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DOA Estimation & Signal Model 

𝒚𝒚 𝑡𝑡 = �
𝑘𝑘=1

𝐾𝐾

𝒂𝒂 𝜃𝜃𝑘𝑘 𝑠𝑠𝑘𝑘 𝑡𝑡 + 𝒏𝒏 𝑡𝑡

= 𝑨𝑨 𝜽𝜽 𝒔𝒔 𝑡𝑡 + 𝒏𝒏(𝑡𝑡)

𝑨𝑨 𝜽𝜽 = [𝑎𝑎 𝜃𝜃1 , 𝑎𝑎 𝜃𝜃2 ⋯𝑎𝑎 𝜃𝜃𝑘𝑘 ]

𝒂𝒂 𝜃𝜃 = 1, 𝑒𝑒2𝜋𝜋𝑑𝑑2/𝜆𝜆,⋯ , 𝑒𝑒2𝜋𝜋𝑑𝑑𝑁𝑁/𝜆𝜆 T

𝒔𝒔 𝑡𝑡 = 𝑠𝑠1(𝑡𝑡), 𝑠𝑠2(𝑡𝑡),⋯ , 𝑠𝑠𝑘𝑘(𝑡𝑡) T

𝒚𝒚 = 𝑨𝑨 𝜽𝜽 𝒔𝒔 + 𝒏𝒏

The single snapshot model: 

The source vector:

The array manifold matrix:

The signal model:

noise
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S. Sun, A. P. Petropulu and H. V. Poor, “MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and 
challenges,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 98-117, 2020.

S. Rao, R. Narasimha and S. Sun, ‘‘Signal processing challenges in automotive radar,’’ in Proc. IEEE 50th International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP), Hyderabad, India, April 6-11, 2025.



DL-Based DOA Estimation

• Deep Learning
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Yann LeCun, Yoshua Bengio & Geoffrey Hinton, “Deep learning”, Nature, Vol. 521, pp. 436-444, 2015.

K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,” CVPR, 2016.



DL-Based DOA Estimation

• Deep Learning
• Key Input Representations:
Raw time-series data
Covariance matrices
Spectrum 
• Key Output Representations:
Sudo-spectrum/spectrum
DOAs

5



DL-Based DOA Estimation

• Multilabel classification (Sudo spectrum)

https://www.mathworks.com/help/deeplearning/ug/multilabel-image-classification-using-deep-learning.html
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DL-Based DOA Estimation: Data-Driven Approach
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G. K. Papageorgiou, M. Sellathurai and Y. C. Eldar, "Deep networks for direction-of-arrival estimation in low SNR," in IEEE Transactions 
on Signal Processing, vol. 69, pp. 3714-3729, 2021.



DL-Based DOA Estimation

https://www.mathworks.com/help/phased/ug/direction-of-arrival-estimation-using-deep-learning.html
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DL-Based DOA Estimation

https://www.mathworks.com/help/phased/ug/direction-of-arrival-estimation-using-deep-learning.html
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DL DOA Estimation: Multilabel Classification

• Key Disadvantages:
Fixed Grid Resolution

• Combinatorial Explosion:
With N possible target directions and G grid bins, the 

number of possible label combinations is: ∑𝑘𝑘𝑁𝑁
𝐺𝐺
𝑘𝑘 .

Grows exponentially with grid size and number of 
sources.

For example: A DOA grid from −60° to 60° with up to 
3 targets results in 300,201 possible label 
combinations
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DL-Based DOA Estimation: Regression

• Benefit:
 Regression directly predicts the continuous angle values from the received 

radar/array signals.
 This allows estimation with finer resolution and avoids grid mismatch 

problems
• Disadvantages:
 Fixed Output Dimensionality
Network outputs a fixed number of DOAs. This means the architecture cannot easily 
adapt when the number of sources changes at runtime.
 Target Permutation Ambiguity
Ordering of output targets is arbitrary (e.g., source at 10° vs. 30° could be swapped in 
labels). This creates a permutation ambiguity problem — the loss function must be 
permutation-invariant (e.g., using Hungarian matching or set-based loss) to avoid 
penalizing correct but reordered predictions.

Input data

DL 
Network

0.2; 5.3;10.1

5.30.2
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Model-Based vs. DL-Based DOA Estimation

Deep Learning-BasedModel-BasedAspect

High with proper trainingHigh under ideal assumptionsAccuracy

Black-box; less interpretableTransparent and explainableInterpretability

Large datasets neededMinimalData Requirement

Robust to noise and imperfectionsSensitive to mismatch/noiseRobustness

Expensive to train, fast inferenceExpensive at inferenceComputation

Flexible; supports retrainingHard to adapt to new settingsAdaptability

May ignore priors unless guidedStrong use of physics/modelPrior Knowledge Use

Scales well with architectureLimited by matrix ops and grid sizeScalability

12



Model-Based Deep Learning

N. Shlezinger, J. Whang, Y. C. Eldar and A. G. Dimakis, "Model-Based Deep Learning," in Proceedings of the IEEE, vol. 111, no. 5, 
pp. 465-499, May 2023.

• Combining traditional mathematical models with data-driven systems.
• Utilizing domain knowledge and tailored mathematical structures.
• Creating principled and interpretable frameworks.
• Enhancing performance even with limited data availability.
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Model-Based Deep Learning

• Subspace based approaches:
Model based: MUSIC, ESPRIT
Model based DL: SubspaceNet
• Compressive Sensing based approaches:
Model based: L1 norm optimization- ISTA, OMP
Model based DL: LISTA/T-LISTA/CC-LISTA
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SubspaceNet

D. H. Shmuel, J. P. Merkofer, G. Revach, R. J. G. van Sloun and N. Shlezinger, “SubspaceNet: Deep Learning-Aided Subspace Methods 
for DoA Estimation,” in IEEE Transactions on Vehicular Technology, vol. 74, no. 3, pp. 4962-4976, March 2025.
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SubspaceNet

D. H. Shmuel, J. P. Merkofer, G. Revach, R. J. G. van Sloun and N. Shlezinger, “SubspaceNet: Deep Learning-Aided Subspace Methods 
for DoA Estimation,” in IEEE Transactions on Vehicular Technology, vol. 74, no. 3, pp. 4962-4976, March 2025.

Signals:
Low Rank
Low Snapshot
Low SNR
Coherent Sources

Better covariance matrix
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Compressive Sensing 

Received Signal

DOA estimation Spectrum

Array response can be written as:

A

Dictionary Matrix
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Compressive Sensing 

• L1-norm optimization problem

Iterative soft threshold algorithm (ISTA)
• Greedy algorithms
Orthogonal matching pursuit (OMP)

min
𝑋𝑋

1
2
𝐴𝐴𝐴𝐴 − 𝑌𝑌 2

2 + 𝜆𝜆 𝑥𝑥 1
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Iterative Soft Threshold Algorithm (ISTA)

 L1-norm optimization problem

 Iteratively update x

 FISTA/LISTA

min
𝑥𝑥

1
2
𝐴𝐴𝐴𝐴 − 𝑌𝑌 2

2 + 𝜆𝜆 𝑥𝑥 1

𝑥𝑥 𝑡𝑡+1 = 𝑆𝑆𝜃𝜃(
1
𝐿𝐿 𝑨𝑨

𝐻𝐻𝑦𝑦 + 𝑰𝑰 −
1
L𝑨𝑨

𝐻𝐻𝐀𝐀 𝑥𝑥 𝑡𝑡 )
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ISTA vs FISTA Example
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Deep Unrolling: LISTA

• ISTA

• LISTA

• T-LISTA/CC-LISTA
• Lower trainable parameters

21 Karol Gregor and Yann LeCun, “Learning Fast Approximations of Sparse Coding,” ICML, 2010.



LISTA vs FISTA

LISTA
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Iterative Adaptive Approach (IAA)

• Iterative adaptive approach (IAA) tries to solve a weighted least square problem. 
• The cost function is 𝒚𝒚 − 𝑠𝑠𝑙𝑙𝒂𝒂 𝜃𝜃𝑙𝑙 𝑸𝑸−1 𝜃𝜃𝑙𝑙

2 , where 𝑿𝑿 𝑸𝑸−1 𝜃𝜃𝑙𝑙
2 = 𝑿𝑿𝐻𝐻𝑸𝑸−1 𝜃𝜃𝑙𝑙  𝑿𝑿 and interference and noise covariance 

matrix is denoted by 𝑸𝑸 𝜃𝜃𝑙𝑙 = 𝑹𝑹𝑓𝑓 − 𝑃𝑃𝑙𝑙𝒂𝒂 𝜃𝜃𝑙𝑙 𝒂𝒂𝐻𝐻 𝜃𝜃𝑙𝑙 . 
• Here, 𝑹𝑹 is the constructed array covariance matrix                                   with 𝑃𝑃 being a diagonal matrix and the 

𝑃𝑃𝑙𝑙 =
1
𝑇𝑇
�

𝑡𝑡=1

𝑇𝑇
𝑠̂𝑠 𝑡𝑡 2

• The weighted least square solution is 

23

Yardibi, Tarik, et al. "Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least 
squares." IEEE Transactions on Aerospace and Electronic Systems 46.1 (2010): 425-443.



Iterative Adaptive Approach (IAA)

Yardibi, Tarik, et al. "Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares." IEEE 
Transactions on Aerospace and Electronic Systems 46.1 (2010): 425-443.

MPDR

Beam Scan

24



Agenda
• Background and Motivation of DL for DOA Estimation
Overview of deep learning (DL) for DOA estimation
Comparison: data-driven vs. model-based approaches
Why hybrid model-based deep learning matters

• DL for High-Resolution Radar Imaging
Unrolling IAA
Physics-guided 1D neural networks for radar imaging
DOA estimation considering antenna failure
Off-grid DOA estimation with 1-bit single-snapshot sparse array
Siamese neural networks for DOA estimation

• DL for Integrated Sensing and Communications (ISAC) 
• DL Enabled Sparse Array Interpolation
Unrolling IHT for matrix completion
Transformer based array interpolation

25



Unrolling IAA
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R. Zheng, H. Liu, S. Sun, and J. Li, “Deep learning based computationally efficient unrolling IAA for direction-of-arrival estimation,” in 
Proc. European Signal Processing Conference (EUSIPCO), Helsinki, Finland, Sept. 4-8, 2023.



Unrolling IAA
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Unrolling IAA
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Model-Based Knowledge-Driven Learning Approach for 
Enhanced High-Resolution Automotive Radar Imaging

30

R. Zheng, S. Sun, H. Liu, H. Chen and J. Li, "Model-Based Knowledge-Driven Learning Approach for Enhanced High-Resolution 
Automotive Radar Imaging," in IEEE Transactions on Radar Systems, vol. 3, pp. 709-723, 2025.



Current Radar Image Super-Resolution

• Image super resolution
 Increase the pixel density
• Radar image 
 Fixed pixel density 

31



Current Radar Image Super-Resolution
• Image super resolution
 Increase the pixel density
• Radar image 
 Fixed pixel density 
• Current solution
 Image-to-image  UNet 2d
 Range-Azimuth heatmap
 Volume-to-volume UNet 3d
 Range-Doppler-Azimuth heatmap
 Lack of domain knowledge
• Small aperture  large aperture
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Proposed Method

• Ground Truth Processing: Use a super-
resolution algorithm (IAA) on a larger antenna 
array to create high-resolution images as 
ground truth.

• Signal-to-Spectrum Approach: Frame radar 
image super-resolution as a one-dimensional 
signal to super-resolution spectrum problem.

• Incorporate Radar Expertise:
 Normalize data for consistency.
 Tailor loss function to radar imaging specifics.
 Signal level augmentation

• Advantages:
 Enhanced performance in image resolution.
 Reduced need for extensive training datasets.
 Lightweight model architecture.
 Scalable across different radar imaging applications.

33



Iterative Adaptive Approach (IAA)

Yardibi, Tarik, et al. "Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares." IEEE 
Transactions on Aerospace and Electronic Systems 46.1 (2010): 425-443.

MPDR

Beam Scan
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SR-SPECNet

35

IAA

SR-SPECNet



SR-SPECNet

Data Preprocessing
Frequency domain 
normalization, 
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦

𝛼𝛼
, 

where 𝛼𝛼 = max(𝐴𝐴𝐻𝐻 𝜃𝜃 𝑦𝑦
𝑁𝑁𝑐𝑐ℎ

)
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SR-SPECNet

Data Preprocessing
Frequency domain 
normalization, 
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦

𝛼𝛼
, 

where 𝛼𝛼 = max(𝐴𝐴𝐻𝐻 𝜃𝜃 𝑦𝑦
𝑁𝑁𝑐𝑐ℎ

)

Signal level Augmentation
Flip: Conjugate of the signal
Shift: 𝑦𝑦𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎(∆𝜃𝜃) ⊗𝑦𝑦 
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SR-SPECNet

Data Preprocessing
Frequency domain 
normalization, 
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦

𝛼𝛼
, 

where 𝛼𝛼 = max(𝐴𝐴𝐻𝐻 𝜃𝜃 𝑦𝑦
𝑁𝑁𝑐𝑐ℎ

)

Signal level Augmentation
Flip: Conjugate of the signal
Shift: 𝑦𝑦𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎(∆𝜃𝜃) ⊗𝑦𝑦 

SNR-Guided Loss Function
 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 =  𝛼𝛼 1

𝐿𝐿
∑𝑖𝑖=1𝐿𝐿 𝑆𝑆𝑖𝑖 − �𝑆𝑆𝑖𝑖

2
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Data Collection Platform

R. Zheng, S. Sun, H. Liu and T. Wu, “Deep-Neural-Network-Enabled Vehicle Detection Using High-Resolution Automotive Radar Imaging,” in 
IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 4815-4830, Oct. 2023.39



RA Examples

10-element ULA

Y.-J. Li, S. Hunt, J. Park, M. O’Toole, and K. Kitani, “Azimuth super-resolution for FMCW radar in autonomous driving,” in Proc. 
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023.40
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DOA Estimation Considering Antenna Failure

Sparse Augmentation Layer 

Purpose:
 Introduce controlled sparsity into the dataset.
 Enhance model robustness and prevent overfitting.

Mechanism:
 Generates a random binary mask.
 Applies mask to input signal to create sparsity.
 Configurable maximum sparsity level

42

R. Zheng, S. Sun, H. Liu, H. Chen, M. Soltanalian and J. Li, “Antenna failure resilience: Deep learning-enabled robust DOA estimation with 
single snapshot sparse arrays,” in Proc. 58th Annual Asilomar Conference on Signals, Systems, and Computers (Asilomar), Pacific Grove, 
CA, Oct. 27 – Oct. 30, 2024



Domain Crafted Features
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Numerical Results

44

Source Code: https://github.com/ruxinzh/Deep_RSA_DOA/
Real Measurement Data: https://github.com/ruxinzh/Deep_RSA_DOA/tree/main/real_World_DOA_dataset 

https://github.com/ruxinzh/Deep_RSA_DOA/
https://github.com/ruxinzh/Deep_RSA_DOA/
https://github.com/ruxinzh/Deep_RSA_DOA/tree/main/real_World_DOA_dataset
https://github.com/ruxinzh/Deep_RSA_DOA/tree/main/real_World_DOA_dataset


Numerical Results

Single Target Two Targets
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Numerical Results

Separation Complexity
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Numerical Results
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Off-Grid DOA Estimation with 1-Bit Sparse Array
Benefits of One-bit ADC Quantization
• Reduced hardware cost and power consumption of ADCs.
• Enhanced data compression for storage and transmission, etc.

49

Y. Hu, S. Sun and Y. D. Zhang, “Enhancing off-grid one-bit DOA estimation with learning-based sparse Bayesian approach for non-uniform 
sparse array,” in Proc. 58th Annual Asilomar Conference on Signals, Systems, and Computers (Asilomar), Pacific Grove, CA, Oct. 27 – 
Oct. 30, 2024.



Algorithms for One-Bit DOA Estimation

• Grid dependency
• On-grid methods (e.g., one-bit MUSIC) require dense grids for off-grid 

signals → high complexity.
• High computational burden
• Sparse recovery algorithms demand many iterations for accurate 

estimation.
• Handcrafted parameter tuning
• Parametric methods rely on prior knowledge (e.g., sparsity levels).
• Not robust across varying conditions such as different SNRs.

X. Huang and B. Liao, ”One-Bit MUSIC,” in IEEE Signal Processing Letters, vol. 26, no. 7, pp. 961-965, July 2019.

Pengyu Wang, Huichao Yang, Zhongfu Ye, “1-Bit direction of arrival estimation via improved complex-valued binary iterative 
hard thresholding,” Digital Signal Processing, vol. 120, 2022.50



Algorithms for One-Bit Off-Grid DOA Estimation
Algorithms for One-Bit Off-Grid DOA Estimation
• Require many iterations for accurate estimation.
• Grid search needed for updates → high complexity.
• Typically designed for multiple snapshots → struggle in single snapshot scenarios.

From Deep Learning to Deep Unrolling
• Deep Learning Approaches: 
• Strong model fitting capability.
• Purely data-driven → limited by insufficient training data.
• Lack interpretability.

Deep Unrolling Approaches
• Embed model priors into networks to reduce data dependency.
• Inspired by interpretable algorithms; often outperform originals by learning parameters 

automatically.

Monga, Vishal, Yuelong Li, and Yonina C. Eldar. ”Algorithm unrolling: Interpretable, efficient deep learning for signal and 
image processing.” IEEE Signal Processing Magazine 38.2(2021): 18-44.51



Signal Model for One-Bit Off-Grid DOA Estimation
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On-Grid Model vs. Off-Grid Model

The diagram illustrating on-grid and off grid DOA estimation.53



Problem Formulation for One-Bit Off-Grid DOA
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Problem Formulation for One-Bit Off-Grid DOA

55

J. Ren, T. Zhang, J. Li and P. Stoica, ”Sinusoidal parameter estimation from signed measurements via majorization–minimization based 
RELAX,” in IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2173-2186, 2019.



Algorithm for One-Bit Off-Grid DOA Estimation

J. Ren, T. Zhang, J. Li and P. Stoica, ”Sinusoidal parameter estimation from signed measurements via majorization–minimization based 
RELAX,” in IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2173-2186, 2019.56



Unrolling Algorithm for One-Bit Off-Grid DoA

Z. Yang, L. Xie and C. Zhang, ”Off-grid direction of arrival estimation using sparse Bayesian inference,” in IEEE Transactions on Signal 
Processing, vol. 61, no. 1, pp. 38-43, Jan.1, 2013.57



Unrolling Algorithm for One-Bit Off-Grid DoA
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Unrolling Algorithm for One-Bit Off-Grid DoA
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Unrolling Algorithm for One-Bit Off-Grid DoA
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Train Unroll Network for 1-Bit Off-Grid DOA
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Accuracy Evaluation: Two Off-Grid Targets, Case I
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Accuracy Evaluation: Two Off-Grid Targets, Case I
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Accuracy Evaluation: Two Targets, Case II
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Accuracy Evaluation: Two Targets, Case II
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Siamese Neural Networks for DOA Estimation
Emergence of Deep Learning Approaches 
Advantages:

 Rapid inference for real-time use.
 Enhanced super-resolution.
 Effective in low SNR conditions.

Challenges:
 Large datasets required for fine angular resolution.
 Class imbalance issues in multi-label classification.
 Sensitivity to noise and sparse input signals.

Our Contribution
 Proposed a Siamese Neural Network (SNN) for single-snapshot DOA estimation.
 Introduced a Sparse Augmentation (SA) Layer for enhanced training with sparse data.
 Designed a Frequency Embedding (FE) Layer for frequency-domain signal processing.
 Applied contrastive loss to refine feature representation with minimal labeled data.

67

R. Zheng, S. Sun, H. Liu and Y. D. Zhang, ‘‘Advancing single-snapshot DOA estimation with Siamese neural networks for sparse 
linear arrays,’’ in Proc. IEEE 50th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hyderabad, 
India, April 6-11, 2025.



Sparse Linear Arrays (SLAs)

(a) Example of ULA and SLAs. The SLAs have a 0.3 sparsity. 
(b) The beamforming spectrum of a single-snapshot signal at 20 
dB SNR, depicting three targets with different amplitudes and 
DOAs, consistently labeled across various array configurations.68



Siamese Neural Network
• A Siamese neural network (SNN) is a class of neural network architectures that contain two 

or more identical subnetworks. 
• SNNs use only a few images to get better predictions. SNNs have wide applications in facial 

recognition and signature verification.

G. Kosh, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image recognition,” in Proc. 32nd Int. Conf. Machine 
Learning, 2015.
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Neural Network for DOA Estimation
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Sparse Augmentation Layer
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Encoder
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Siamese Neural Networks for DOA Estimation
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Siamese Neural Networks for DOA Estimation
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Feature Analysis
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DOA Estimation: Accuracy vs SNR
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DOA Estimation: Precision vs SNR
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DOA Estimation: Recall vs SNR
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DOA Estimation: F1 vs SNR
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DOA Estimation: F1 vs SNR

Code is available at: https://github.com/ruxinzh/SNNS_SLA 

80

https://github.com/ruxinzh/SNNS_SLA
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Reinforcement Learning

82

Agent

Environment

• Reinforcement learning is a framework where an agent interacts with an environment via 
actions, receives rewards or penalties, and learns a policy to maximize long-term return.

State 𝑺𝑺𝒕𝒕    Action 𝑺𝑺𝒕𝒕    
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Environment
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• Reinforcement learning is a framework where an agent interacts with an environment via 
actions, receives rewards or penalties, and learns a policy to maximize long-term return



DRL in Wireless Communication and Radar
Deep reinforcement learning in radar enables adaptive waveform design, beamforming, 
and target tracking by learning optimal sensing policies directly from environmental 
feedback and rewards.

Deep reinforcement learning for integrated sensing and communication (ISAC) optimizes 
joint resource allocation, waveform design, and beam management to simultaneously 
enhance communication quality and radar sensing performance through interaction with 
the dynamic environment.
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ISAC with Sparse Arrays and Quantized Phase Shifters
Adaptively select a small subset of transmit antennas and adjust quantized double-phase shifters, such 
that the transmitted energy is concentrated on the communication user and target of interest, while 
reducing interference to other radars by creating nulls towards their respective directions. 
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Transmit Beamforming

• Transmit beamforming 𝐵𝐵 𝜃𝜃 = 𝒂𝒂𝑡𝑡𝐻𝐻 𝜃𝜃 𝑾𝑾𝒂𝒂𝑡𝑡 𝜃𝜃 , where 𝑾𝑾 is the beamforming weighting matrix 
composed by quantized phase terms. 

• Analog precoder is controlled by the phase shifter. 

• The radar sensing beamformer is 𝑤𝑤𝑟𝑟 = 𝑒𝑒𝑗𝑗𝑤𝑤1 , … , 𝑒𝑒𝑗𝑗𝑤𝑤𝑁𝑁𝑡𝑡
𝑇𝑇
.

• The communication receiver is assumed to have 𝑁𝑁𝑐𝑐 antennas. Assuming there are L 
independent propagation paths, the downlink channel matrix is 𝐻𝐻𝑑𝑑 = ∑𝑙𝑙=1𝐿𝐿 𝛽𝛽𝑙𝑙𝒃𝒃𝑐𝑐 𝜃𝜃𝑐𝑐𝑐𝑐 𝒂𝒂𝑡𝑡𝐻𝐻 𝜃𝜃𝑡𝑡𝑙𝑙 . 
The analog precoder is replaced with 𝑤𝑤𝑐𝑐 = 𝑒𝑒𝑗𝑗Ω1 , … , 𝑒𝑒𝑗𝑗Ω𝑁𝑁𝑡𝑡

𝑇𝑇
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Transmit Beamforming Design for ISAC

Beam Synthesis vis Double Phase Shifters: 𝒘𝒘 = 𝑐𝑐1𝒘𝒘𝒓𝒓 + 𝑐𝑐2𝒘𝒘𝒄𝒄
Here, 𝑐𝑐1 and 𝑐𝑐2 are coefficients to balance the radar sensing and communication capabilities.

Transmit Beamforming Optimization: 
Beamforming needs to 
1) maintain a certain power toward both sensing targets and communication direction
2) generate minimal interference 
3) maintain a low peak sidelobe level (PSL).

min
𝒘𝒘,𝑺𝑺,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3

𝛾𝛾1 𝛼𝛼1 + 𝛾𝛾2𝛼𝛼2 + 𝛾𝛾3𝛼𝛼3
𝑠𝑠. 𝑡𝑡. 𝒘𝒘𝑯𝑯𝑺𝑺𝑺𝑺 𝜃𝜃𝑟𝑟 = 𝑝𝑝1

𝒘𝒘𝑯𝑯𝑺𝑺𝑺𝑺 𝜃𝜃𝑐𝑐 = 𝑝𝑝2
𝒘𝒘𝑯𝑯𝑺𝑺𝑺𝑺 𝜃𝜃𝑙𝑙 < 𝜌𝜌1 + 𝛼𝛼1
𝒘𝒘𝑯𝑯𝑺𝑺𝑺𝑺 𝜃𝜃𝑖𝑖 < 𝜌𝜌2 + 𝛼𝛼2
𝜃𝜃𝑟𝑟 − �𝜃𝜃𝑟𝑟 < 𝛼𝛼3

                                                                            𝑡𝑡𝑡𝑡 𝑺𝑺 = 𝑀𝑀 + 2
                                                                            𝒘𝒘 = 𝑐𝑐1𝒘𝒘𝒓𝒓 + 𝑐𝑐2𝒘𝒘𝒄𝒄87



Transmit Beamforming Design with DRL
Action Space: Select of subset (M+2) of a ULA (with 𝑁𝑁𝑡𝑡 elements) with both end elements fixed. The 
number of solutions is 𝑄𝑄 = 𝐶𝐶𝑁𝑁𝑡𝑡−2

𝑀𝑀  . Each element has q-bit quantized phase shifters. The number of actions 
is 𝑄𝑄2𝑞𝑞(𝑀𝑀+2) . An antenna selection matrix 𝑺𝑺 = 𝒖𝒖1,𝒖𝒖2, … ,𝒖𝒖𝑁𝑁𝑡𝑡 , with 𝑡𝑡𝑡𝑡 𝑺𝑺 = 𝑀𝑀 + 2.

State: At each iteration, the status is represented by the vector 𝒔𝒔 = 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀+2 𝑇𝑇, where each element 
represents the phase of the selected antenna.

Reward for Sensing: 𝑟𝑟𝑟𝑟𝑟𝑟 = �
1,  𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 > 𝜉𝜉𝑖𝑖−1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑟𝑟𝑟𝑟 ≤ 𝑑𝑑𝑟𝑟𝑟𝑟−1
−1,  𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉𝑖𝑖−1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑟𝑟𝑟𝑟 > 𝑑𝑑𝑟𝑟𝑟𝑟−1

0,  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Here, 𝜉𝜉𝑖𝑖 quantifies the difference between main lobe and peak sidelobe, while 𝑑𝑑𝑟𝑟 = 𝜃𝜃𝑟𝑟 − �𝜃𝜃𝑟𝑟  quantifies the 
main beam deviation.

Reward for Communication: 𝑟𝑟𝑐𝑐𝑖𝑖 = �
1,  𝑖𝑖𝑖𝑖 𝑔𝑔𝑐𝑐𝑖𝑖 > 𝑔𝑔𝑐𝑐𝑖𝑖−1
0,  𝑖𝑖𝑖𝑖 𝑔𝑔𝑐𝑐𝑖𝑖 = 𝑔𝑔𝑐𝑐𝑖𝑖−1
−1,  𝑖𝑖𝑖𝑖 𝑔𝑔𝑐𝑐𝑖𝑖 < 𝑔𝑔𝑐𝑐𝑖𝑖−1

, where 𝑔𝑔𝑐𝑐 = 𝑯𝑯𝑯𝑯 2 is the received signal gain.
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Transmit Beamforming Design with DRL

Reward for Interference: 𝑟𝑟𝑝𝑝𝑖𝑖 = �
1,  𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 < 𝑝𝑝𝑖𝑖−1
0,  𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖−1
−1,  𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 > 𝑝𝑝𝑖𝑖−1 

, where p = 𝒘𝒘𝑯𝑯𝒂𝒂 𝜃𝜃𝑖𝑖
2 is the beamforming 

attenuation in the direction of 𝜃𝜃𝑖𝑖.

Total reward: 𝑟𝑟𝑖𝑖 = 𝜆𝜆1𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝑟𝑟𝑐𝑐𝑖𝑖 + 𝜆𝜆3𝑟𝑟𝑝𝑝𝑖𝑖, where 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 are weighting trade off between sensing, 
communication and interference suppression.

When the action dimension is high, it becomes difficult to use DQN RL to find the desired mapping policy.

Wolpertinger policy comprises three basic elements: an action network, a K-nearest neighbor (KNN) map, 
and a critic network. The deep deterministic policy gradient (DDPG) is used to train the networks. The 
Wolpertinger policy scales linearly with the number of selected actions.

In DDPG, the KNN network is used to select the best action from the set of actions generated by the actor 
network.

The goal of critic network is to choose the corresponding action to the maximum Q value.
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Transmit Beamforming Design with DRL

We choose 12 antennas from 15 antennas to form the final transmission array.. There are 455 possible 
selection schemes. Each antenna is connected to a 3-bit quantization double-phase shifter.
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(a) The transmit array configuration in the initial phase; (b) The transmit array 
configuration after optimization.



Numerical Results: Beampattern
The energy of communication and tracking direction optimized by DRL is more balanced and the sidelobes 
are reduced.
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(a) The transmit beamforming in the initial phase; (b) The transmit beamforming after 
optimization with DRL and GSO, Ground truth directions are indicated in red dash lines..

(a) (b) 
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Sparse Array Interpolation: Matrix Completion

93
S. Sun and Y. D. Zhang, ‘‘4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected 
Topics in Signal Processing, vol. 15, no. 4, pp. 879-891, 2021. 



Sparse Array Interpolation: Hankel Matrix

94
S. Sun, Y. Wen, R. Wu, D. Ren, and J. Li, “Fast forward-backward Hankel matrix completion for automotive radar DOA estimation using 
sparse linear arrays,” in Proc. IEEE Radar Conference, San Antonio, TX, May 1-5, 2023.



Iterative Hard Thresholding (IHT) Algorithm
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IHT-Net for Matrix Completion

96

Y. Hu and S. Sun, ‘‘IHT-inspired neural network for single-snapshot DOA estimation with sparse linear arrays,” ​in Proc. IEEE 49th 
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Seoul, Korea, April 14-19, 2024.



Initialization Layer of IHT-Net
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Implicit Rank-Minimization

• Implicit rank-minimizing autoencoder consists in adding extra linear matrices between the encoder and 
decoder. ReLU activations are added between the linear layers aiming at speeding up the training process.

L Jing, J. Zbontar, and Y. Lecun, “Implicit rank-minimizing autoencoder,” NeurIPS, 2020.
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Unrolling Layer of IHT-Net

99



Numerical Results of IHT-Net

(a) IHT-Net training loss v.s. epoch for IHT-Net with 8 unrolled phases; (b) IHT-Net testing loss with various 
numbers of unrolled phases of IHT-Net; (c) Signal reconstruction error comparison between IHT-Net and FIHT 
in different SNRs.
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Numerical Results of IHT-Net

Beamforming spectrum examples in different SNRs with different SLAs; (a) SNR=10dB, 18-element SLA; 
(b) SNR=30dB,18-element SLA.101



Numerical Results of IHT-Net

Beamforming spectrum examples in different SNRs with different SLAs; (a) SNR=10dB, 10-element SLA; (b) 
SNR=30dB,10-element SLA. Full array has 21 elements.102
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Deep Frequency Attention Networks for Single 
Snapshot Sparse Array Interpolation

• Automotive radar → critical for autonomous driving
• Need high angular resolution with low hardware cost
• Sparse arrays:

 Large aperture, 
 Fewer elements, 
 Reduced coupling.
BUT: high sidelobes, missing elements

• Single snapshot challenge:
 Covariance-based methods need many snapshots
 Snapshot-limited in automotive radar

• Traditional approaches:
 Model-based (e.g., Hankel completion, IHT)
 Require expert tuning, high compute cost

• Gap: 
 Need efficient, adaptive, generalizable solution

104

R. Zheng, S. Sun, and H. Liu, “Deep frequency attention networks for single snapshot sparse array interpolation,” in Proc. European Radar 
Conference (EuRAD), Utrecht, The Netherlands, Sept. 24-26, 2025.



Deep Frequency Attention Networks for Single 
Snapshot Sparse Array Interpolation
• Propose FA-Net (Frequency Attention Network)
• Key ideas:

 Sparse & noise augmentation layer
 Frequency-domain tokenization
 Frequency attention mechanism

• Advantages:
 Robust across sparse arrays
 Handles random failures
 Efficient for edge deployment

105

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin, “Attention is 
all you need”, NIPS, 2017.



Signal Model
• Full Array Model:

𝑦𝑦 = 𝐴𝐴 𝜃𝜃 𝑠𝑠 + 𝑛𝑛
• 𝐴𝐴 𝜃𝜃  :Array manifold matrix
• 𝑠𝑠: source vector, 𝑛𝑛: noise

• Sparse Array Selection:
𝑦𝑦𝑠𝑠 = 𝑀𝑀𝑀𝑀

• 𝑀𝑀 :binary selection matrix
• Only 𝑀𝑀 < 𝑁𝑁 sensors are active

• Sparsity Definition:

Sparsity = 1 −
𝑀𝑀
𝑁𝑁

• Proportion of missing elements relative to full array
• Goal: Reconstruct the full signal 𝐴𝐴 𝜃𝜃 𝑠𝑠 from 𝑦𝑦𝑠𝑠(single snapshot, noisy).
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FA-Net Architecture

• Three components:
 Sparse & noise augmentation
 Frequency tokenization
 Attention mechanism
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FA-Net Sparse & Noise Augmentation Layer

• Purpose: simulate sensor failures + noisy conditions during training

• Random binary masking → variable sparsity

• Add Gaussian noise → simulate SNR variations

• Only applied during training for robustness
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Frequency-Domain Tokenization

• Transform sparse signal → frequency domain

• Define frequency grid of size 𝑃𝑃

• Each frequency bin = token

• Token contains: Steering vector 𝑎𝑎 𝜃𝜃𝑝𝑝  Sparse 
measurement 𝑦𝑦𝑠𝑠
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Frequency Attention Mechanism

• Not all frequencies equally informative
• Attention assigns weights:

High weight → true target frequencies
Low weight → noisy or sidelobe regions

• Scaled Dot-Product Attention:

Attention 𝑄𝑄 𝐾𝐾 𝑉𝑉 = Softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

• Output: 
refined frequency representation → 
reconstruct signal
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Training Setup

• Simulation Environment
• 20-element ULA, spacing = 𝜆𝜆/2 
• Up to 2 targets per snapshot 
• Field of view (FOV): − 30∘30∘  
• 64 frequency bins (uniform grid)
• Data Generation 
• Reflection coefficients:
• ∣ 𝑠𝑠𝑘𝑘 ∣∼ 𝒰𝒰 0.5 1 ,
• ∠𝑠𝑠𝑘𝑘 ∼ 𝒰𝒰 0 2𝜋𝜋
• Total: 131,072 training signals

• Augmentation 
• Random masking (max sparsity = 

40%)
• Gaussian noise injection: SNR ∈ [10, 

30] dB
• Training Configuration:

• Loss:  Mean Squared Error (MSE)
• Optimizer:  Adam, LR = 0.001
• Batch size = 512, 
• Epochs = 500

• Hardware: 
• 4 × NVIDIA RTX A6000 GPUs
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Qualitative Results

• Baselines 
• IHT-Thresholding 
• Iterative Hard Thresholding with signal subspace 

estimated by simple thresholding
• Practical method, no oracle knowledge 
• IHT-GT (Ground Truth)
• IHT with oracle knowledge of true model order 

(unrealistic but gives an upper bound)
• Quantitative Results 
• FA-Net consistently outperforms IHT-Thresholding 

across all SNRs
• FA-Net even surpasses IHT-GT above 20 dB 
• Demonstrates robustness under low 

SNR and high sparsity conditions
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Qualitative Results

Beamforming spectrum comparisons: Sparse vs reconstructed (IHT vs FA-Net)
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Qualitative Results

Beamforming spectrum comparisons: Real radar data examples
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Summary
• Deep learning for DOA estimation offers high-resolution, real-time capability but faces challenges 

in generalization, interpretability, and data requirements.

• Hybrid model-based deep learning (e.g., unrolling algorithms, physics-guided networks) bridges 
theory and data, improving robustness and efficiency.

• Robust radar imaging can be achieved through DL methods on sparse arrays that handle antenna 
failures, 1-bit quantization, and off-grid estimation.

• Advanced architectures (e.g., Siamese networks, Transformers) extend DL’s role to sparse array 
interpolation and ISAC applications.

• Future directions: scalable, interpretable, and generalizable frameworks that unify sensing and 
communication for next-generation intelligent systems.
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