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I Part |: Introduction

e Direction-of-arrival (DOA) estimation and applications

e Narrowband array signal model

e Beamforming-based DOA estimation




Applications of array processing

« Array processing uses multiple sensors
(antennas, microphones, transducers)
and plays a fundamental role in wireless
communications, radar and sonar
sensing, autonomous driving, speech
separation, and medical imaging

« Beamforming
« Signal enhancement
* Interference cancellation
» Multi-user detection

* Multiple-input multiple-output (MIMO)
systems

* Increased channel capacity

« Sensing: Localization/imaging
» Ground-to-air radar
« Automotive radar
« Sonar
 Ultrasonic imaging




Four-dimensional sensing ,

Radar sensing often requires high-resolution results
in four dimensions (4-D imaging):

« Range: range resolution and accuracy are %
determined by signal bandwidth

* Doppler frequency: corresponding to radial velocity with
its resolution determined by pulse repetition frequency

 Azimuth and elevation angles

We first discuss sparse array design and processing for DOA
estimation, and waveform design for range and Doppler
estimation will follow:

more signals
* higher resolution

few sensors

We mainly consider 1-D DOA estimation using linear arrays.
Most results can be easily modified for 2-D DOA estimation with
additional complexity.
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I Signal model for ULA

Narrowband array signal model

« uniform linear array (ULA) s (1)
« K far-field signals
K
x(t) = z se(D)a(B) +n(t) = As(t) + n(t)
k=1
1
0J2m(d/A)sin(6)
a(@) = : : steering vector
_ej2n(N—1)'(d/)l)sin(9)_
sk (t)
A = [a(6,),a(bk), -, a(0g)]: array manifold matrix sp (t) e/27m(d/A) sin B

s(t) = [s1(t), -, sg ()]T: signal vector

DOA estimation: determine the directions of signal arrivals, 9,,---,0,, from the received
signal vector x(t) over (typically) multiple samplest =1,---,T.
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1'% Beamforming-based DOA estimation

Let's first consider traditional DOA estimation
approach through beamforming:

For x(t) =s(t)a(f,), by assuming w=a(f) with
different 6, the magnitude of y(¢,0) = a'(8)x(t) =
s(t)a(8)a(8,) is peaked at 4,.

This approach has a low resolution because the
beamwidth is wide.

Note that the resolution is determined by the array
aperture.

Beamforming-based DOA
estimation has a low resolution
(Example of 6-element ULA)

30°
Single signal

eeeeeeeeeeeee

07 | 300 45°
Two signals a
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1'% Beamforming-based DOA estimation

Achieving high resolution:

« Larger array aperture
* More sensors: High cost
« Large spacing (uniform): Alias
« Sparse arrays (irregular): To be discussed further
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« High-resolution DOA estimation methods

« Adaptive beamforming (e.g., MVDR)

« Maximum likelihood estimation

» Subspace-based methods, e.g., MUSIC, ESPRIT
« Compressive sensing (sparse reconstruction)

 Machine learning

Normalized pattern
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1'% Part ll: Sparse Array Design and Processing

e More consecutive lags and lower coupling

o Sparsity-based DOA estimation

e Structured matrix completion for DOA estimation
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| Subspace-based DOA estimation

Subspace-based DOA estimation techniques based on the subspace analysis of the
covariance matrix are commonly used to achieve a high resolution.

Eigen-decomposition of the covariance matrix

N
R,, = E[x(t)x"(t)] = ZAlvv + 2 civivll = UZZUY + Uz, Ul
i=K+1 Signal subspace  Noise subspace

Observations:
« The signal subspace and the noise subspace are orthogonal: Ullu,, = 0.
 Valid signal steering vectors are orthogonal to the noise subspace: AU, = 0.

30° 45°
Pseudo spatial spectrum of MUSIC (MUIltiple Slgnal Classification): | |
_ _ ||y7H —2
PO) = w@yu,viae) ~ 1@l
* Only 1-D search is needed for multiple signals.
« An N-element ULA can detect N — 1 signals. P
« Knowledge of the number of signals K is required. J k

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” I[EEE Trans. Antennas and T D
Propagation, 1986.
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I Difference coarray

Subspace-based DOA estimation exploits the data covariance matrix R,,.
For a ULA with uncorrected signals:
R,, is Toeplitz (diagonal-constant) and Hermitian
* R,,is highly redundant: Only N elements are unique in the N X N covariance matrix
 We may not need N sensors to estimate the N X N covariance matrix

Consider removing the third sensor from a 4- CP CP U O
element ULA: | d —

 All the entries of the ULA covariance matrix
can be recovered: e.qg., E[x,x3] = E[x;x;].

e The 4-element ULA and the 3-element Ry, = Bl
sparse array are different coarray Elcax]]  Eficaxs
equivalent because they generate the same LAt [+4%2
number of correlation lags.

» For physical array G, the difference lags are

given as: C; = {z|z=u—v,u,v € G}. 3 @ e Q G 9 e
11

Correlation lags (difference coarray)
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1|8 Direct MUSIC-based DOA estimation

Vectorizing R, yields
z =vec(R,, ) =Ab+ c?i=A°b°

2

A = [a(8)®a’*(6y), ..., a(6,)®a*(6,)]: Manifold matrix for the difference coarray
b =|oZ, ...,aé]T: Source power vector

r—

L =vec(ly)
A° = [A 1)
b° = [b", 03]

z acts as received data of a virtual array (difference coarray)

« Manifold matrix corresponds to virtual sensors which are much more than physical antennas
* Only a single snapshot corresponding to vector b

 Subspace-based DOA estimation cannot be directly applied because the single-snapshot
covariance matrix zz" is rank-1

P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.
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Direct MUSIC-based DOA estimation

- O------ e——a—-——:—e—0—0—0—9—0—0—0——@——0——e——e——e——o——e—t————e——o —————— o--
-12 -10 -9 |-7 6 5 4 3 -2 -1 0 1 2 3 4 5 6 7 : 9 10 12
- = = R ______
Spatial smoothing Example: N; = 15, K =8 12 R
|
By dividing the rank-1 matrix R into K= (N,+1)/2 |
subarrays R;, their average %Z’,;l R, becomes rank-K. = '
K| |
« |t is equivalent to placing the elements of : '
T . . . |
z = |z_x_1),"*,zx—1] inaHermitian and Toeplitz manner. | |
. . |
* Only consecutive lags can be used for this purpose (e.g., =------ '
lags of [-7:1:7]; detect up to 7 signals).
Z Z cee Z _ ]
* In this context, optimum design of parse arrays is to N Z_Ol ch) ZE_:
A high number of consecutive lags Ryx = ’ ' - :
« Low mutual coupling (few lag-1 and lag-2 pairs) “-(K-1)  Z-(K-2) “0 |

C.-L. Liu and P. P. Vaidyanathan, "Remarks on the Spatial Smoothing Step in Coarray MUSIC," IEEE Signal Processing Letters, 2015.

P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.

13



mum redu ndancy array N CONFIGURATION SPATIAL SENSITIVITY

| O [ I—«
- . 0
Minimum redundancy array (MRA): For a given > 0o al
number of physical sensors, MRA maximizes the 0 1
number of consecutive virtual sensors in the resulting 5 00°% 0 3{ L
difference coarray. R > L3
i - 4 00 o O T1 1811y
* Restricted arrays: All lags are consecutive r A3
« General arrays: Not all lags are consecutive SPATIAL FREQUENCY
The difference lags an 1\1I-element sparse array can ~ = . R Configuration
achieve is in the order of ~-N(N —1). )
2 Restricted Arrays:
_ _ %N(N—l) 5 9 1.11 1-3-3-2-
For an MRA, the redundancy is defined as R = &¥——, 6 13 1.16 1-5-3-2-2
max 7 17 1.24 +1-3-6-2-3-2-

i i I 8 23 1.22 «1.3-6-6-2.3-2-
where N,.. is the maximum number of consecutive : % ey AR
lags. 10 36 1.25 1.2:3.7-7.7-4-4-1-
« Risfoundtobe 1.217 SR < 1.674. General Arrays:

However, MRA cannot be systematically designed. g 13 ;:é ziiig
7 18 1.17 14-1.3-6.2.5-
A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas and Propagation, 1968. 8 24 1.17 .8.10-1-3.2-7-8-
M. Ishiguro, "Minimum redundancy linear arrays for a large number of antennas," Radio Science, 10 37 1.22 16-1-11-8-6-4-3.2-22
1980.
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21"y Systematical sparse array design: Nested array

Systematical design: Nested array is a simple sparse array configuration which consists of
two uniform linear subarrays, one of which has a unit spacing.

) (N, + 1)d N
é‘% eee Oé o é) eeoe O
0 1 N

1—10 1 N, — 1
%/—J —-\r—

Subarray 1 Subarray 2

————————————— M’}Sd{';c:}{:} Incident
wave front
[Pal and Vaidyanathan’10]

* For nested arrays, all lags are consecutive. © 2
/

« Depending on the applications, the high number of consecutive
physical sensors may cause high mutual coupling effect, ® ] @
degrading DOA estimation performance. z z

 Mutual coupling brings higher impact when the interelement
spacing is small (e.g., half-wavelength spacing or less). = =

: : . Antenna m Antenna n
* The coprime array is proposed as an alternative to nested array.

P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Trans. Signal Processing, 2010. 15



Systematical sparse array design: Coprime array

. o . . . d
Coprime array: utilizes a pair of uniform linear subarrays M
with M and N being coprime integers (greatest common - , ? teeo 00 Nol
divisor gcd(M,N) = 1). Nd -
Example: M =3 and N =5 (6 elements
p ( ) O eee O
VvV  Subarray 1 A Subarray 2 0 1 2 M-1
Physical array & V.o AV VA V
0 ) 10
_________________________ ;
Coarray ---------- o-O--- L@ Q-0-0-0-0-0-0-0-0--0--0--0-0-6---0-0----- o---
12 -10 -9 IT-6543210123458?: 9 10 12

« Unlike nested arrays, coprime arrays generally have holes in the resulting lags.

P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime sampler and arrays,” IEEE Trans. Signal Processing, 2011

16
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*|"¥ Generalized coprime arrays: CACIS

Problems:
- Coprime array: have holes in the lags N—l

« Nested array: high mutual coupling 5—'([) () ewe sas [
2

CACIS (Coprime array with compressed inter-element spacing): M-1

Compresses the interelement spacing of one subarray M = M /p with 2 < p < M to increase
the number of consecutive lags n,

Example: M = 6,N =7 (Only showing nonnegative lags)
XX XXX XTVAXX XXV XAXXXTVXXAXXTVXXXAXTVXXXx XAV S e s e ss s se e SRR ee XKB B RXXXeee XK KKES
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

M =6,p=1,N =71, =25 (prototype)

XZXXVXXVAXVXXVXAVXXVXXAXXXXXXAXXXXXXA 5 8 BB S B EE SRR E N EE XX e N NS

20 25 30 35 0 5 10 15 20 25 30 a5
=3, p=2,N=7,n, =47

ﬁxvxvvav VXVXAXXXXXXAXXxXXXAXXXXXXA T R R R R T T T T T E Y

15 20 25 30 35 0 5 10 15 20 25 30 35
M=2p=3,N=7,nC=59

X:XVVVVVVAXXXXXX/_\.XXXXxx/_\xxxxxxAxxxxxx/_\ &8 8 B8 8 8 0 8 08 S S8 S S8 8 S 88 E S E S EEEEEEEN

10 15 20 25 30 35 0 5 10 15 20 25 30 35
M=1,p=6N =71, =71 (nested)

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015.

17
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I More consecutive lags and less mutual coupling

Sub-Array I Sub-Array 11

f I 1
X QOO OP®O® X X X X@PXXXX@®XXXXEO®
0 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Many sparse arrays are proposed for (i) more
consecutive lags and (ii) less mutual coupling.

1). The dense sul_>-arra‘y will be split into two or four parts and be rearranged in
¢ Augmented neSted array: Spllt the densely 2). %I;neelrflf;tn?‘t?;r(])%ztt:li;((i)ispzt;rtsh\evfglagisa?r:gr‘)ara1;1'011 will be greatly reduced.
located elements in inner subarray to reduce Left Sub-Attay s o e Right Sub-Ammay
. . . I / /‘ﬂ 1 1
the mutual coupling. Several variations. XO X® X@®XXXX@®XXXXE@XX XX 20:2 ;zé
. . . Lag=#¢, £ =024 ag=+¢, =13 T2 ___,
« Thinned Coprime Array: Provides the same R | (5 Lagms+ e memmnmencn ]
number of consecutive lags, unique lags, and R e
aperture as the Conventional COprime array . — S R v -
but with fewer sensors.
Md
PE— N elements subarray X,
.xxxxix:;xxix:;xx;xixx;xx;cx-L. ‘ _ | -
TR p——— I M+ Nyd M - 1 elements subarray X;
Nd p o e D X X X X X O X X XX XOXXXXXO
Nd ¢
(M -1)/2 elements subarray X Nd

J. Liu, Y. Zhang, Y. Lu, S. Ren and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Trans. Signal Processing, 2017.

A. Raza, W. Liu and Q. Shen, "Thinned coprime array for second-order difference co-array generation with reduced mutual coupling," IEEE Trans. Signal
Processing, 2019.

18
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"I Sparse array: MISC family

MISC (maximum interelement spacing constraint): A four-segment configuration to
achieve a high number of consecutive lags with low mutual coupling

Amisc = {1,P—3,P,...,P,2,...,2,3,2,...,2} with P =2|N/4]+2 (N = 5)

Nt P r—4 P4 (N-F) sensors (P—4)/2 sensors (P-2)72 sensors
2 2 Firs;{JLA i Seconlil ULA ' ThirdAULA '
N

Modified versions: Use more A S

. . [ I ) o [ ) ® - © @ e - O ] e - O
sSeg ments to achieve hlg her freedom 0 1 P2 2pP2 (N-P+1)P=2 (N-P+1)P (N-P+2)P6  (N-P+2)P-3 (N-P+3)P-T7
and better performance MISC (4 segments)
. Improved MISC (I'MISC) I, f]l?’ I f]IS I,

s-1 52 53 s-4 s-5 5-6 A
° Enhanced MISC (EMISC) Q Q @ ]g"'_____ﬁﬁzz 9 ZQI .x}.)IO\’.X‘-\><><><><.X\‘X\\XX.XX\'\!\.X.. “
. Symmetry improved MISC (S ||V||SC) AXATBXOXXXXXXXOXXXXXXX@XXXX &X 4 X+ (83'--6—--—-—1% ————— 22———-2223;3—2—1
- I (e) Ig

« Extended MISC (xMISC) I-MISC (6 segments) XMISC (7 segments)

Z. Zheng, W-Q. Wang, Y. Kong, and Y. D. Zhang, "MISC Array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling
effect," IEEE Trans. Signal Processing, 2019.

W. Shi, Y. Li, and R. C. de Lamare, "Novel sparse array design based on the maximum inter-element spacing criterion,” IEEE Signal Processing Letters, 2022.

X. Sheng, D. Lu, Y. Li, and R. C. de Lamare, “Enhanced MISC-based sparse array with high uDOFs and low mutual coupling,” IEEE Trans. Circuits and Systems II:
Express Briefs, 2024.

X. Li, H. Yang, J. Han, and N. Dong, “A novel low-complexity method for near-field sources based on an S-IMISC array model,” Electronics, 2023.
S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

19



Sparse array: Performance evaluation

DOF ratio:
NZ
N) = —
y(N) s
S,.: one-side uniform DOF (uDOF) . | | | | |
Coupling leakage: - ¥ Nested
< % ANAL2 ERAMS
H — diag(H 2357 ' ]
ran | g(H) e g0
|H || E ICNA TS-ENA
H: mutual coupling matrix whqse 8 Al e -ENAMS-2 .
elements depends on the distance ¥ GENAMS
between elements ' ' ! '
0.1 0.15 0.2 0.25 0.3 0.35
Simulations assumed Coupling Leakage, £(N)
Clio ifj—k|l<V
H):, = lj=1l» _
(H)ji {O, otherwise (N=30)
with ¢, = 1, ¢; = 0.2e/™/3, || = L
C1 b

S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

0.4

20



T
'|" Sparse signal reconstruction

Compressive sensing problems are expressed as
min [|x|[, s.t. y= dx
X

= Considering noise, a more general expression is
min [[xllo s.tlly — ®xll; <€

where € > 0 specifies the tolerable bound.
= Because of the [, norm operation, such problems are non-convex and NP-hard.

* Greedy algorithms

Greedy construction of “support” (=column combination) by adding one-by-one/best choice at
each iteration: Orthogonal matching pursuit (OMP), ...

= Convex relaxation
Approximation of the cost by convex functions (typically /;-norm recovery): LASSO (least
absolute shrinkage and selection operator), ...

= Probabilistic inference
(Approximate) employment of probabilistic inference: Bayesian compressive sensing (sparse
Bayesian learning)

21
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| Sparsity-based DOA estimation

Sparsity-based DOA estimation:
z =vec(R,,) =Ab+02i=A°D°
 The linear coarray model well fits into the compressive sensing problem by defining
dense dictionary matrix A9 over a grid, e.g., [—90: 1:90]:
mzin IbY||y s.t. [|lz — AIDbI||, <€

* The positions of the nonzero solutions of b9 represent the signal DOA

» This approach does not require a specific array structure (e.g., consecutive coarray lags)
and all difference lags can be utilized in sparsity-based DOA estimation: Unique lags

Md Ld Nd
CADiIS (Coprime array with displaced subarrays): S_E‘) 5 $ g vee O
« Displaces two subarrays to increases unique lags 0 1 N-l 0 1 M =2
« Very low mutual coupling W W

* In general, the resulting lags are disconnected in the

center region M=M/pwith2<p<M

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015.

22
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I Sparse array: CADiS

n.. consecutive lags; n,: unique lags

XXX 00X 00000500 00T ORISR BB DD EX BB XN XX EXXECX X XDEX08 000000 00 00 R0ORT ORGSR DRI IR X BB X X @X XS

-55 -560 -45 -40 -35 -30 -26 -20 <15 10 -5 O & 10 15 20 25 30 35 40 45 &0 59

M=3p=2N=7L=M+N,n. =331, =89

080 <0 0000050 080 00 00 DOE W0 B0 500 B0 SD0 B 08 W0 B4 BX EX T X0 D000 DN DO B0 D0 B0 05 000 30 N T N I T 6X e

-45 -40 =35 -30 -25-20-15-10 =6 0 & 10 15 20 25 30 35 40 45

M=2p=3N=7L=M+N,n,=38n, =87

-40 -35 -30 -26 -20 <15 10 -6 O S5 10 156 20 256 30 35 40

M=1p=6N=7L=M+N,n. =851, =85

(@) L > (M — 2)N achieves the maximum number of unique lags
(b) L = M + N yields the largest number of consecutive lags

In CADIS configurations, the self-lags are less likely to coincide with the cross-lags:

A smaller value of
M reduces the
unique lags and
reduces the
number of holes

The lags become
consecutive when
M = 1 (nested
array)

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015.

23
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“|"¥ Sparse arrays: Comparison

Consider M =6 and N = 7 with M + N — 1 = 12 physical sensors
 LASSO-based method achieves better DOA estimation performance
« When LASSO is used, CADIS generally outperforms CACIS

2 1l m |
3 M B wwh ! A )A I
\f\vruAU\\,f‘w’WM"U\Jld’v‘\‘{\v;‘JM i IW \"v\vu\,ﬂlw\'““UL““!J\ | U 1L
(a) CACIS with i = 3 (n. = 47) (a) CACIS with M =1 (n, = 71) (a) CACIS with M = 2 (n,, = 65)
R | i MR
2 Il 2 Ml |
E ‘”1 F U\J \ : ’ ‘JL f\f !
> JI JU f\ J ‘ 5" \ ” IV }
<) SR
'E’_gg/_e‘o - _2'0H“wJ 20 \ - 10 —isb -40 —Lz‘/o\‘ HLA h!\g o 6‘(} 80 1 g 60 -40 20 0 20 40 60 80
(b) CACIS with M = 2 (n, = 59) (b) CADiS with M = 1 (5, = 85) (b) CADiS with M = 2 (n,, = 87)
MUSIC (26 signals) MUSIC (36 signals) LASSO (33 signals)

24
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I Off-grid problem

A major problem with the compressive sensing-based DOA estimation approach is that the
DOAs must be on the defined grid, e.g., [-90°: 1°: 90°].

Signals arriving from other DOAs will suffer the off-grid problem, e.g., signal from —4.6°.

* Less sparse solution 1° grid DOA estimatio

s rp 1 1 ‘ ; ;
Difficult to converge 40 460
] ] § 0.8 § 0.8
Solutions in the context of g £
: . 2. 0.6 2.0.6 | 1
compressive sensing: : g
 Finer grid resolution Té 41 7;@ o4
* Grid refining g 0.2 5 0.2

0 (degrees) 0 (degrees)

An attractive method is to complete the covariance matrix (matrix completion) so that
conventional subspace-based methods (e.g., MUSIC) can be applied.

25
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I8 Matrix completion

Netflix problem: Predict unknown scores.

The data is low-rank, but the dictionary is
unknown (unlike CS).

Let Q be the region where the elements of matrix
M are observed (i.e., {M;;|(i,j) € Q}), matrix
completion finds a low-rank full matrix X which
matches M:

m}}n rank(X) subjectto X;; =M;; V (i,j) € Q

Because the problem involves matrix rank, it is non-convex and NP-hard.
Therefore, the matrix rank is often relaxed, e.g., to its nuclear norm:

m}}n ||X||* S.t. Xl] = Ml] \4 (l,]) € ()

where |[|X]|, = tr(vVX®X): nuclear norm of matrix X

26



II 60 O8O e 80 e e o e
. . - . OO O0OO0OO0OO0OO0OO0OO0OO0OO0O0OO0
| Structured matrix completion of covariance matrix 50000050000000
4O O O O O O O O O O O O 0Of
® O O e O @ OO e @ O @ u=
. . . 6. OO O @O0 0 e O e
A matrix cannot be completed when an entire row or column is 2200000000000
missing in the observed matrix. e o2e8eesSeece
. . . OO O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0
« Cannot complete covariance matrix of physical array “e00e0ee00 680
 However, for ULA, we can recover the covariance matrix utilizing EEEEEEEEEREK]
its Toeplitz and Hermitian structure ceccsssssssces
« The completed covariance matrix can be defined by only a single cetcccccscccaes
column vector w as 7(w), and obtained from the nuclear norm ceccccccccses
minimization coecescceaces
. 2 C e @ O © @ 06 06 06 0 0 0 o
min  |[[TW) = Ry] ° B[, + 11T W) Poteos e
subjectto  T(w) >0 In a Hermitian Toeplitz matrix, a
where Q) single column w uniquely specifies
o 1, if(i,j) € Q all the elements of the matrix
B : mask matrix with [Bql;;i =4/ ol '
ot [Bal;; 0, otherwise
R,: observed sparse covariance matrix (nonzero only in By) wi| Wy Wz Wy
&: regularization parameter Tw) =|"2| W1 W2 W3
W3| Wy Wi W
H. Qiao and P. Pal, "Unified analysis of co-array interpolation for direction-of-arrival estimation," IEEE ICASSP, 2017. Wyl W3 Wy Wil

C. Zhou, Y. Gu, Z. Shi, and Y. D. Zhang, "Off-grid direction-of-arrival estimation using coprime array interpolation,"
IEEE Signal Processing Letters, 2018.

27



Structured matrix completion of covariance matrix

Atomic norm
* A more general alternative is based on the minimization of the atomic norm.
» Using atomic set A = {a;}, an observation vector can be expressed as

x=Zciai, aiEc/l

; A
 The atomic norm of x is defined as conv(M
x|l = inf{t = 0: x € t - conv(A)}

where conv(A) is the convex hull of conv(A)}

t=|lzll 4 >*

Rank minimization-based structure matrix reconstruction
« Both nuclear and atomic norm minimization problems approximate rank minimization.
» To prevent the approximation loss, the rank function can be reformulated a multi-convex form.

C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, "Direction-of-arrival estimation for coprime array via virtual array interpolation," IEEE Trans. Signal
Processing, 2018.
Y. Chi and M. Ferreira Da Costa, "Harnessing sparsity over the continuum: Atomic norm minimization for superresolution," IEEE Signal Processing Magazine, 2020.

S. Liu, Z. Mao, Y. D. Zhang, and Y. Huang, "Rank minimization-based Toeplitz reconstruction for DoA estimation using coprime array," IEEE Communications

Letters, July 2021. 28



I Matrix completion-aware sparse array design

Matrix completion

» Fills in information in missing lags

« Converts missing holes in the lag from obstacles in consecutive-lag construction into a resource for
aperture extension

« Enabling off-grid DOA estimation with larger array apertures

Direct SR S ey G--G}----L{} O-O0-0O-0O0-0 00 O0-0-0-0-0-0-0---- O--O----- O---
MUSIC -12 10 -9 , 7 6 5 4 3 2 41 0 1 2 3 4 5 6 7 : 9 10 12

- T TETETETETEEmEmE_—_—_——— 1
“n,::t?il)((: with :G —————— -0+ 00000000000 -O0-0-0-0-ix- OO OH--
completion |12 -1-10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 :

With such capability, how shall we consider the “optimality” of a sparse array?

We introduce optimized non-redundant array (ONRA):

« Redundancy-free: Each lag only appears once (except lag-0)
* Introduce holes in the lag for reducing mutual coupling and enlarging array aperture
* Optimized using mixed-integer linear programming approach (not systematical)

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.
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Non-redundant sparse array: Comparison

« Comparison for 6-sensor arrays (DOA estimation for 5 o || o comme
13 sources; LASSO) T o

-1

« ONRA has very low mutual coupling effect as the T, oz o4 05 o5 :

[l [l " " [l " |Cl|
minimum interelement spacing is 2 units RMSE for two closely spaced source case

ONRA (16 lags; max lag 22)

MISC array (14 lags; max lag 13)

Coprime array (9 lags; max lag 9)  Nested array (12 lags; max lag 11)
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A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021. 20
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I Automotive radar application L o Fweveform ™

A ‘I‘Hn 1|
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« Radar has emerged as one of the key technologies in . o -
.- . 2 2 ompressed pulse
autonomous driving systems. 3 I
 Low-cost implementation % |
- . . . . .y E _/\/\/\nil 'u'f\-f\/\/‘\_
* Resilient sensing in all weather/lighting conditions N - -/
 Automotive radar first performs range Doppler l lﬁ:gl l Thooulse Tl
mapping, and the result data may only provide few . . e
(even one) data samples. 5. 3
A large aperture in both azimuth and elevation is & A
important to identify objects and enable drive-over and PP ¥ Lo aa

drive-under.

 To achieve a A8 = 1° resolution, a 2D array with an
aperture of D =1.4/(msin(A8/2)) = 51 wavelengths
IS needed in each dimension.

« Very few antennas can be used to keep a low cost.

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented
approach,” IEEE Journal of Selected Topics in Signal Processing, 2021.

S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and
waveform design in 4D automotive radar," IEEE Signal Processing Society Webinar Series, Sept. 2023.
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MIMO radar and sum coarray

« Sparse 2-D MIMO radar is commonly used to achieve
sum coarray.

« The sum coarray in a MIMO radar is synthesized as
S={x+y|x€eS;,y €Sg}, where S; and S are Tx
| 2

and Rx antenna positions. i Vituol X

« Texas Instruments (TI) s
AWRx Cascaded Radar RF a - L
Evaluation Module Rk S et R S e
(MMWCAS-RF-EVM)  use L P
12 Tx 16 Rx configuration to
provide a large horizontal - ALH I - . " " L

sum coarray and small
vertical aperture.

_--III;IIIII::L-==l.l'lll=l-l.l==E:lllll.lllIlIIIIIIIIIII;LIlIIIIII========IIIIIIIIIIIIIIIIIIIIIII

LLE Y] L LY EEEEEEERE
LLdd LL R L FEEFREERR
# L = & & [

S D gmE NNy e E DO i g LN gy o o .y

Sum coarray

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing,
2021.
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| Automotive radar application

Simulation example:

« Consider randomly placing 12 Tx and 16 Rx antennas in about 100 half-wavelength 2D
range with 196 virtual antennas: Very sparse antenna placement

« Direct 2-D imaging renders high sidelobes due to missing elements in the sum coarray

« Data completion is important to recover a uniform rectangular array (URA) and reduce the
sidelobes

 How to perform data completion when there is a single snapshot?

100 w w N — w 200 ; : ; ‘ ‘ ‘ : : . 0 : ; 0
° x X
90r © o Rx|] 180 & o © 00 ° 1 -10
& o o o o o

80 x x o 180 o o O ° o O 1 0- % 20 0-
= = § o %o e O°o ° -20
g ™ M 50 o O?J Lo Q o°o o . 30 m | 5
§ 60 - %;120 Ooooo oo o o Joo o | g 40 oy ‘
3 o o 000 9 oo = =
Z =0 ° T ° 3 {:900 %800 © oo°gog%o§%o @o g 0 ’ 50 g
o o jete) oo © o o [¢] f L EhiA AR <]
= 0 ° ° = eof o o o 0% B %  ° & ool I li ‘t'L"h‘n"FM | 0 =
8 o 3 o 00 oo, o© IR T -100
£ a0 T eof o P, e ° 9°%0 % 1 TR T 70
2 ox s ° %, 0003% 00 80 . it | L

20 o 40 o © o0 ] T ! -80

. & o Py
10 o o 20 & 08 %o %0 SRR < 50 =
o o o o e !
00 2‘0 40‘ GOI 80‘ 160 120 Oo 2Io 46 slo éo 160 ° 1£n WA;OA 1&0 -|éo 200 B e e T e
Horizontal [Half Wavelength] Horizontal [Half Wavelength] Blavation'[degree] Azimuth [degree] Elgvation [dagrae] Azimuth [degree]
Physical antennas virtual sensors of sum coarray  Azimuth & elevation imaging without completion and with completion

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing,
ab 2021. 33
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I Automotive radar application

Hankel matrix construction for M-element ULA:
- Assume noiseless array response y = [y4, ¥, ..., ¥u 1’ , We construct a Hankel matrix as

V1 V2 YL
Y2 Y3 o YL+1
H(y)=|Y3 Y4  Vi+2
Ym, Ymy+1 0 Ym

where L is the pencil parameterand M; =M - L+ 1

« When K (K < M; and K < L) sources imping to the array, the Hankel matrix H (y) has a
Vandermonde decomposition structure ' (y) = A X.B" with rank K, where

j2md sin(6x) j2m(My—-1)d sin(8;) 1"
A =[a(6), a@)] witha) = [Le 1 e g ]
j2md sin(6y) j2m(L—1)d sin(8;)17
B = [b(el)r'ib(eK)] with b(ek) = llle A y'tt, € A ]

¥; = diag([f1, -, Bk])

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing,
2021.

S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal
Processing Society Webinar Series, Sept. 2023.
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I Automotive radar application

Hankel matrix completion for sparse linear array:
Y1 Y2 Y3 Va Ym
O O O O @ @) @

* Missing sum coarray elements render a Hankel matrix with missing elements:

V1 Y2 RN A

V2 vt YL+

H(y) = . Y4 Yi+2
Ym, Ymi+1 0 YMm

« The forward-only Hankel matrix completion problem is to find a Hankel matrix H (y) that
has a minimum rank and its distance to the original data matrix at the observed
positions meets the required error bound §:

min rank(?—[ (x))
st [ Hx)oM—-—HYI|F<d
where M is a mark matrix.

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing,
2021.

S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal
Processing Society Webinar Series, Sept. 2023.
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|8 Multi-frequency sparse array

« Difference coarray is obtained from array data covariance
matrix, which requires time-domain snapshots.

Transmitted signals

 Can we further utilize resources in other domains, such as 5 Yy
frequency? g

» Multi-frequency/frequency-switching sparse arrays exploit Received signals
two or more frequencies to obtain virtual arrays: Trade o o o

. A sparse ULA
frequency resource to spatial resources.

| e e el e e e k| et i i i i il el e
! D : ! Md  Integers M; and M, are coprime :
| I |
| ; i ® @ i | o - O |
L0 1 2 L-1 | | 2 L-1 :
|
i l- | : :
: D:Mi?,i:]_,..-,[ : : 3 L.l :
I —_—
I I | I
! Sparse ULA ! ! Equivalent structure with two coprime frequencies :

S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation exploiting a uniform linear array with multiple co-prime frequencies,” Signal Processing, 2017.
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|8 Multi-frequency sparse array

0 6 24
Maximize the number of virtual i @ ®
sensors: choosing the array -7 3 ________ .? %
configuration and frequencies such that iy & 9 36
the virtual sensors corresponding to f=¥
different frequencies do not overlap.
- n—;‘ fmzﬂllﬂ 135 IO HJ__SZ:H 310 3‘5H | 0 5 10 15 20 25 0 35
Example: 3 antennas, 3 frequencies RERE e B
« 7 virtual sensors at {0,6,7,9,24,28,36}d, .| =
where d denotes half-wavelength without  »j -
H e % = o e e = 25 |
referring to a specific frequency === ESec = B
* 10 non-negative self-lags: 5 e o= = . _
[ Missing 0 Selflg [ Cmss-lagi { O Mising M Seflg [ Crossag |

12 non-negative cross-lags:
» All lags appear only once (redundancy-free)

More detailed on multi-frequency sparse array to be discussed in

Keynote: Harnessing Frequency Diversity for Enhanced Direction-of-Arrival Estimation
Third Workshop on Signal Processing for Autonomous Systems

held in conjunction with EUSIPCO 2025, on September 12

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.
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1'% Part lll: Sparse Waveform Design and Processing

e Sparse waveforms in slow-time and step frequencies

e Shared waveform design via integer partitioning




Radar operation

Typical radar operations: le 2
Yo /// g / LFM waveform
. Perio?ically transmit same probing l l Raw data l \/\/W/VW\ f\‘/\ /ﬂ
wavertorms samples i |
: VA
 Matched filtering of received signal 3 ; Compressed pulse
waveforms provides range information = 3
* Fourier transform of slow-time data yields -% : NM/\NM
target Doppler (velocity) information s r \ /
Range
l l compressionl l Doppler (velocity)
_ .
o 2 . :
g 15
. N
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| Sparse time-domain sampling for spectrum estimation

« Spectrum usage becomes increasingly B A
congested. P _ A
e . fﬁ‘()Af Transmit pulse
- Traditional radar waveforms like frequency- 1 ;sar _
modulated continuous-wave (FMCW) /.44 o B Receive duration
. . . . +3A1
signals offer high-resolution range and /.,y | _ Unused band
Doppler estimation but consume substantial £ +a7 [ vy !
time-frequency resources. > _ SEng

« Sparse waveform design strategically
minimizes time-frequency occupancy while
preserving high-resolution sensing.

Frequency

LSS

Time

N AL

(b) Time

Frequency

« We explore sparse step-frequency and
slow-time pulse designs as well as sparsity-
based range-Doppler processing.

Frequency

() Time

S. Sun and Y. D. Zhang, "4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach," IEEE Journal of Selected Topics in Signal

Processing, 2021.
L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, "Automotive FMCW radar with difference co-chirps," IEEE Trans. Aerospace and Electronic Systems, 2023. 40
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|9 Difference co-chirp-based FMCW radar

 Consider a uniformly spaced chirp set S = {m;,m,,...,my}, with m; describing the

position of the i-th chirp.
| ‘ . | |

« Difference co-chirp set

Frequency

Saife = {m; — m;},Vi,j €S

Time

 For FMCW radar with nested chirps, : We
now examine the FMCW radar that
schedules its slow-time emission
following the nested chirp relationship.

Frequency

(© Time

.. i i i Nested chirps and lags
« Similar defined for co-prime chirps.

« Offerings:
« High Doppler resolution with few chirps
« Significantly reduced interference to victim radars
« Support multiple radars simultaneous transmission with low interference
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|9 Difference co-chirp-based FMCW radar

Assuming K signals in the scene, the noise-free received signal x(m,t) corresponding
to the m-th pulse is expressed a

x(m, t) = rect (t _ ;nTp > efz”[fc+%(t—mTp)](t—mTp)]

Directly obtain Doppler from sparse pulses would result in high sidelobes.

To perform co-chirp processing, we need to obtain a high number of “snapshots” to
construct the second-order covariance matrix.

In many applications such as automotive radar, the Doppler shift during fast-time
sampling of a single chirp can be considered constant.

We treat the Q fast-time samples as “snapshots” for sample Doppler covariance matrix
construction:

Q
1 H
Rnested — 5 E xnested(xnested)
q=1

By vectorizing R, esteq, the co-chirp signal model is #esteq = Vec(Rpested)-
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| Sparse time-domain sampling for spectrum estimation

How to support multiple sensing platforms in a fair way?

We develop a novel strategy to partition a one- or multi-dimensional consecutive integer
number set into multiple identical, possibly rotated, subsets.

The obtained subsets are required to have consecutive difference lags which are desired to be
as long as possible.

The proposed technique first exploits one-dimensional nested subsets, and the results are
extended to achieve two- and multi-subset partitioning as well as in two- and multi-dimensional

spaces.

The results are useful to various sensing and communication applications. Sparse step-
frequency waveform design for range estimation in automotive radar is demonstrated as an

example.
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Sparse design: From a single platform to multiple platforms

Many sparse array configurations have been

| (N; +1)d N
developed. 56 s OO e o
N antennas can be used to achieve 0(N?) lags. ?fTJ — s
ubarray uoarray
Nested array family is a poplar choice to achieve Nested sparse arrays

consecutive lags 'l.

This concept has also been adopted in radar
waveform design, such as using nested slow- Nested slow-time pulses
time pulses and fast-time step frequencies 2 3l

V/// / /

Time

Frequency

Frequency

From single-radar design to multi-radar design

« Existing array processing and waveform design - - -
schemes only consider a single radar platform. Time

. Giving a uniform 1-D or 2-D array, uniform Sparse step frequencies and slow-time pulses
slow-time pulses, and/or uniform step frequencies, can we partition them into multiple identical
subsets, each achieving consecutive lags, so that they support multiple radars without mutual
interference?

[1] P. Pal and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Processing, 2010.
[2] S. Sunand Y. D. Zhang, "4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach," IEEE J. Selected Topics in Signal Processing, 2021.
[3] L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, "Automotive FMCW radar with difference co-chirps," IEEE Trans. Aerospace and Electronic Systems, 2023.
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I8 |dentical partitioning of integer set

« We address this problem by first considering the identical
partitioning of an integer set.

« LetQ={1,--,Q}be a 1-D set of Q continuous integers, where Q
IS an even integer.

 The objective is to partition Q into ¢ = 2 subsets, i.e., Q = Q; U
- U Q, such that each subset Q,, Q,, - - -, Q¢

 has an identical, possibly rotated (flipped), pattern

« has consecutive difference lags, as long as possible
Example
« Partition consecutive set Q = {1,- - -, 8} into ¢ = 2 subsets.

 Interleaved partitioning: uniform undersampling pattern leads to
equally spaced gaps in the difference lags and causing alias

« Localized partitioning: provides consecutive lags, but the lags
only extend between -3 and 3

 Nested partitioning: a preferred choice as it provides consecutive
lags between -5 and 5

Y. D. Zhang and S. Sun, "Identical partitioning of consecutive integer set," IEEE SAM Workshop, 2024.

(a) Interleaved partitioning

(b) Localized partitoning

(c) Nested partitioning

.................

-7 6-5-4-3-2-10123 456 7
Lag
(a) Interleaved partitioning

76-5-4-3-2-10123465€67
Lag
(b) Localized partitioning

0 .
7-6-54-3-2-1012345F67
Lag
(c) Nested partitioning
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I8 |dentical partitioning of integer set

* For two-subset partitioning, the first nested subset consists of 2 consecutive elements as
inner group, followed by an arbitrary number (N) of outer group elements separated by 2.

 For each subset with N + 2 elements, their locations are given as
{1,2,4,6,--,2N,2N + 2}and {3,5,-:-,2N — 1,2N + 1,2N + 3,2N + 4}
- Each subarray offers consecutive lags between —2N — 1 and 2N + 1. N =3

Multi-dimensional partitioning vl . & . g . : .-

« We can extend two-subset 1-D partitioning results into a
multi-dimensional case, illustrated using a 2-D example.

y-direction
y-direction

» Outer product of m;-' and m_>) with g;, g, = 1, 2:

(2T
Mg1;gz = My, (mgz)

* Partitioned subsets can be used for 2-D array or
array/waveform combinations.

y-direction
y-direction

Example:

* For N, = 2 and N, =3, each subset forms the same
continuous difference lag setin [-5:5, -7 : 7].

x-direction x-direction
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Multi-layer 1-D partitioning

* Vectorizing the masking matrix or tensor into a vector, we obtain a multi-layer partitioning
scheme where the partitioning pattern is the Kronecker product of D subsets (D > 2):

My, .gp = Mg, @ - Qmy, my,

with g1, 95, -, gp = 1, 2, yielding G = 2P identical subsets.

Example:

* D=2layswithN; =2and N, =3  _, N, =3

* 4 identical subsets with same 61 oL LI TT e —
consecutive lags in each subset : — S —— . — ——

« More subsets are obtained with e S S

less lag redundancy

20F 7

&)

Occurance
-— -—
(@) ] o
T T T
| | |

Such results can be extended to multi-
dimensional case.

0
60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60
Lag




Impl
i\ Application example: Range estimation

Normalized amplitude

L iy
0 50 100 150 200 250 300
Range (m)

« Consider an example that performs range estimation exploiting
sparse frequencies.

« 3 targets with ranges of 227 m, 230 m, and 232 m. =N

« Step-frequency continuous-wave (SFCW) radar where B = 200 | Interleaved pattern
MHz bandwidth is divided into 400 frequency bins (f, = 0.5 MHz).

« For a single radar unit, the range resolution is AR = 0.75 m, and the oty Y e
maximum unambiguous range is R,.x = 300 m. T Ve

« When the 400 step frequencies are partitioned into 4 orthogonal
subsets to allow 4 radars to operation without interference, each | _ _ |
subset utilizes 100 step frequencies: LT w0

o Interleaved partitioning: The step frequency is increased to 4f, = 2 Localized pattern
MHz, reducing unambiguous range to 75 m. — T T T T

o Localized partitioning: The bandwidth is reduced to B/4, thus
compromising the range resolution to 3 m.

o Proposed super-nested portioning: The unambiguous range remain
the same, and the maximum frequency span of each waveform is 357
step frequencies, rendering range resolution to be 0.84 m (a 12%
degradation).

Normalized amplitude
o
o

[ey=]
LS
S |

Normalized amplitude

Normalized amplitude

i
i ) b
. o bl el B bl
bt M Al gt ST B TN

0 50 100 150 200 250 300
Range (m)

Normalized amplitude

Normalized amplitude

20 225 230 235 240
Range (m)

Partitioning pattern 4g
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I8 |dentical division of integer set

« To provide higher design flexibility with improved efficiency, we consider identical division.
« The difference between division and partitioning is that not all elements are used in the

division scheme.
TR e

 For identical division of subsets with core (4) Nested partition (showing for N — 3)

elements separated by 3, the positions are given

as B S EeeE -
{1,3,6,9,---,3N — 3,3N,3N + 1} (b) Identical division (showing for K = 1 and N = 3)
{4,5,8,11,---,3N — 1,3N + 2,3N + 4}

« Both subarrays have consecutive difference lags
between —3N and 3N.

Occurance
o =< N W s 00

« For the same number of subset elements, the T
identical division scheme provides N —1 (a) Weight function of difference lags from nested partition
additional lags in each side compared to identical .
partitioning. g

A. Namboothiri, M. W. Chowdhury, and Y. D. Zhang, "Non-overlapping identical division of ;

integer set," Asilomar Conference on Signals, Systems, and Computers, 2024.

49



Il
I8 |dentical division of integer set

We can similarly form multilayer division schemes.

In a 2-layer (D = 2) case, 4 subsets are obtained,
and the number of consecutive lags of each
subset is increased to (3N;)(3N,+4) +
(3N,) from (2N; + 4)(2N, + 1) + (2N; + 1).

Example

When the same number of 20 subset elements
are used as the previous example, where N; = 2
and N, =3, a subset in the identical division
scheme achieves 96 consecutive lags, compared
to 61 in the identical partition case.

The occurrence graph (histogram of lags) clearly
shows reduced redundancy in the identical
division.

Iin IINE N [INE WINE | [ [ |
13 26 39 52 65 78 91 104 17 130
| Il BNIN BRI | W [ Hrn
13 26 39 52 85 78 91 104 117 130
CHn N NN | BTN BN | | |
13 26 39 52 65 78 91 104 117 130
I IINE BINN ININ] mIrmi
13 26 39 52 65 78 91 104 117 130

(a) Four subset identical division of a consecutive integer set.

NNl TEEIEETEEIEEr . T
13 26 39 52 65 78 91 104 117 130

(b) Union set of the four identically divided subsets

20!

-
w
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=
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1

-100 -80 60 -40 20 0 20 40 60 80 100
Lags for Nested Partitioning

Occurence
=)

n
1

0
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1L Application example: Range estimation

g | |
« Consider a step-frequency radar with available bandwidth % |
B = 200 MHz. ‘V'\ !
§ " -,;‘.,',,\If .‘fu‘lj\’ ! k.“;'q IRV A Y 'L.'w'-'\-\'l“ '\'.r"jﬂ | H_“I,\'n‘l, v M
« Three targets are located at ranges of 264 m, 265 m, and 2 oyt bbethibdbiivaly Tl

266 m Range (m)

« D =2 layers, providing 4 radars with interference-free
subsets of step frequency bins.

Normalized amplitude
o
[4,] —

260 262 264 266 268 270

Identical partition Range ¢m)
Identical partition
i N1 = Nz — 6 P

* Ny = 256 frequency bins with Af = 781.25 kHz.
* Rpax = 192 m: Not enough to provide unambiguous range

Normalized amplitude
=]
tn

! .
‘h.fulw.-a.‘-,,ig, [

. . .‘..'H..‘.1..'.-‘.+.,,u,,,,w.um,a-;_.L, et Mt bt A sty
eStImatlon 06# 50 1‘30 ' W“|50 200 250 300 350
Range (m)
|dentical division g
E
[} N 1 -_ N 2 -_ 6 EOS
Ny = 484 frequency bins with Af = 413.22 kHz. B,V V'V
260 262 264 266 268 270
Range (m)

Rpax = 363 m: enable unambiguous range estimation

Identical division



Application example: Range-Doppler estimation

* By exploiting fast-time data samples to compute second-order covariances, consecutive
slow-time lags are obtained from the sparsely partitioned slow-time pulses.

« For FMCW radar used for short-range target detection, all fast-time data may be used to
compute the autocorrelation function for slow-time data.

Slow-time pulses

* For pulse radar waveforms with a low duty cycle, the Lo
autocorrelation function can be computed based only on
the fast-time data associated with the range cells where :
targets are detected in target range estimation.

 Reduced computational complexity as fewer range
cell data are used

« Reduced noise effect as target-free fast-time samples
are excluded - . . .

« Does not require range-Doppler association because
Doppler estimation is separately performed for each
range cell

Range cells

L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, "Automotive FMCW radar with difference co-chirps," IEEE Trans. Aerospace and Electronic Systems, 2023.
M. W. T. S. Chowdhury, Y. D. Zhang, and B. Himed, "Sparse radar waveform design exploiting consecutive integer set partitioning," IEEE Int. Radar Conf., 2025.
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Application example: Range-Doppler estimation

« 256 slow-time slots in a CPI, which are divided into 4 super-nested slow-time pulse
subsets.

« Three targets are present: (M

« Two targets at a range of 100 km |
with radial velocities of 100 m/s and 1

o o
| — > | > [
& &

105 m/s

* Another target at 99.6 km with radial
velocity of 90 m/s

 The input SNR of the raw data is
— 30 dB for all targets.

10° 1 1
—— Estimated range 7' ' - : ' ™ : ‘ ‘ —— Est. velocity for partition 3(a) ‘
Ground truth 09 " E2r velcty forparon a(5) 09 | Est.vaosty for parton 3(0)
® 0.8 ||—Est. velocity without partition i 0.8 - | Est. velocity without partition
3 Ground truth Ground truth
2 107" 1 07}
£ | 1P
5 w 5
D I 1 gosr
N N
E } 1 Eoa
E1o02r | 2 o i)
=2 | :
| 02r
| 01
10_3 I | I | 1 1 I L 1 0 L L L L . . . 0 . . . L L L I
29 99.2 99.4 99.6 20.8 100 100.2 100.4 100.6 100.8 101 150 100 50 0 50 100 150 0 15 30 45 60 75 90 105 120 135 150 0 15 30 45 60 75 90 105 120 135 150
Range (km) Velocity (m/s) Velocity (m/s) Velocity (m/s)
Range spectrum of the three targets Doppler estimation using 2D FFT and partitioning
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General issues

-

Sparse Array Design and Processing

A: More consecutive lags and lower coupling
B. Sparsity-based DOA estimation

C. Structured matrix completion for DOA
estimation

Sparse Waveform Design and Processing

A: Sparse waveforms in slow-time and step
frequencies

B. Shared waveform design via integer
partitioning

.

~

* Low-complexity implementations
« Performance and bound analysis
* Robustness issues

Two/multi-dimensional arrays
« Array design

« Extreme sparse arrays
= . Tensor-based processing

Bandwidth exploitation

* DOF analysis for wideband signals
* Low-complexity solutions

* Fractional sparse arrays

Signal coherency

/ » Coherent/correlated signals

» Mixed uncorrelated/coherent signals
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-

Sparse Array Design and Processing

A: More consecutive lags and lower coupling
B. Sparsity-based DOA estimation

C. Structured matrix completion for DOA
estimation

Sparse Waveform Design and Processing

A: Sparse waveforms in slow-time and step
frequencies

B. Shared waveform design via integer
partitioning

.

~

—

General issues

* More generalized waveform solutions

* Real-world requirements and
processing capability

« Performance and bound analysis

* Limited samples

« Adaptivity in dynamic situations

Joint domain design
» Fast- and slow-time waveforms
» Sparse array and sparse waveforms

Other considerations
« Strong interference
« Signal coherency
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