhang, J. Li and P. Stoica, "Sinusoidal parameter estimation from signed measurements via majorization—minimization based
RELAX,” in IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2173-2186, 2019.



Algorithm for One-Bit Off-Grid DOA Estimation

e Majorization-Minimization:
> Let f (s
function g (s,ﬁ|§, ﬁ) for f (s, 3), such that:

, ) denotes the cost function (9), find a majorizing

f(s.8) < g (s B 3 (10)
F(s.8") =g (5.8, 8) (1)

> Lemma 1: Let I(x) £ —In® (x),x € R, and I(x) is upper
bounded by ©:

1
T(x) <T(x)+T1 (x)(x —x)+ 5 (- x)’  (12)
where 1" (x) = —exp (—x§/2) / (\/27r¢ (xo)).
@ Smooth approximation of /, norm term:
» For the case of 0 < p < 1, I, norm can be smoothly
approximated as:
N p
2
Isll, = > (Isi* +n) 2 (13)

i=1

where 7 is a very small factor, usually n = 107°.

J. Ren, T. Zhang, J. Li and P. Stoica, "Sinusoidal parameter estimation from signed measurements via majorization—minimization based

@ The Algorithm framework:
» Using (12) and (13), the cost function (9) satisfies:

@)<Z SESEICACB))

+§ (SmS (cnB)s))
—® (V) (éR(ym) R (c}; (B) s))
~ S (vh) (Sm) S (e (B)s))
i (|s,-|2 ] n)g + const

i=1

_|_

T | >

1 P N p ,
:EHC(B)S—\I ||2—|—;§(|s,| —|—77) -+ const

where v = [5}3 (y) R (\NItﬂ +J [% (y) oS (‘N’t)}'
vi=Df - T’ (Dt), and
D' = R(y) ® R (C(B")s) +/S (y) @ S (C(8Y)s")

RELAX,” in IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2173-2186, 2019.

(14)



Unrolling Algorithm for One-Bit Off-Grid DoA

@ The Algorithm framework:
» According to (10), The problem (9) is simplified to:

1 A o
argmin — ||C(B)s — v'||- + = (s,-2—|— )2
smin 3 [€(8)s [+ 53 (1 7
» With the first order optimal condition, the update of
gitl. Figure 4: Overall architecture of the Unrolled Network.

7 = [C(B)C(8Y) + Ao*A (s)] T (Bt
where A (st) is diagonal matrix: @ Overview of the Network Architecture:

» Initialization Block: Gives initialized estimate.
7 » Unrolled Blockl: Contains a few unrolled layers, updates the

estimate of s, sets the grid gap parameters (3 zeros.
» Unrolled Block2: Contains a few unrolled layers, updates s, and

the grid gap parameters 3 at the same time.

B P _
(s> + )27

P __
L(lsw>+mn)2 "

» The update of B+ ;

g — R ((BHB)* o st (St+l)H) e (diag (")) BY (v — Asr))

Z.Yang, L. Xie and C. Zhang, "Off-grid direction of arrival estimation using sparse Bayesian inference,” in IEEE Transactions on Signal
57 Processing, vol. 61, no. 1, pp. 38-43, Jan.1, 2013.



Unrolling Algorithm for One-Bit Off-Grid DoA

Figure 5: Architecture of the initialization block.

@ Initialization operation:
x0 — CH (ﬁO) y
where 3° = 0

58
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Unrolling Algorithm for One-Bit Off-Grid DoA

Unrolled Block 1

Phase 1 pummd l mmnd Phase K1

Figure 6: Architecture of Unrolled Blockl.

@ QOperator is defined as:
\"-l-t — CH (60) \It
where 8% = 0, vt = [R(y) ®@ R(¥))] +/[S (y) ® $(¥h)], ¥t = Dt — I’ (DY), and
_ 0
o DI=R(y)OR(C(B)s") +iS(y) @I (C(8%)s")

(16)



Unrolling Algorithm for One-Bit Off-Grid DoA

Unrolled
Block 2

-
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Train Unroll Network for 1-Bit Off-Grid DOA

Training stage 1 Training stage 2

Figure 8: Training Approach for the network.

Training Approach

@ The first stage:

Train the unrolled blockl of the network for 100 epochs, and freeze the parameters of unrolled block?2.
Loss function £;: Binary Cross-Entropy (BCE) loss.

@ The second stage:

Train the unrolled block2 of the network for 100 epochs, and freeze the parameters of unrolled blockl.
Loss function L£5: Mean Squared Error (MSE) Loss.
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Accuracy Evaluation: Two Off-Grid Targets, Case |

18-element SLA

0.15
SLA with 18 element g —8—O0GIR
1 T T T T T T T T T —¥— OGBRIM
CNN-DNN
. 0.14 —A— Ours
0p O O O O O OO0 OO O0OO0OO0OO0OO0OO0OO0O 9 £
2
“ 005}
_1 1 1 1 | 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Array position, element spacing is \/2 0 . ‘ . . .
0 5 10 15 20 25 30
: .. SNR(dB)
Figure 9: Antenna positions of 18-element SLA.
18-element SLA
e Setup: 1F
» Two off-grid targets with direction in [—10.28°,20.56°] 0.9+
> 1,024 Monte Carlo trails. . . 2 0s . oabrm |
» Varied SNR levels from 0dB to 30dB with 5dB increments. o CNN-DNN
» The algorithm for comparison is the OGIR algorithm &. %07 e
» 18-element SLA: Y
[0,1,2,3,4,7,8,9,10,11, 12,13, 14, 15,16, 17, 18, 19]. 05
The neural network for comparison is CNN-DNN h '
" 5 10 15 20 25 30

SNR(dB)



Accuracy Evaluation: Two Off-Grid Targets, Case |
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Accuracy Evaluation: Two Targets, Case i

10-element SLA
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Figure 13: Antenna positions of 10-element SLA.

@ Setup:

> Two off-grid targets in [—10.28°,20.56°]
1,024 Monte Carlo trails.

(=}
(o]
T

> 2
» Varied SNR levels from 0dB to 30dB with 5dB increments. Dg: I
> 10-element SLA: [0,3,4,5,6,7,11,16, 18, 19]. 5 00 —5—0GIR
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a CNN-DNN
0.4 —A— QOurs
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Accuracy Evaluation: Two Targets, Case i
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Agenda

 Background and Motivation of DL for DOA Estimation
v Overview of deep learning (DL) for DOA estimation
v’ Comparison: data-driven vs. model-based approaches
v"Why hybrid model-based deep learning matters

DL for High-Resolution Radar Imaging
v Unrolling 1AA
v Physics-guided 1D neural networks for radar imaging
v'DOA estimation considering antenna failure
v Off-grid DOA estimation with 1-bit single-snapshot sparse array
v’ Siamese neural networks for DOA estimation

DL for Integrated Sensing and Communications (ISAC)
DL Enabled Sparse Array Interpolation

v"Unrolling IHT for matrix completion
v Transformer based array interpolation
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Siamese Neural Networks for DOA Estimation

Emergence of Deep Learning Approaches
Advantages:

» Rapid inference for real-time use.

» Enhanced super-resolution.

» Effective in low SNR conditions.

Challenges:

» Large datasets required for fine angular resolution.
» Class imbalance issues in multi-label classification.
P Sensitivity to noise and sparse input signals.

Our Contribution
» Proposed a Siamese Neural Network (SNN) for single-snapshot DOA estimation.
» Introduced a Sparse Augmentation (SA) Layer for enhanced training with sparse data.
» Designed a Frequency Embedding (FE) Layer for frequency-domain signal processing.
» Applied contrastive loss to refine feature representation with minimal labeled data.
R. Zheng, S. Sun, H. Liu and Y. D. Zhang, “Advancing single-snapshot DOA estimation with Siamese neural networks for sparse

linear arrays,” in Proc. IEEE 50th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hyderabad,
India, April 6-11, 2025.



Sparse Linear Arrays (SLAS)

@ Sparsity Definition:

Nsia (4)

Sparsity =1 —
NyLa

o Example:

> Figure 3(a): SLA sparsity is 0.3,
reducing elements by 30% compared
to the ULA.

» Scenario: SNR 20 dB, three targets
(DOAs: —40°, —20°, 30°;
Reflectivity: 0.2, 0.5, 1).

» Spectral differences exist, but all share
the same label in supervised learning.

> SNNs are used to exploit signal
similarities in SLAs.

1 5Uniform Linear Array 1 SSparse Linear Array 1 1 5Sparse Linear Array 2

LI R

; 0.5
0 3 6 9 0 3 6 9 0 3 6 9
Horizontal [A/2] Horizontal [A/2] Horizontal [A\/2]

(a)

BF Spectrum
T

-
-
-

1 L L
T | ' ULA
=] | |
208 i i SLA1
% : : SLA2
=061 | —— @ Label
3 | |
N 0.4 |
5 | |
| |
% 0.2r | |
|
< 0 W | DN LN i
-60 -40 -20 0 20 40 60

Angle [degree]

(b)

(a) Example of ULA and SLAs. The SLAs have a 0.3 sparsity.
(b) The beamforming spectrum of a single-snapshot signal at 20
dB SNR, depicting three targets with different amplitudes and
DOAs, consistently labeled across various array configurations.



Siamese Neural Network

A Siamese neural network (SNN) is a class of neural network architectures that contain two
or more identical subnetworks.

« SNNs use only a few images to get better predictions. SNNs have wide applications in facial
recognition and signature verification.

Encoding
of Imaging 1

Similarity
Shared Weights Contrastive sigmoid Score
Loss

Encoding
of Imaging 2

Neural Networks

G. Kosh, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image recognition,” in Proc. 32nd Int. Conf. Machine
Learning, 2015.
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Neural Network for DOA Estimation

Encoder
A —> —> —> —>
Shared
Weights
v
Encoder —— Contrastive FC Layer ReLU
Loss o
SA Layer Sigmoid

Figure 5: Network architecture of the proposed SNN with sparse augmentation layer.

@ Challenges: e Components: o Benefits:

>

Ntargets » Enhance training with sparse

Niabels = Z (NO‘“) (5) » Sparse Augmentation (SA) Layer input data.
abels — .
k
k=1 > Process sparse signals in the
» Exponential growth in training > Frequency Embedding (FE) Layer frequency domain.
data

» Severe class imbalance. ' » Improve feature representation
» Vast but underrepresented label > Siamese Neural Network and reduce the need for extensive

space. labeled data.



Sparse Augmentation Layer

Encoder
A —> —> —> —>
Shared
Weights
\ 4
Encoder Contrastive FC Layer ReLU
Loss L
SA Layer Sigmoid

Figure 6: Network architecture of the proposed SNN with sparse augmentation layer.

@ Purpose: @ Normalization: _
> Introduce controlled sparsity into the dataset.. output = Input (6)
» Enhance model robustness and prevent overfitting. Nsi a
@ Mechanism:
» Generates a random binary mask. » Nsia: Number of active antennas.
> Applies mask to input signal to create sparsity. » Ensures output features are adjusted relative to active

» Configurable maximum sparsity level. inputs.



Encoder

@ Importance:

» Enhances deep learning by integrating domain knowledge. ) Signal
. Encoder
e Signal Encoder:
» Consists of four FC layers, each followed by a RelLU layer, @ > > > —p Embedded
to extract signal features Feature
Frequenc
@ Frequency Encoder: —> —> Enqcodery
» Transforms sparse signals into the continuous frequency
domain, enabling convolutional feature extraction. o
> FC Layer RelLU Normalization Layer FE Layer
A" (6)y - . . o
gly) = ————=, (7) Figure 7: Encoder architecture for feature extraction, where ‘CAT
Ns| A indicates vector concatenation.

» A": Hermitian transpose of array manifold matrix.



Siamese Neural Networks for DOA Estimation

Encoder
A —> —> —> —>
Shared
Welghts
Encoder Contrastlve FC Layer RelLU
Loss L
SA Layer Sigmoid

Figure 8: Network architecture of the proposed SNN with sparse augmentation layer.

@ Input Pairs: @ Feature Extraction and Learning:
» Similar pairs: Same DOAs, different reflection coefficients > G
and SNRs. Signals pass through an encoder.

» Dissimilar pairs: Different DOAs. » Contrastive loss minimizes distance between similar pairs
» Similar pairs also differ in sparse array configurations. and enforces separation for dissimilar pairs.



Siamese Neural Networks for DOA Estimation

Encoder
A — —> — —>

Shared
Weights
v

Encoder — Contrastive FC Layer RelLU
Loss S
SA Layer Sigmoid

Figure 9: Network architecture of the proposed SNN with sparse augmentation layer.

@ Contrastive Loss Function: > z; is the binary label (1 = similar, 0 = dissimilar).

P

S — % Z (ngjz + (1 — z;) max(0, m — gj)2) , (8)

» m is the margin controlling separation of dissimilar pairs.

j=1 e Total Loss Function:
> gi = ||vji — vj2|| is the Euclidean distance between » Contrastive Loss.—f— Binary Cross-Entropy Loss (for
multilabel classification).

embeddings.



Feature Analysis

Proposed
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Figure 10: PCA-reduced embedding features for (a) ULA and (b) Random SLAs with a sparsity of 0.3.

e Benchmark Models: e Setup:
> BaseNetl: Without SA layer and contrastive loss. ] ] . _
» BaseNet?: Without contrastive loss. » 5,000 test signals with random SLAs (sparsity 0.3, six
o Feature Representation & Clustering: random positions set to zero).

» |deal feature representations should be identical or
closely clustered within the same class.

» Tighter clustering improves classification performance.

» Signal sparsity affects all models, but the proposed SNN
is least impacted, benefiting from the Siamese
architecture and contrastive loss.



DOA Estimation: Accuracy vs SNR

e Setup:

> 5,000 test signals across random SLAs (sparsity = 0.3).
> Input SNR levels: 0 dB to 30 dB.

» Decision threshold: 0.5.
e Evaluation Metrics:

» DOA estimation is treated as a multilabel classification

problem.

» Performance is evaluated using:

* Accuracy
1 M
Accuracy = — Z
M m=1

TPm + TN,

TPm + TNm + FPp + FNp,

(10)

Accuracy

0.99

0.98

Accuracy vs SNR
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DOA Estimation: Precision vs SNR

Precision vs SNR

1

—6— CS-OMP

Y Setup: " |—+— BaseNet1 ]
BaseNet2

> 5,000 test signals across random SLAs (sparsity = 0.3). - | —*— Proposed 1

» Input SNR levels: 0 dB to 30 dB.
» Decision threshold: 0.5.

e Evaluation Metrics:

» DOA estimation is treated as a multilabel classification

problem.
» Performance is evaluated using:

* Accuracy
* Precision

Precision
06 065 0.7 0.75 0.8 0.85 0.9 0.95

M
1 TP,
Precision = —
2

m=1

. (11) 0 5 10 15 20 25 30
TP + FPp SNR [dB]



DOA Estimation: Recall vs SNR

@ Setup:

> 5,000 test signals across random SLAs (sparsity = 0.3).

» Input SNR levels: 0 dB to 30 dB.

» Decision threshold: 0.5.

@ Evaluation Metrics:

» DOA estimation is treated as a multilabel classification

problem.

» Performance is evaluated using:

* Accuracy
*  Precision
* Recall

1 M

Recall = a Z

m=1

(12)

Recall
0.55 06 065 0.7 0.75 0.8 0.85 0.9 0.95

Recall vs SNR
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DOA Estimation: F1 vs SNR

@ Setup:

> 5,000 test signals across random SLAs (sparsity = 0.3).
» Input SNR levels: 0 dB to 30 dB.

» Decision threshold: 0.5.

e Evaluation Metrics:

» DOA estimation is treated as a multilabel classification

problem.
» Performance is evaluated using:

*  Accuracy
*  Precision

*
*

Recall
F1 Score

Precision X Recall
F1-Score = 2 - : (13)
Precision 4+ Recall

F1
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

F1 vs SNR
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DOA Estimation: F1 vs SNR

F1vs SNR
i | |—e—cs-ompP |
¢ Setup' —+—— BaseNet1
> 5,000 test signals across random SLAs (sparsity = 0.3). i S?;:;eetj 1

» Input SNR levels: 0 dB to 30 dB.
» Decision threshold: 0.5.

e Evaluation Metrics:

» DOA estimation is treated as a multilabel classification

problem.
» Performance is evaluated using:

F1
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

*  Accuracy
*  Precision
* Recall

* F1 Score

.. 0 5 10 15 20 25 30
Precision X Recall

F1-Score = 2 - . (13) SNR [dB]
Precision + Recall

Code is available at: https://github.com/ruxinzh/SNNS SLA



https://github.com/ruxinzh/SNNS_SLA

Agenda

Background and Motivation of DL for DOA Estimation
v Overview of deep learning (DL) for DOA estimation
v’ Comparison: data-driven vs. model-based approaches
v'Why hybrid model-based deep learning matters

DL for High-Resolution Radar Imaging
v Unrolling 1AA
v Physics-guided 1D neural networks for radar imaging
v'DOA estimation considering antenna failure
v Off-grid DOA estimation with 1-bit single-snapshot sparse array
v’ Siamese neural networks for DOA estimation

DL for Integrated Sensing and Communications (ISAC)
DL Enabled Sparse Array Interpolation

v"Unrolling IHT for matrix completion
v Transformer based array interpolation
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Reinforcement Learning

« Reinforcement learning is a framework where an agent interacts with an environment via
actions, receives rewards or penalties, and learns a policy to maximize long-term return.

State S; Action S,

Environment




Reinforcement Learning

« Reinforcement learning is a framework where an agent interacts with an environment via
actions, receives rewards or penalties, and learns a policy to maximize long-term return

State S, Reward r, Action S,

Environment




DRL in Wireless Communication and Radar

Deep reinforcement learning in radar enables adaptive waveform design, beamforming,
and target tracking by learning optimal sensing policies directly from environmental
feedback and rewards.

Deep reinforcement learning for integrated sensing and communication (ISAC) optimizes
joint resource allocation, waveform design, and beam management to simultaneously
enhance communication quality and radar sensing performance through interaction with
the dynamic environment.

Feriani and E. Hossain, "Single and Multi-Agent Deep Reinforcement Learning for Al-Enabled Wireless Networks: A Tutorial," in IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1226-1252, 2021.

C. E. Thornton, M. A. Kozy, R. M. Buehrer, A. F. Martone and K. D. Sherbondy, "Deep Reinforcement Learning Control for Radar Detection
and Tracking in Congested Spectral Environments," in IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 4, pp.
1335-1349, Dec. 2020.

N. C. Luong et al., "Applications of Deep Reinforcement Learning in Communications and Networking: A Survey," in IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133-3174, 2019.



ISAC with Sparse Arrays and Quantized Phase Shifters

Adaptively select a small subset of transmit antennas and adjust quantized double-phase shifters, such
that the transmitted energy is concentrated on the communication user and target of interest, while
reducing interference to other radars by creating nulls towards their respective directions.

%SNT
|

LY .
Double phase shifters Beamforming Status(s,)

=
Transmission =
=
L] o U
= Antenna =
Er— 1| jgurati =l |2 1ME
- reconfiguration Y = ; 2 =
- 3 & =g Z =) -
D‘E—(— Beamforming o e = @
reconfiguration )
Update

B ] Beamforming Status(s,) I Reward I oss calculatio
calculation

B Perception
Targets participation

B—

0D ¥ PIOH

Data cube

L. Xu, S. Sun, Y. D. Zhang and A. P. Petropulu, “Reconfigurable beamforming for automotive radar sensing and communication: A deep

reinforcement learning approach,” IEEE Journal of Selected Areas in Sensors, vol. 1, pp. 124-138, 2024.
L. Xu, S. Sun, Y. D. Zhang and A. P. Petropulu, “Joint antenna selection and beamforming in integrated automotive radar sensing-
communications with quantized double phase shifters,” in Proc. IEEE 48th International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Rhodes Island, Greece, June 4-9, 2023.



Transmit Beamforming

 Transmit beamforming B(8) = al’(6)Wa,(8), where W is the beamforming weighting matrix
composed by quantized phase terms.

« Analog precoder is controlled by the phase shifter.

. . - w17
- The radar sensing beamformer is w, = [e/¥1, ..., e/"Ne| .

« The communication receiver is assumed to have N, antennas. Assuming there are L
independent propagation paths, the downlink channel matrix is H; = Y.1_, Bib.(8.)a (6.

The analog precoder is replaced with w, = [e/%1, ..., ef“Nt]T



Transmit Beamforming Design for ISAC

Beam Synthesis vis Double Phase Shifters: w = c;w,. + c,w,.
Here, c; and ¢, are coefficients to balance the radar sensing and communication capabilities.

Transmit Beamforming Optimization:

Beamforming needs to

1) maintain a certain power toward both sensing targets and communication direction
2) generate minimal interference

3) maintain a low peak sidelobe level (PSL).

min Y1 Q1 + Y20, + Y303
wS,aq,a,,a3}

s.t. |wfSa(8,)| = p,
WHsa(Hc)| = P2
wiSa(9)| < p; + ¢,
wlSa(0)| < p, + a,
Hr o é;| < az

tr(S) = M + 2

W =CiW, + C,W,




Transmit Beamforming Design with DRL

Action Space: Select of subset (M+2) of a ULA (with N; elements) with both end elements fixed. The
number of solutions is Q = C,{‘,”t_z . Each element has g-bit quantized phase shifters. The number of actions

is Q29(M*+2) An antenna selection matrix § = [uy, uy, ..., uy, |, with tr(8) = M + 2.

State: At each iteration, the status is represented by the vector s = [wy, ..., wy4-]7, Where each element
represents the phase of the selected antenna.

1, if§>&anddy S dpiq
Reward for Sensing: r,;, =3 —1, if§ <é_jandd,; > d,i_4
0, otherwise

Here, ¢; quantifies the difference between main lobe and peak sidelobe, while d, = |6, — 8,| quantifies the
main beam deviation.

1, if 9ci > 9ci—1
Reward for Communication: r,; = { 0, if gci = 9ei_1 , Where g, = |[Hw|? is the received signal gain.
-1, if 9ci < Gci-1



Transmit Beamforming Design with DRL

1, if pi <Pi-q ,

Reward for Interference: r,,; = { 0, if p; =pi_1,where p=|wla(8,)|" is the beamforming
-1, if i >Pia

attenuation in the direction of 6;.

Total reward: r; = A1, + A7 + A37y;, Where A4, 1, and A5 are weighting trade off between sensing,
communication and interference suppression.

When the action dimension is high, it becomes difficult to use DQN RL to find the desired mapping policy.
Wolpertinger policy comprises three basic elements: an action network, a K-nearest neighbor (KNN) map,
and a critic network. The deep deterministic policy gradient (DDPG) is used to train the networks. The

Wolpertinger policy scales linearly with the number of selected actions.

In DDPG, the KNN network is used to select the best action from the set of actions generated by the actor
network.

The goal of critic network is to choose the corresponding action to the maximum Q value.



Transmit Beamforming Design with DRL

We choose 12 antennas from 15 antennas to form the final transmission array.. There are 455 possible
selection schemes. Each antenna is connected to a 3-bit quantization double-phase shifter.

0000 X0 000 X000

1 5 N 10 15
Antenna position (A/2)
(a)
X000 X 00-0-0-X00000>
1 5 10 15
Antenna position (A/2)
(b)

(a) The transmit array configuration in the initial phase; (b) The transmit array
configuration after optimization.



Numerical Results: Beampattern

The energy of communication and tracking direction optimized by DRL is more balanced and the sidelobes
are reduced.

' 0 T H T T T
: —— Optimization with DRL
1 5+ = = = Optimization with GSO | -
: ---------- Ground truth
—~ H 4
m - | ~~_10 I
i) | s \
o - o -15 L I
\ ¥/
E : E
E_' : 2-20
I
< - | < 25
|
I
| -30
I
: : I : ! 35 | | H | | H | | |
-40 -20 0 20 40 -40 -30 -20 -10 0O 10 20 30 40
Angle (degree) Angle (degree)
(a) (b)

(a) The transmit beamforming in the initial phase; (b) The transmit beamforming after
optimization with DRL and GSO, Ground truth directions are indicated in red dash lines..
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Sparse Array Interpolation: Matrix Completion

V1 Y2 V3 V4 Ym

e 6 O e o o o

@ Missing sum coarray elements render a Hankel matrix with missing elements:

Y1 y2 T YL
y2 o Y
H(y) = Ya o Y42 . g
L YMy YMyi+1  YM

@ The forward-only Hankel matrix completion problem?3 is to find a Hankel matrix x
that has a minimum rank and its distance to the original data matrix at the
observed positions meets the required error bound §:

min rank (H (x))
X
st [ H(x)©Meo — H(y)lly <6,
where Mgp is a mask matrix.

S. Sunand . D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected
Topics in Signal Processing, vol. 15, no. 4, pp. 879-891, 2021.



Sparse Array Interpolation: Hankel Matrix

@ The sum coarray may be designed to be sparse so as to achieve an extended aperture.

Directly performing DOA estimation based on sparse sum arrays may yield high sidelobes and obscure target detection.

The missing elements in the “holes” can be recovered through structured interpolation so as to reduce the sidelobe
levels.

@ For an M-element ULA, the noiseless array response y = [y1, y2, - - ,yM]T can be used to construct a Hankel matrix
with dimensional of M; x L as

1 Y2 T YL
Y2 Y3 o Y
?_[(y) — y3 Ya T Yi+42 — AZBT,
L oymy, Ymp4r oYM

where M; = M — L + 1, and L is the pencil parameter,

T . dsin(# o (My—1)dsin(6,)7 T
A=T[a(0y), - a(0x)] with a(8e) = 1,273 ... &2 (“}

r . sin .~ (L—1)dsin T
B=[b(6:), - ,b(6x)] with b(6)) = 1,ef2”°’T(9"),---,ef2”M]

X = diag ([81," - , Bk])

@ When K (K < M; and K < L) sources imping to the array, the Hankel matrix H (y) has a Vandermonde
decomposition structure with rank K.

S. Sun, Y. Wen, R. Wu, D. Ren, and J. Li, “Fast forward-backward Hankel matrix completion for automotive radar DOA estimation using
sparse linear arrays,” in Proc. IEEE Radar Conference, San Antonio, TX, May 1-5, 2023.



Iterative Hard Thresholding (IHT) Algorithm

@ In the n-th iteration, the new forward-backward array beamvectors X,, = [ X, X, ] c CMx2 s updated as

Xn — xn—1 - anDn—la (2)

CMX2

where «, = is the step size, and D,_1 € is the sub-gradient, defined as

1
n
Dn—lz[ZS 25}_xn—1®|:m I‘T‘I] (3)

@ In the n-th iteration, the obtained FB Hankel matrix H, = [ H(xn) H(Xn) ] — U, V7 with U, € C"1 XK and v, € C?HXK s

n!

first projected onto a tangent subspace T, € CM1*2L which is defined as
T, ={U.,A" + BV |A € C?*7 B € C"1 %"} (4)
@ The projection can be rewritten as
Pr,Hh=[ U, Q [M,[ V, Q ]H, (5)
where
M, — [ Uf:;Vn RO’f ] e 2Kx2K (6)

Here, Q; € C?L*K and R; € CK*K are from QR decompositions of the following matrix of dimensional 2L x K, with computational
cost of O (2LK2).

(1= VaV)) H'U, = QiR (7)

(l _ unu,ﬁ’) H,V, = Q:R,. (8)



IHT-Net for Matrix Completion

@ Low-rank Hankel matrix completion algorithms such as singular value thresholding (SVT) have high computational cost due to the
compact singular value decomposition (SVD) in each iteration.

@ The main steps in the i-th iteration of the IHT algorithm are as follows

Xi = H (xi + B (xs — x7)), (9)
xiv1 = HT (77 (X)), (10)

where (9) is gradient descent update for current estimate x; with fixed step size 3 on a Riemannian manifold. In step (10), 7;
represents t-SVD for X;, which projects X; onto the fixed-rank manifold to derive a low-rank approximation of X;.

.
Tr(xi):ZCTkUkV:, 012 02 2 -+ 2 0. (11)

k=1

@ We utilize a recurrent neural network structure to parameterize the IHT algorithm®.
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Figure 4: lllustration of IHT-Net architecture

Y. Hu and S. Sun, “IHT-inspired neural network for single-snapshot DOA estimation with sparse linear arrays,” in Proc. IEEE 49th
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Seoul, Korea, April 14-19, 2024.



Initialization Layer of IHT-Net

Initialization Layer | ;;,o5, Linear  Linear

I Linear Linear Linear f [ [ —
H() ReLU|  [ReL ReLU | |ReLu H' ()
—| — |- — = (— | —) ‘QI()» ) ()
_ °X xH o
X 2N 28 2N ™ g |l o
11X, L L || I
X . 2NN, 2NN, 2NN, X,

Figure 5: lllustration of initialization layer of IHT-Net

@ We replace t-SVD with shallow layers autoencoder structures, avoiding the need for rank knowledge and SVD computation.

@ We adopt mask encoder’. We implement an asymmetric structure that allows an encoder to operate only on observed values (without
mask tokens) in the input Hankel vector and a decoder that reconstructs the full signal from the latent representation with mask token.

@ We denote the encoder in this layer as _7:1(0) (+), so the output of the encoder is defined as
Xmid = F](_O) ()_(s) . (12)
@ Denoting the decoder in this layer as ]__éo) (-), then the final output of the initialization layer is

%o = 507" (77 (%)) (13)

where 3q is a learnable scalar.




Implicit Rank-Minimization
Initialization Layer mﬂgﬁ,

Linea

Linear Linear

RelLU RelLU

RelL U RelLU
e‘ | | ) - -
X,
= Apig = — =
Initialization Layer
min mnk(imid ) min rank()_(mid ) P
X X,
‘mid i imjd

« Implicit rank-minimizing autoencoder consists in adding extra linear matrices between the encoder and
decoder. ReLU activations are added between the linear layers aiming at speeding up the training process.

L Jing, J. Zbontar, and Y. Lecun, “Implicit rank-minimizing autoencoder,” NeurlPS, 2020.



Unrolling Layer of IHT-Net

Module 1 Module 2 jnear Linear Linear
_ Linear Linear Linear ’_ | | [

H(+) eLu| [ReLU ReLU| [ReLu M (e
Ot (D | o [ | e ) (Do | |
X, L i 2N 2N 2N J 5
= NN NN NN, g
X k ¢

’ By

Figure 7: lllustration of the kth unrolled layer of IHT-Net.

@ The Gradient Descent Module corresponds to Eq.(9) in the IHT algorithm. With the input X, from the (k — 1)-th stage, and x; which
is broadcasted to every unrolled stage, the intermediate recovery result in k-th stage can be defined as

)A(k =H (ik + Bk (xs - s\(k)) ’ (14)
where the step size Sk is a learnable parameter.

@ The Low-Rank Approximation Module keeps the same architecture as the initialization layer while introducing a skip connection within
the layers. We firstly extract X, from the output X, according to the non-zero values position list ¢». Then the output of this module is
derived by passing it through the encoders-decoders, resulting in

Xe = F (FP () - (15)
@ With the skip connection between the input X, and the output X, the final output of the k-th unrolled stage is

Xer1 = X + ve (X — Xi) (16)

where ~, is a learnable parameter weighting the residual term (X, — X,).



Numerical Results of IHT-Net

We generate P point-target sources in the same range-Doppler bin. The angles of the sources follow a uniform distribution within the field of
view (FoV) spanning [—60°, 60°]. Their amplitudes have a uniform distribution ranging from [0.5, 1], while their phases are uniformly
distributed between [0, 27]. In our experiment P = 2 for both training and testing, N, = 700, 000 with SNR randomly chosen from

[10dB, 30dB].

%103
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(a) IHT-Net training loss v.s. epoch for IHT-Net with 8 unrolled phases; (b) IHT-Net testing loss with various
numbers of unrolled phases of IHT-Net; (c) Signal reconstruction error comparison between IHT-Net and FIHT
in different SNRs.



Numerical Results of IHT-Net

Normalized Spectrum Power [dB]

Full array BF spectrum without noise \
Full array BF spectrum with noise A
IHT-Net BF spectrum
FIHT BF spectrum

e
1

1 1
N -
o o

T

-‘
—
>

&
S

A
o

n
fe)

Normalized Spectrum Power [dB]

Full array BF spectrum without noise

=0r | -60 Full array BF spectrum with noise 7
IHT-Net BF spectrum
FIHT BF spectrum
_60 | | | | | _70 | | 1 | |
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40
Field of View [°] Field of View [°]
(a) (b)

Beamforming spectrum examples in different SNRs with different SLAs; (a) SNR=10dB, 18-element SLA;

101 (b) SNR=30dB,18-element SLA.
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Numerical Results of IHT-Net

Normalized Spectrum Power [dB]

-
o

N
o

w
o

A
o

(&)
o

-60

Full array BF spectrum without noise
Full array BF spectrum with noise
IHT-Net BF spectrum

FIHT BF spectrum

-60

-40 -20 0 20

Beamforming spectrum examples in different SNRs with different SLAs; (a) SNR=10dB, 10-element SLA; (b)
SNR=30dB,10-element SLA. Full array has 21 elements.

Feild of View [°]
(a)

40

60

Normalized Spectrum Power [dB]

-50

-60

Full array BF spectrum without noise
Full array BF spectrum with noise
IHT-Net BF spectrum

FIHT BF spectrum

| | I

-60

-40

-20 0 20
Field of View [°]

(b)

40

60



Agenda

 Background and Motivation of DL for DOA Estimation
v Overview of deep learning (DL) for DOA estimation
v’ Comparison: data-driven vs. model-based approaches
v"Why hybrid model-based deep learning matters

DL for High-Resolution Radar Imaging
v Unrolling I1AA
v Physics-guided 1D neural networks for radar imaging
v'DOA estimation considering antenna failure
v Off-grid DOA estimation with 1-bit single-snapshot sparse array
v’ Siamese neural networks for DOA estimation

DL for Integrated Sensing and Communications (ISAC)
DL Enabled Sparse Array Interpolation

v'Unrolling IHT for matrix completion
v Transformer based array interpolation

103



Deep Frequency Attention Networks for Single
Snapshot Sparse Array Interpolation

« Automotive radar — critical for autonomous driving
* Need high angular resolution with low hardware cost
e Sparse arrays:

v’ Large aperture,

v" Fewer elements,

v Reduced coupling.

BUT: high sidelobes, missing elements

« Single snapshot challenge:
v Covariance-based methods need many snapshots
v Snapshot-limited in automotive radar
« Traditional approaches:
v' Model-based (e.g., Hankel completion, IHT)
v' Require expert tuning, high compute cost
« Gap:
v Need efficient, adaptive, generalizable solution

R. Zheng, S. Sun, and H. Liu, “Deep frequency attention networks for single snapshot sparse array interpolation,” in Proc. European Radar
Conference (EURAD), Utrecht, The Netherlands, Sept. 24-26, 2025.



Deep Frequency Attention Networks for Single
Snapshot Sparse Array Interpolation

« Propose FA-Net (Frequency Attention Network)
« Key ideas:

v' Sparse & noise augmentation layer

v Frequency-domain tokenization

v Frequency attention mechanism
« Advantages:

v' Robust across sparse arrays

v' Handles random failures

v’ Efficient for edge deployment

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, t.ukasz Kaiser, lllia Polosukhin, “Attention is
all you need”, NIPS, 2017.



Signal Model

Full Array Model:

y=A0)s +n
« A(0) :Array manifold matrix
e S source vector, n: noise
 Sparse Array Selection:
Vs = My

« M :binary selection matrix
« Only M < N sensors are active
Sparsity Definition:

Sparsity = 1 id
parsity = N

* Proportion of missing elements relative to full array
Goal: Reconstruct the full signal A(6)s from y.(single snapshot, noisy).



FA-Net Architecture

> > » Tokenization : : ’ ®_"
A(B)
Sparse Noise Augmentation Layer Frequency Attention Layer

Fig. 1. Network architecture incorporating a sparse noise augmentation layer and a frequency attention mechanism within a signal reconstruction framework.

 Three components:
v’ Sparse & noise augmentation
v Frequency tokenization
v’ Attention mechanism



FA-Net Sparse & Noise Augmentation Layer

« Purpose: simulate sensor failures + noisy conditions during training
« Random binary masking — variable sparsity
* Add Gaussian noise — simulate SNR variations

* Only applied during training for robustness



Frequency-Domain Tokenization

« Transform sparse signal — frequency domain
« Define frequency grid of size P

« Each frequency bin = token

- Token contains: Steering vector a(6,) Sparse
measurement y.

Steering Vector: a(8) Sparse Signal: y,

Token: 6,
Token: 6,
Token: 6,

Token: 6,
Token: 6,
Token: 6,

Fig. 2. Frequency domain tokenization.



Frequency Attention Mechanism

« Not all frequencies equally informative

 Attention assigns weights: Token: 8, — _(IQ_.
High weight — true target frequencies Token: 6, 5 S
Low weight — noisy or sidelobe regions Token: 6, r s 3
« Scaled Dot-Product Attention: : — X = 35 8
QKT Token: 6, ;ﬁ *% %"‘%
Attention(Q- K’ V) = Softmax( )V Token: 6, N BN B
\/E Token: 6, — >
« Output: v
refined frequency representation — Fig. 3. Attention layer.
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Training Setup

Simulation Environment
20-element ULA, spacing = 1/2
Up to 2 targets per snapshot
Field of view (FOV): [—30°30°]
64 frequency bins (uniform grid)

Data Generation

Reflection coefficients:
| s |~ U[0.5: 1],
£sy ~ U0 2m]

Total: 131,072 training signals

* Augmentation

« Random masking (max sparsity =
40%)

» Gaussian noise injection: SNR € [10,
30]dB

* Training Configuration:
* Loss: Mean Squared Error (MSE)
» Optimizer: Adam, LR = 0.001
* Batch size = 512,
* Epochs =500

 Hardware:
« 4 x NVIDIA RTX A6000 GPUs



Qualitative Results

Baselines
IHT-Thresholding

lterative Hard Thresholding with signal subspace
estimated by simple thresholding

Practical method, no oracle knowledge

IHT-GT (Ground Truth)

IHT with oracle knowledge of true model order
(unrealistic but gives an upper bound)

Quantitative Results

FA-Net consistently outperforms IHT-Thresholding
across all SNRs

FA-Net even surpasses IHT-GT above 20 dB

Demonstrates robustness under low
SNR and high sparsity conditions

-16 [ | —e— IHT-Thresholding
18 |

-20

MSE vs. SNR

—6—IHT-GT
FA-Net

10 15 20 25 30
SNR (dB)

Fig. 4. Signal Reconstruction Error vs SNR.



Qualitative Results

Active Sensor Positon 0 BF Spectrum 0 ’Rucunstruct BF Spectrum
|
o -10r a-10} | 4
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Beamforming spectrum comparisons: Sparse vs reconstructed (IHT vs FA-Net)
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Qualitative Results
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Beamforming spectrum comparisons: Real radar data examples
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Summary

Deep learning for DOA estimation offers high-resolution, real-time capability but faces challenges
in generalization, interpretability, and data requirements.

Hybrid model-based deep learning (e.g., unrolling algorithms, physics-guided networks) bridges
theory and data, improving robustness and efficiency.

Robust radar imaging can be achieved through DL methods on sparse arrays that handle antenna
failures, 1-bit quantization, and off-grid estimation.

Advanced architectures (e.g., Siamese networks, Transformers) extend DL'’s role to sparse array
interpolation and ISAC applications.

Future directions: scalable, interpretable, and generalizable frameworks that unify sensing and
communication for next-generation intelligent systems.
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