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Section I. Introduction

Section II. Sparse Array Design and Processing

    A: More consecutive lags and lower coupling

B. Sparsity-based DOA estimation
C. Structured matrix completion for DOA estimation

Section III. Sparse Waveform Design and Processing

A: Sparse waveforms in slow-time and step frequencies

B. Shared waveform design via integer partitioning

Section IV. Concluding Remarks
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Part I: Introduction

• Direction-of-arrival (DOA) estimation and applications 

• Narrowband array signal model

• Beamforming-based DOA estimation
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• Array processing uses multiple sensors 
(antennas, microphones, transducers) 
and plays a fundamental role in wireless 
communications, radar and sonar 
sensing, autonomous driving, speech 
separation, and medical imaging

• Beamforming
• Signal enhancement
• Interference cancellation
• Multi-user detection
• Multiple-input multiple-output (MIMO) 

systems
• Increased channel capacity 

• Sensing: Localization/imaging
• Ground-to-air radar
• Automotive radar
• Sonar
• Ultrasonic imaging

Applications of array processing
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Radar sensing often requires high-resolution results 
in four dimensions (4-D imaging): 
• Range: range resolution and accuracy are 

determined by signal bandwidth 

Four-dimensional sensing

We first discuss sparse array design and processing for DOA 
estimation, and waveform design for range and Doppler 
estimation will follow: 
• more signals
• higher resolution
• few sensors  
We mainly consider 1-D DOA estimation using linear arrays. 
Most results can be easily modified for 2-D DOA estimation with 
additional complexity. 

Doppler frequency 

R
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e

Clutter

Target

• Doppler frequency: corresponding to radial velocity with 
its resolution determined by pulse repetition frequency 

• Azimuth and elevation angles
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Signal model for ULA

Narrowband array signal model 
• uniform linear array (ULA)
• 𝐾𝐾 far-field signals

 𝒙𝒙 𝑡𝑡 = �
𝑘𝑘=1

𝐾𝐾

𝑠𝑠𝑘𝑘 𝑡𝑡 𝒂𝒂 𝜃𝜃𝑘𝑘 + 𝒏𝒏 𝑡𝑡 = 𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝒏𝒏(𝑡𝑡)

  
                                                                   : steering vector

        𝐀𝐀 = [𝒂𝒂 𝜃𝜃1 ,𝒂𝒂 𝜃𝜃𝐾𝐾 ,⋯ ,𝒂𝒂 𝜃𝜃𝐾𝐾 ]: array manifold matrix

        𝒔𝒔 𝑡𝑡 = 𝑠𝑠1 𝑡𝑡 ,⋯ , 𝑠𝑠𝐾𝐾 𝑡𝑡 T: signal vector

DOA estimation: determine the directions of signal arrivals, 𝜃𝜃1,⋯ , 𝜃𝜃𝐾𝐾, from the received 
signal vector 𝒙𝒙(𝑡𝑡) over (typically) multiple samples 𝑡𝑡 = 1,⋯ ,𝑇𝑇. 

𝑠𝑠𝑘𝑘 𝑡𝑡

θ

d

𝑠𝑠𝑘𝑘(𝑡𝑡) 𝑒𝑒𝑗𝑗2𝜋𝜋(𝑑𝑑/𝜆𝜆) sin 𝜃𝜃𝑘𝑘

𝒂𝒂 𝜃𝜃 =

1
𝑒𝑒𝑗𝑗2𝜋𝜋(𝑑𝑑/𝜆𝜆)sin(𝜃𝜃)

⋮
𝑒𝑒𝑗𝑗𝑗𝑗𝑗(𝑁𝑁−1)(𝑑𝑑/𝜆𝜆)sin(𝜃𝜃)

𝑠𝑠𝑘𝑘(𝑡𝑡)
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Beamforming-based DOA estimation

Let’s first consider traditional DOA estimation 
approach through beamforming: 
• For 𝐱𝐱(𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝐚𝐚(𝜃𝜃0) , by assuming  𝒘𝒘 = 𝒂𝒂(𝜃𝜃) with 

different 𝜃𝜃 , the magnitude of 𝑦𝑦(𝑡𝑡,𝜃𝜃) = 𝒂𝒂H(𝜃𝜃)𝒙𝒙(𝑡𝑡) =
𝑠𝑠(𝑡𝑡)𝒂𝒂H(𝜃𝜃)𝒂𝒂(𝜃𝜃0) is peaked at 𝜃𝜃0. 

• This approach has a low resolution because the 
beamwidth is wide. 

• Note that the resolution is determined by the array 
aperture. 
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Beamforming-based DOA estimation

Achieving high resolution: 
• Larger array aperture 

• More sensors: High cost 
• Large spacing (uniform): Alias
• Sparse arrays (irregular): To be discussed further

• High-resolution DOA estimation methods
• Adaptive beamforming (e.g., MVDR)
• Maximum likelihood estimation
• Subspace-based methods, e.g., MUSIC, ESPRIT
• Compressive sensing (sparse reconstruction)
• Machine learning  
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Part II: Sparse Array Design and Processing

• More consecutive lags and lower coupling

• Sparsity-based DOA estimation

• Structured matrix completion for DOA estimation
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Subspace-based DOA estimation

Subspace-based DOA estimation techniques based on the subspace analysis of the 
covariance matrix are commonly used to achieve a high resolution.  
Eigen-decomposition of the covariance matrix

 𝑹𝑹𝒙𝒙𝒙𝒙 = 𝑬𝑬 𝒙𝒙 𝑡𝑡 𝒙𝒙𝐻𝐻 𝑡𝑡 =  �
𝑖𝑖=1

𝐾𝐾

𝜆𝜆𝑖𝑖𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊H  +  �
𝑖𝑖=𝐾𝐾+1

𝑁𝑁

𝜎𝜎𝑛𝑛2𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊H  =  𝑼𝑼𝒔𝒔𝚺𝚺𝒔𝒔𝑼𝑼𝒔𝒔H  +  𝑼𝑼𝒏𝒏𝚺𝚺𝒏𝒏𝑼𝑼𝒏𝒏H

Observations: 
• The signal subspace and the noise subspace are orthogonal: 𝑼𝑼𝒔𝒔H𝑼𝑼𝒏𝒏 = 𝟎𝟎. 
• Valid signal steering vectors are orthogonal to the noise subspace: 𝑨𝑨H𝑼𝑼𝒏𝒏 = 𝟎𝟎. 

Pseudo spatial spectrum of MUSIC (MUltiple SIgnal Classification): 

• Only 1-D search is needed for multiple signals.
• An 𝑁𝑁-element ULA can detect 𝑁𝑁 − 1 signals.   
• Knowledge of the number of signals 𝐾𝐾 is required. 

Signal subspace      Noise subspace 

𝑃𝑃 𝜃𝜃 =
1

𝒂𝒂H 𝜃𝜃 𝑼𝑼𝑛𝑛𝑼𝑼𝑛𝑛H𝒂𝒂 𝜃𝜃
= 𝑼𝑼𝑛𝑛H𝒂𝒂 𝜃𝜃 2

−2
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Difference coarray

Subspace-based DOA estimation exploits the data covariance matrix 𝑹𝑹𝒙𝒙𝒙𝒙.
For a ULA with uncorrected signals: 
• 𝑹𝑹𝒙𝒙𝒙𝒙 is Toeplitz (diagonal-constant) and Hermitian 
• 𝑹𝑹𝒙𝒙𝒙𝒙 is highly redundant: Only 𝑁𝑁 elements are unique in the 𝑁𝑁 × 𝑁𝑁 covariance matrix
• We may not need 𝑁𝑁 sensors to estimate the 𝑁𝑁 × 𝑁𝑁 covariance matrix
 

d

𝑹𝑹𝒙𝒙𝒙𝒙 =

E[𝑥𝑥1𝑥𝑥1∗] E[𝑥𝑥1𝑥𝑥2∗] E[𝑥𝑥1𝑥𝑥3∗] E[𝑥𝑥1𝑥𝑥4∗]
E[𝑥𝑥2𝑥𝑥1∗] E[𝑥𝑥2𝑥𝑥2∗] E[𝑥𝑥2𝑥𝑥3∗] E[𝑥𝑥2𝑥𝑥4∗]
E[𝑥𝑥3𝑥𝑥1∗] E[𝑥𝑥3𝑥𝑥2∗] E[𝑥𝑥3𝑥𝑥3∗] E[𝑥𝑥3𝑥𝑥4∗]
E[𝑥𝑥4𝑥𝑥1∗] E[𝑥𝑥4𝑥𝑥2∗] E[𝑥𝑥4𝑥𝑥3∗] E[𝑥𝑥4𝑥𝑥4∗]

Consider removing the third sensor from a 4-
element ULA:
• All the entries of the ULA covariance matrix 

can be recovered: e.g., E 𝑥𝑥2𝑥𝑥3∗ ⇒  E 𝑥𝑥1𝑥𝑥2∗ .
• The 4-element ULA and the 3-element 

sparse array are different coarray 
equivalent because they generate the same 
number of correlation lags. 

• For physical array 𝔾𝔾, the difference lags are 
given as: ℂ𝐺𝐺 = {𝒛𝒛|𝒛𝒛 = 𝒖𝒖 − 𝒗𝒗,𝒖𝒖,𝒗𝒗 ∈ 𝔾𝔾}. -2 -1 0 1-3 2 3

Correlation lags (difference coarray)
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Direct MUSIC-based DOA estimation

Vectorizing 𝑹𝑹𝒙𝒙𝒙𝒙 yields
𝒛𝒛 = vec 𝑹𝑹𝑥𝑥𝑥𝑥  = �𝑨𝑨 𝒃𝒃 + 𝜎𝜎𝑛𝑛 

2 𝒊̃𝒊 = 𝑨𝑨𝑜𝑜𝒃𝒃𝑜𝑜

�𝑨𝑨 = 𝒂𝒂 𝜃𝜃1 ⨂𝒂𝒂∗ 𝜃𝜃1 , … ,𝒂𝒂 𝜃𝜃𝑄𝑄 ⨂𝒂𝒂∗ 𝜃𝜃𝑄𝑄 : Manifold matrix for the difference coarray

𝒃𝒃 = 𝜎𝜎12, … ,𝜎𝜎𝑄𝑄2
T
: Source power vector

𝒊̃𝒊 = vec(𝑰𝑰𝑁𝑁)
𝑨𝑨𝑜𝑜 = [�𝑨𝑨, �𝑰𝑰] 
𝒃𝒃𝑜𝑜 = 𝒃𝒃T,𝜎𝜎n2 T 

𝒛𝒛 acts as received data of a virtual array (difference coarray)
• Manifold matrix corresponds to virtual sensors which are much more than physical antennas
• Only a single snapshot corresponding to vector 𝒃𝒃
• Subspace-based DOA estimation cannot be directly applied because the single-snapshot 

covariance matrix 𝒛𝒛𝒛𝒛𝐻𝐻 is rank-1 

P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.
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Direct MUSIC-based DOA estimation

Spatial smoothing

• By dividing the rank-1 matrix 𝑹𝑹  into 𝐾𝐾 = (𝑁𝑁𝑧𝑧 + 1)/2 
subarrays 𝑹𝑹𝑘𝑘, their average 1

𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝑹𝑹𝑘𝑘 becomes rank-𝐾𝐾. 

• It is equivalent to placing the elements of 
𝒛𝒛 = 𝑧𝑧− 𝐾𝐾−1 ,⋯ , 𝑧𝑧𝐾𝐾−1

𝑇𝑇 in a Hermitian and Toeplitz manner.

• Only consecutive lags can be used for this purpose (e.g., 
lags of [−7:1:7]; detect up to 7 signals). 

• In this context, optimum design of parse arrays is to 
• A high number of consecutive lags
• Low mutual coupling (few lag-1 and lag-2 pairs)

   

�𝑹𝑹𝑥𝑥𝑥𝑥 =

𝑧𝑧0 𝑧𝑧1 ⋯ 𝑧𝑧𝐾𝐾−1
𝑧𝑧−1 𝑧𝑧0 ⋯ 𝑧𝑧𝐾𝐾−2
⋮ ⋮ ⋱ ⋮

𝑧𝑧−(𝐾𝐾−1) 𝑧𝑧−(𝐾𝐾−2) ⋯ 𝑧𝑧0

P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” IEEE Digit. Signal Process. Workshop/ IEEE Signal Process. Educ. Workshop, 2011.
C.-L. Liu and P. P. Vaidyanathan, "Remarks on the Spatial Smoothing Step in Coarray MUSIC," IEEE Signal Processing Letters, 2015.

𝑹𝑹𝑹𝑹1
𝑹𝑹2

𝑹𝑹𝐾𝐾

Example: 𝑁𝑁𝑧𝑧 = 15,𝐾𝐾 = 8
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Minimum redundancy array

Minimum redundancy array (MRA): For a given 
number of physical sensors, MRA maximizes the 
number of consecutive virtual sensors in the resulting 
difference coarray.
• Restricted arrays: All lags are consecutive
• General arrays: Not all lags are consecutive

The difference lags an 𝑁𝑁-element sparse array can 
achieve is in the order of 1

2
𝑁𝑁(𝑁𝑁 − 1). 

For an MRA, the redundancy is defined as 𝑅𝑅 =
1
2𝑁𝑁(𝑁𝑁−1)

𝑁𝑁max 
, 

where 𝑁𝑁max is the maximum number of consecutive 
lags. 
• 𝑅𝑅 is found to be 1.217 ≲ 𝑅𝑅 ≲ 1.674. 
However, MRA cannot be systematically designed. 

A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas and Propagation, 1968.
M. Ishiguro, "Minimum redundancy linear arrays for a large number of antennas," Radio Science, 
1980. 



15

A
 S
 P
 Lab

Systematical sparse array design: Nested array

Systematical design: Nested array is a simple sparse array configuration which consists of 
two uniform linear subarrays, one of which has a unit spacing.   

P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Trans. Signal Processing, 2010.

[Pal and Vaidyanathan’10]

• For nested arrays, all lags are consecutive. 
• Depending on the applications, the high number of consecutive 

physical sensors may cause high mutual coupling effect, 
degrading DOA estimation performance. 

• Mutual coupling brings higher impact when the interelement 
spacing is small (e.g., half-wavelength spacing or less).

• The coprime array is proposed as an alternative to nested array. 
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Systematical sparse array design: Coprime array

Coprime array: utilizes a pair of uniform linear subarrays 
with 𝑀𝑀 and 𝑁𝑁 being coprime integers (greatest common 
divisor gcd(𝑀𝑀,𝑁𝑁)  =  1).
Example: 𝑀𝑀 = 3 and 𝑁𝑁 = 5 (6 elements)

Physical array

Coarray

P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime sampler and arrays,” IEEE Trans. Signal Processing, 2011

• Unlike nested arrays, coprime arrays generally have holes in the resulting lags.
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Problems:
• Coprime array: have holes in the lags
• Nested array: high mutual coupling
CACIS (Coprime array with compressed inter-element spacing):
Compresses the interelement spacing of one subarray �𝑀𝑀 = 𝑀𝑀/𝑝𝑝 with 2 ≤ 𝑝𝑝 ≤ 𝑀𝑀 to increase 
the number of consecutive lags 𝜂𝜂𝑐𝑐

Generalized coprime arrays: CACIS

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015. 

Example: 𝑀𝑀 = 6,𝑁𝑁 = 7

�𝑀𝑀 = 3,𝑝𝑝 = 2,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 47 

�𝑀𝑀 = 2, 𝑝𝑝 = 3,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 59

�𝑀𝑀 = 1,𝑝𝑝 = 6,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 71 (nested)

�𝑀𝑀 = 6,𝑝𝑝 = 1,𝑁𝑁 = 7, 𝜂𝜂𝑐𝑐 = 25 (prototype)

(Only showing nonnegative lags)
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More consecutive lags and less mutual coupling

J. Liu, Y. Zhang, Y. Lu, S. Ren and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Trans. Signal Processing, 2017.
A. Raza, W. Liu and Q. Shen, "Thinned coprime array for second-order difference co-array generation with reduced mutual coupling," IEEE Trans. Signal 
Processing, 2019.

Many sparse arrays are proposed for (i) more 
consecutive lags and (ii) less mutual coupling. 
• Augmented nested array: Split the densely 

located elements in inner subarray to reduce 
the mutual coupling. Several variations. 

• Thinned Coprime Array: Provides the same 
number of consecutive lags, unique lags, and 
aperture as the conventional coprime array 
but with fewer sensors.
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Modified  versions:  Use  more
segments to achieve higher freedom 
and better performance
• Improved MISC (I-MISC)
• Enhanced MISC (EMISC)
• Symmetry improved MISC (S-IMISC)
• Extended MISC (xMISC)

Sparse array: MISC family

Z. Zheng, W-Q. Wang, Y. Kong, and Y. D. Zhang, "MISC Array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling 
effect," IEEE Trans. Signal Processing, 2019. 
W. Shi, Y. Li, and R. C. de Lamare, ”Novel sparse array design based on the maximum inter-element spacing criterion,” IEEE Signal Processing Letters, 2022.
X. Sheng, D. Lu, Y. Li, and R. C. de Lamare, “Enhanced MISC-based sparse array with high uDOFs and low mutual coupling,” IEEE Trans. Circuits and Systems II: 
Express Briefs, 2024. 
X. Li, H. Yang, J. Han, and N. Dong, “A novel low-complexity method for near-field sources based on an S-IMISC array model,” Electronics, 2023. 
S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

with 𝑃𝑃 = 2 𝑁𝑁/4 + 2  (𝑁𝑁 ≥ 5)

MISC (4 segments)

I-MISC (6 segments)

MISC (maximum interelement spacing constraint): A four-segment configuration to 
achieve a high number of consecutive lags with low mutual coupling

xMISC (7 segments)
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S. Wandale and K. Ichige, “xMISC: Improved sparse linear array via maximum inter-element spacing concept,” IEEE Signal Processing Letters, 2023.

DOF ratio: 
𝛾𝛾 𝑁𝑁 =

𝑁𝑁2

𝒮𝒮𝑢𝑢
         𝒮𝒮𝑢𝑢: one-side uniform DOF (uDOF)

Coupling leakage:

ℒ 𝑁𝑁 =
𝑯𝑯− diag 𝑯𝑯 F

𝑯𝑯 F

    𝑯𝑯: mutual coupling matrix whose 
elements depends on the distance 
between elements

         Simulations assumed

𝑯𝑯 𝑗𝑗,𝑙𝑙 = �
𝑐𝑐|𝑗𝑗−𝑙𝑙|,  if 𝑗𝑗 − 𝑘𝑘 ≤ 𝑉𝑉
0,  otherwise 

        with 𝑐𝑐0 = 1, 𝑐𝑐1 = 0.2𝑒𝑒𝑗𝑗𝑗𝑗/3, 𝑐𝑐𝑏𝑏
𝑐𝑐𝑙𝑙

= 𝑙𝑙
𝑏𝑏

Sparse array: Performance evaluation

(𝑁𝑁=30)
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Sparse signal reconstruction

 Compressive sensing problems are expressed as
min
𝒙𝒙

𝒙𝒙 0 s. t.  𝒚𝒚 = 𝚽𝚽𝒙𝒙

 Considering noise, a more general expression is
min
𝒙𝒙

𝒙𝒙 0 s. t. 𝒚𝒚 −𝚽𝚽𝒙𝒙 2 ≤ 𝜖𝜖

      where 𝜖𝜖 > 0 specifies the tolerable bound. 
 Because of the 𝑙𝑙0 norm operation, such problems are non-convex and NP-hard. 

 Greedy algorithms 
Greedy construction of “support” (=column combination) by adding one-by-one/best choice at 
each iteration: Orthogonal matching pursuit (OMP), … 

 Convex relaxation 
Approximation of the cost by convex functions (typically l1-norm recovery): LASSO (least 
absolute shrinkage and selection operator), …

 Probabilistic inference 
(Approximate) employment of probabilistic inference: Bayesian compressive sensing (sparse 
Bayesian learning) 
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Sparsity-based DOA estimation

Sparsity-based DOA estimation: 

𝒛𝒛 = vec 𝑹𝑹𝑥𝑥𝑥𝑥  = �𝑨𝑨 𝒃𝒃 + 𝜎𝜎𝑛𝑛 
2 𝒊̃𝒊 = 𝑨𝑨𝑜𝑜𝒃𝒃𝑜𝑜

• The linear coarray model well fits into the compressive sensing problem by defining 
dense dictionary matrix 𝑨𝑨𝑔𝑔 over a grid, e.g., [−90: 1: 90]: 

min
𝒛𝒛

𝒃𝒃𝑔𝑔 0 s. t. 𝒛𝒛 − 𝑨𝑨𝑔𝑔𝒃𝒃𝑔𝑔 𝟐𝟐 ≤ 𝜖𝜖

• The positions of the nonzero solutions of 𝒃𝒃𝑔𝑔 represent the signal DOA

• This approach does not require a specific array structure (e.g., consecutive coarray lags) 
and all difference lags can be utilized in sparsity-based DOA estimation: Unique lags

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015. 

�𝑀𝑀 = 𝑀𝑀/𝑝𝑝 with 2 ≤ 𝑝𝑝 ≤ 𝑀𝑀 

CADiS (Coprime array with displaced subarrays): 
• Displaces two subarrays to increases unique lags 
• Very low mutual coupling
• In general, the resulting lags are disconnected in the 

center region
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In CADiS configurations, the self-lags are less likely to coincide with the cross-lags:
(a) 𝐿𝐿 > 𝑀𝑀− 2 𝑁𝑁 achieves the maximum number of unique lags
(b) 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁 yields the largest number of consecutive lags

Sparse array: CADiS

S. Qin, Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Trans. Signal Processing, 2015. 

�𝑀𝑀 = 3, 𝑝𝑝 = 2,𝑁𝑁 = 7, 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁, 𝜂𝜂𝑐𝑐 = 33, 𝜂𝜂𝑢𝑢 = 89

�𝑀𝑀 = 2, 𝑝𝑝 = 3,𝑁𝑁 = 7, 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁, 𝜂𝜂𝑐𝑐 = 38, 𝜂𝜂𝑢𝑢 = 87

�𝑀𝑀 = 1,𝑝𝑝 = 6,𝑁𝑁 = 7, 𝐿𝐿 = �𝑀𝑀 + 𝑁𝑁, 𝜂𝜂𝑐𝑐 = 85, 𝜂𝜂𝑢𝑢 = 85

• A smaller value of 
�𝑀𝑀 reduces the 
unique lags and 
reduces the 
number of holes 

• The lags become 
consecutive when 
�𝑀𝑀 = 1 (nested 
array)

𝜂𝜂𝑐𝑐: consecutive lags; 𝜂𝜂𝑢𝑢: unique lags
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Sparse arrays: Comparison

Consider 𝑀𝑀 = 6 and 𝑁𝑁 = 7 with 𝑀𝑀 + 𝑁𝑁 − 1 = 12 physical sensors
• LASSO-based method achieves better DOA estimation performance
• When LASSO is used, CADiS generally outperforms CACIS

(a)  CACIS with �𝑀𝑀 = 3 (𝜂𝜂𝑐𝑐 = 47)

(b)  CACIS with �𝑀𝑀 = 2 (𝜂𝜂𝑐𝑐 = 59)

MUSIC (𝟐𝟐𝟐𝟐 signals)

(a)  CACIS with �𝑀𝑀 =1 (𝜂𝜂𝑐𝑐 = 71)

(b)  CADiS with �𝑀𝑀 = 1 (𝜂𝜂𝑐𝑐 = 85)

MUSIC (𝟑𝟑𝟑𝟑 signals)

(a)  CACIS with �𝑀𝑀 = 2 (𝜂𝜂𝑢𝑢 = 65)

(b)  CADiS with �𝑀𝑀 = 2 (𝜂𝜂𝑢𝑢 = 87)

LASSO (𝟑𝟑𝟑𝟑 signals)
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A major problem with the compressive sensing-based DOA estimation approach is that the 
DOAs must be on the defined grid, e.g., [−90o : 1o : 90o]. 

Signals arriving from other DOAs will suffer the off-grid problem, e.g., signal from −4.6o.

• Less sparse solution
• Difficult to converge

Solutions  in  the  context  of 
compressive sensing: 
• Finer grid resolution
• Grid refining
• Off-grid estimation

An attractive method is to complete the covariance matrix (matrix completion) so that 
conventional subspace-based methods (e.g., MUSIC) can be applied. 

Off-grid problem

1o grid DOA estimation

−4o −4.6o
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Matrix completion

Netflix problem: Predict unknown scores. 
The data is low-rank, but the dictionary is 
unknown (unlike CS). 

Let Ω be the region where the elements of matrix 
𝑴𝑴  are observed (i.e., {𝑀𝑀𝑖𝑖𝑖𝑖| 𝑖𝑖, 𝑗𝑗 ∈ Ω} ), matrix 
completion finds a low-rank full matrix 𝑿𝑿 which 
matches 𝑴𝑴: 

min
𝑿𝑿

rank 𝑿𝑿 subject to 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖  ∀ (𝑖𝑖, 𝑗𝑗) ∈ Ω

Because the problem involves matrix rank, it is non-convex and NP-hard.
Therefore, the matrix rank is often relaxed, e.g., to its nuclear norm: 

       where  ||𝑿𝑿||∗ = tr( 𝑿𝑿𝐻𝐻𝑿𝑿): nuclear norm of matrix 𝑿𝑿

min
𝑿𝑿

||𝑿𝑿||∗ s.t. 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖 ∀ (𝑖𝑖, 𝑗𝑗) ∈ Ω
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Structured matrix completion of covariance matrix

A matrix cannot be completed when an entire row or column is 
missing in the observed matrix. 
• Cannot complete covariance matrix of physical array
• However, for ULA, we can recover the covariance matrix utilizing 

its Toeplitz and Hermitian structure
• The completed covariance matrix can be defined by only a single 

column vector 𝒘𝒘 as 𝓣𝓣(𝒘𝒘), and obtained from the nuclear norm 
minimization

      where    

           𝑩𝑩Ω: mask matrix with 𝑩𝑩Ω 𝑖𝑖𝑖𝑖 = �1,  if 𝑖𝑖, 𝑗𝑗 ∈ Ω
0,  otherwise

           𝑹𝑹𝒚𝒚: observed sparse covariance matrix (nonzero only in 𝑩𝑩Ω)          
 𝜉𝜉: regularization parameter

min
𝐳𝐳

𝓣𝓣 𝒘𝒘 − 𝑹𝑹𝒚𝒚 ∘ 𝑩𝑩Ω 𝐹𝐹
2 + 𝜉𝜉||𝓣𝓣(𝒘𝒘)||∗

subject to 𝓣𝓣 𝒘𝒘 ≽ 𝟎𝟎
0 2 4 6 8 10 12
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H. Qiao and P. Pal, "Unified analysis of co-array interpolation for direction-of-arrival estimation," IEEE ICASSP, 2017.
C. Zhou, Y. Gu, Z. Shi, and Y. D. Zhang, "Off-grid direction-of-arrival estimation using coprime array interpolation," 
IEEE Signal Processing Letters, 2018.

𝓣𝓣 𝒘𝒘 =

𝑤𝑤1 𝑤𝑤2∗ 𝑤𝑤3∗ 𝑤𝑤4∗
𝑤𝑤2 𝑤𝑤1 𝑤𝑤2∗ 𝑤𝑤3∗
𝑤𝑤3 𝑤𝑤2 𝑤𝑤1 𝑤𝑤2∗
𝑤𝑤4 𝑤𝑤3 𝑤𝑤2 𝑤𝑤1
𝒘𝒘

In a Hermitian Toeplitz matrix, a 
single column w uniquely specifies 
all the elements of the matrix.
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Atomic norm 
• A more general alternative is based on the minimization of the atomic norm. 
• Using atomic set 𝒜𝒜 = {𝒂𝒂𝑖𝑖}, an observation vector can be expressed as

𝒙𝒙 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝒂𝒂𝑖𝑖 , 𝒂𝒂𝑖𝑖 ∈ 𝒜𝒜

• The atomic norm of 𝒙𝒙 is defined as
𝒙𝒙 𝒜𝒜 = inf{𝑡𝑡 ≥ 0: 𝑥𝑥 ∈ 𝑡𝑡 ⋅ conv(𝒜𝒜)}

    where conv 𝒜𝒜  is the convex hull of conv(𝓐𝓐)}

Rank minimization-based structure matrix reconstruction
• Both nuclear and atomic norm minimization problems approximate rank minimization. 
• To prevent the approximation loss, the rank function can be reformulated  a multi-convex form. 

Structured matrix completion of covariance matrix

C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, "Direction-of-arrival estimation for coprime array via virtual array interpolation," IEEE Trans. Signal 
Processing, 2018. 
Y. Chi and M. Ferreira Da Costa, "Harnessing sparsity over the continuum: Atomic norm minimization for superresolution," IEEE Signal Processing Magazine, 2020. 
S. Liu, Z. Mao, Y. D. Zhang, and Y. Huang, "Rank minimization-based Toeplitz reconstruction for DoA estimation using coprime array," IEEE Communications 
Letters, July 2021.
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Matrix completion-aware sparse array design 

Matrix completion 
• Fills in information in missing lags
• Converts missing holes in the lag from obstacles in consecutive-lag construction into a resource for 

aperture extension
• Enabling off-grid DOA estimation with larger array apertures

With such capability, how shall we consider the “optimality” of a sparse array? 
We introduce optimized non-redundant array (ONRA):
• Redundancy-free: Each lag only appears once (except lag-0)
• Introduce holes in the lag for reducing mutual coupling and enlarging array aperture 
• Optimized using mixed-integer linear programming approach (not systematical)

Direct 
MUSIC

MUSIC with 
matrix 
completion

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.
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Non-redundant sparse array: Comparison

A. Ahmed and Y. D. Zhang, "Generalized non-redundant sparse array designs," IEEE Trans. Signal Processing, 2021.

• Comparison for 6-sensor arrays (DOA estimation for 
13 sources; LASSO)

• ONRA has very low mutual coupling effect as the 
minimum interelement spacing is 2 units

Coprime array (9 lags; max lag 9)      Nested array (12 lags; max lag 11 )       MISC array (14 lags; max lag 13)           ONRA (16 lags; max lag 22) 
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• Radar has emerged as one of the key technologies in 
autonomous driving systems. 
• Low-cost implementation

• Resilient sensing in all weather/lighting conditions

• Automotive radar first performs range Doppler 
mapping, and the result data may only provide few 
(even one) data samples. 

• A large aperture in both azimuth and elevation is 
important to identify objects and enable drive-over and 
drive-under.

• To achieve a ∆𝜃𝜃 = 1o resolution, a 2D array with an 
aperture of 𝐷𝐷 = 1.4/(𝜋𝜋 sin(∆𝜃𝜃/2)) ≈ 51 wavelengths 
is needed in each dimension.

• Very few antennas can be used to keep a low cost.

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented 
approach,” IEEE Journal of Selected Topics in Signal Processing, 2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and 
waveform design in 4D automotive radar," IEEE Signal Processing Society Webinar Series, Sept. 2023.
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MIMO radar and sum coarray

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.

• Sparse 2-D MIMO radar is commonly used to achieve 
sum coarray. 

• The sum coarray in a MIMO radar is synthesized as 
𝑆𝑆 = 𝑥𝑥 + 𝑦𝑦 𝑥𝑥 ∈ 𝕊𝕊𝑇𝑇  ,𝑦𝑦 ∈ 𝕊𝕊𝑅𝑅}, where 𝕊𝕊𝑇𝑇 and 𝕊𝕊𝑅𝑅 are Tx 
and Rx antenna positions.

Rx

Tx

Sum coarray

• Texas Instruments (TI) 
AWRx Cascaded Radar RF 
Evaluation Module 
(MMWCAS-RF-EVM) use 
12 Tx 16 Rx configuration to 
provide a large horizontal 
sum coarray and small 
vertical aperture. 
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Simulation example: 
• Consider randomly placing 12 Tx and 16 Rx antennas in about 100 half-wavelength 2D 

range with 196 virtual antennas: Very sparse antenna placement
• Direct 2-D imaging renders high sidelobes due to missing elements in the sum coarray
• Data completion is important to recover a uniform rectangular array (URA) and reduce the 

sidelobes  
• How to perform data completion when there is a single snapshot?  

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.

Physical antennas             virtual sensors of sum coarray      Azimuth & elevation imaging without completion and with completion              
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Hankel matrix construction for 𝑀𝑀-element ULA: 
• Assume noiseless array response 𝒚𝒚 = 𝑦𝑦1, 𝑦𝑦2, … ,𝑦𝑦𝑀𝑀 𝑇𝑇, we construct a Hankel matrix as

ℋ 𝒚𝒚 =

𝑦𝑦1 𝑦𝑦2 ⋯ 𝑦𝑦𝐿𝐿
𝑦𝑦2 𝑦𝑦3 ⋯ 𝑦𝑦𝐿𝐿+1
𝑦𝑦3 𝑦𝑦4 ⋯ 𝑦𝑦𝐿𝐿+2 
⋮ ⋮ ⋱ ⋮
𝑦𝑦𝑀𝑀1 𝑦𝑦𝑀𝑀1+1 ⋯ 𝑦𝑦𝑀𝑀

     where 𝐿𝐿 is the pencil parameter and 𝑀𝑀1 = 𝑀𝑀− 𝐿𝐿 + 1
• When 𝐾𝐾 (𝐾𝐾 <  𝑀𝑀1 and 𝐾𝐾 <  𝐿𝐿) sources imping to the array, the Hankel matrix ℋ 𝒚𝒚  has a 

Vandermonde decomposition structure ℋ 𝒚𝒚 = 𝑨𝑨 𝚺𝚺𝑠𝑠𝑩𝑩𝑇𝑇 with rank 𝐾𝐾, where

 𝑨𝑨 = 𝒂𝒂 𝜃𝜃1 ,⋯ ,𝒂𝒂(𝜃𝜃𝐾𝐾)  with 𝒂𝒂 𝜃𝜃𝑘𝑘 = 1, 𝑒𝑒
𝑗𝑗2𝜋𝜋𝜋𝜋 sin 𝜃𝜃𝑘𝑘

𝜆𝜆 ,⋯ , 𝑒𝑒
𝑗𝑗2𝜋𝜋 𝑀𝑀1−1 𝑑𝑑 sin 𝜃𝜃𝑘𝑘

𝜆𝜆
𝑇𝑇

 𝑩𝑩 = 𝒃𝒃 𝜃𝜃1 ,⋯ ,𝒃𝒃(𝜃𝜃𝐾𝐾)  with 𝒃𝒃 𝜃𝜃𝑘𝑘 = 1, 𝑒𝑒
𝑗𝑗2𝜋𝜋𝜋𝜋 sin 𝜃𝜃𝑘𝑘

𝜆𝜆 ,⋯ , 𝑒𝑒
𝑗𝑗2𝜋𝜋 𝐿𝐿−1 𝑑𝑑 sin 𝜃𝜃𝑘𝑘

𝜆𝜆
𝑇𝑇

 𝚺𝚺𝑠𝑠 = diag([𝛽𝛽1,⋯ ,𝛽𝛽𝐾𝐾])

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal 
Processing Society Webinar Series, Sept. 2023.
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Hankel matrix completion for sparse linear array: 

• Missing sum coarray elements render a Hankel matrix with missing elements:

ℋ 𝒚𝒚 =

𝑦𝑦1 𝑦𝑦2 ⋯ 𝑦𝑦𝐿𝐿
𝑦𝑦2 𝑦𝑦3 ⋯ 𝑦𝑦𝐿𝐿+1
𝑦𝑦3 𝑦𝑦4 ⋯ 𝑦𝑦𝐿𝐿+2 
⋮ ⋮ ⋱ ⋮
𝑦𝑦𝑀𝑀1 𝑦𝑦𝑀𝑀1+1 ⋯ 𝑦𝑦𝑀𝑀

• The forward-only Hankel matrix completion problem is to find a Hankel matrix ℋ 𝒚𝒚  that 
has a minimum rank and its distance to the original data matrix at the observed 
positions meets the required error bound 𝛿𝛿: 

 min
𝒙𝒙

 rank ℋ 𝒙𝒙

                         s. t. ℋ 𝒙𝒙 ∘𝑴𝑴−ℋ 𝒚𝒚 𝐹𝐹 ≤ 𝛿𝛿 
     where 𝑴𝑴 is a mark matrix.

Automotive radar application

S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics in Signal Processing, 
2021.
S. Sun and Y. D. Zhang, "Redefining radar perception for autonomous driving: The role of sparse array and waveform design in 4D automotive radar," IEEE Signal 
Processing Society Webinar Series, Sept. 2023.
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• Difference coarray is obtained from array data covariance 
matrix, which requires time-domain snapshots. 

• Can we further utilize resources in other domains, such as 
frequency? 

• Multi-frequency/frequency-switching sparse arrays exploit 
two or more frequencies to obtain virtual arrays: Trade 
frequency resource to spatial resources.

Multi-frequency sparse array

Transmitted signals

Received signals

f1
f2

A sparse ULA

Sparse ULA Equivalent structure with two coprime frequencies

𝐷𝐷 = 𝑀𝑀𝑖𝑖
𝜆𝜆𝑖𝑖
2 , 𝑖𝑖 = 1,⋯ , 𝐼𝐼

D

0 1 2
…

1L −

M1d

…
0 1 2

M2d

…
0 1 2

1L −

1L −

Integers 𝑀𝑀1 and 𝑀𝑀2 are coprime 

S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation exploiting a uniform linear array with multiple co-prime frequencies,” Signal Processing, 2017.
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Maximize the number of virtual 
sensors: choosing the array 
configuration and frequencies such that 
the virtual sensors corresponding to 
different frequencies do not overlap. 

Example: 3 antennas, 3 frequencies

Multi-frequency sparse array

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, "Enhanced DOA estimation exploiting multi-frequency sparse array," IEEE Trans. Signal Processing, 2021.

• 7 virtual sensors at 0, 6, 7, 9, 24, 28, 36 𝑑̅𝑑 , 
where 𝑑̅𝑑 denotes half-wavelength without 
referring to a specific frequency 

• 10 non-negative self-lags:
12 non-negative cross-lags:

• All lags appear only once (redundancy-free)

More detailed on multi-frequency sparse array to be discussed in 
Keynote: Harnessing Frequency Diversity for Enhanced Direction-of-Arrival Estimation
Third Workshop on Signal Processing for Autonomous Systems 
held in conjunction with EUSIPCO 2025, on September 12
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Part III: Sparse Waveform Design and Processing

• Sparse waveforms in slow-time and step frequencies

• Shared waveform design via integer partitioning
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Typical radar operations:

• Periodically transmit same probing 
waveforms 

• Matched filtering of received signal 
waveforms provides range information

• Fourier transform of slow-time data yields 
target Doppler (velocity) information

Radar operation

LFM waveform

Compressed pulse
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• Spectrum usage becomes increasingly 
congested. 

• Traditional radar waveforms like frequency-
modulated continuous-wave (FMCW) 
signals offer high-resolution range and 
Doppler estimation but consume substantial 
time-frequency resources. 

• Sparse waveform design strategically 
minimizes time-frequency occupancy while 
preserving high-resolution sensing.

• We explore sparse step-frequency and 
slow-time pulse designs as well as sparsity-
based range-Doppler processing.

Sparse time-domain sampling for spectrum estimation

S. Sun and Y. D. Zhang, "4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach," IEEE Journal of Selected Topics in Signal 
Processing, 2021.
L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, "Automotive FMCW radar with difference co-chirps," IEEE Trans. Aerospace and Electronic Systems, 2023.
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• Consider a uniformly spaced chirp set 𝕊𝕊 =  {𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑀𝑀}, with 𝑚𝑚𝑖𝑖  describing the 
position of the 𝑖𝑖-th chirp. 

• Difference co-chirp set 
                  𝕊𝕊diff  =  {𝑚𝑚𝑖𝑖  −  𝑚𝑚𝑗𝑗},∀𝑖𝑖, 𝑗𝑗 ∈ 𝕊𝕊 

Difference co-chirp-based FMCW radar

• For FMCW radar with nested chirps, : We 
now examine the FMCW radar that 
schedules its slow-time emission 
following the nested chirp relationship. 

Nested chirps and lags 
• Similar defined for co-prime chirps.
• Offerings: 

• High Doppler resolution with few chirps
• Significantly reduced interference to victim radars
• Support multiple radars simultaneous transmission with low interference
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• Assuming 𝐾𝐾 signals in the scene, the noise-free received signal 𝑥𝑥(𝑚𝑚, 𝑡𝑡) corresponding 
to the 𝑚𝑚-th pulse is expressed a

𝑥𝑥 𝑚𝑚, 𝑡𝑡 = rect
𝑡𝑡 − 𝑚𝑚𝑇𝑇𝑝𝑝 

𝑇𝑇
𝑒𝑒𝑗𝑗2𝜋𝜋[𝑓𝑓𝑐𝑐+

𝐵𝐵
𝑇𝑇 𝑡𝑡−𝑚𝑚𝑇𝑇𝑝𝑝 ](𝑡𝑡−𝑚𝑚𝑇𝑇𝑝𝑝)]

• Directly obtain Doppler from sparse pulses would result in high sidelobes. 
• To perform co-chirp processing, we need to obtain a high number of “snapshots” to 

construct the second-order covariance matrix. 
• In many applications such as automotive radar, the Doppler shift during fast-time 

sampling of a single chirp can be considered constant. 
• We treat the 𝑄𝑄 fast-time samples as “snapshots” for sample Doppler covariance matrix 

construction: 

�𝑹𝑹nested =
1
𝑄𝑄
�
𝑞𝑞=1

𝑄𝑄

𝒙𝒙nested
𝑞𝑞 𝒙𝒙nested

𝑞𝑞 𝐻𝐻

• By vectorizing �𝑹𝑹nested, the co-chirp signal model is �𝒓𝒓nested  =  vec(�𝑹𝑹nested). 

Difference co-chirp-based FMCW radar
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How to support multiple sensing platforms in a fair way? 

We develop a novel strategy to partition a one- or multi-dimensional consecutive integer 
number set into multiple identical, possibly rotated, subsets. 
The obtained subsets are required to have consecutive difference lags which are desired to be 
as long as possible. 
The proposed technique first exploits one-dimensional nested subsets, and the results are 
extended to achieve two- and multi-subset partitioning as well as in two- and multi-dimensional 
spaces. 
The results are useful to various sensing and communication applications. Sparse step-
frequency waveform design for range estimation in automotive radar is demonstrated as an 
example.

Sparse time-domain sampling for spectrum estimation
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Sparse design: From a single platform to multiple platforms
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Many sparse array configurations have been 
developed.
𝑁𝑁 antennas can be used to achieve 𝑂𝑂(𝑁𝑁2) lags. 
Nested array family is a poplar choice to achieve 
consecutive lags [1].
This concept has also been adopted in radar 
waveform design, such as using nested slow-
time pulses and fast-time step frequencies [2, 3].  

From single-radar design to multi-radar design 
• Existing array processing and waveform design 

schemes only consider a single radar platform. 
• Giving  a  uniform  1-D  or  2-D  array,  uniform  

slow-time pulses, and/or uniform step frequencies, can we partition them into multiple identical 
subsets, each achieving consecutive lags, so that they support multiple radars without mutual 
interference? 

Nested sparse arrays

Nested slow-time pulses

Time

Fr
eq

u
en

cy

Sparse step frequencies and slow-time pulses

[1] P. Pal and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Processing, 2010.
[2] S. Sun and Y. D. Zhang, "4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach," IEEE J. Selected Topics in Signal Processing, 2021. 
[3] L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, "Automotive FMCW radar with difference co-chirps," IEEE Trans. Aerospace and Electronic Systems, 2023.
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• We address this problem by first considering the identical 
partitioning of an integer set. 

• Let ℚ = {1,· · · ,𝑄𝑄} be a 1-D set of 𝑄𝑄 continuous integers, where 𝑄𝑄 
is an even integer. 

• The objective is to partition ℚ into 𝐺𝐺 ≥  2 subsets, i.e., ℚ =  ℚ1  ∪
 · · · ∪  ℚ𝐺𝐺 such that each subset ℚ1, ℚ2, · · · , ℚ𝐺𝐺  

• has an identical, possibly rotated (flipped), pattern
• has consecutive difference lags, as long as possible

Identical partitioning of integer set

Example
• Partition consecutive set ℚ = {1,· · · , 8} into 𝐺𝐺 = 2 subsets.

• Interleaved partitioning: uniform undersampling pattern leads to 
equally spaced gaps in the difference lags and causing alias 

• Localized partitioning: provides consecutive lags, but the lags 
only extend between −3 and 3 

• Nested partitioning: a preferred choice as it provides consecutive 
lags between −5 and 5

Y. D. Zhang and S. Sun, "Identical partitioning of consecutive integer set," IEEE SAM Workshop, 2024.
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• For two-subset partitioning, the first nested subset consists of 2 consecutive elements as 
inner group, followed by an arbitrary number (𝑁𝑁) of outer group elements separated by 2. 

• For each subset with 𝑁𝑁 + 2 elements, their locations are given as 
              1, 2, 4, 6,⋯ , 2𝑁𝑁, 2𝑁𝑁 +  2  and {3, 5,⋯ , 2𝑁𝑁 − 1, 2𝑁𝑁 + 1, 2𝑁𝑁 + 3, 2𝑁𝑁 + 4}
• Each subarray offers consecutive lags between −2𝑁𝑁 − 1 and 2𝑁𝑁 + 1. 

Identical partitioning of integer set

𝑁𝑁 = 3

Multi-dimensional partitioning
• We can extend two-subset 1-D partitioning results into a 

multi-dimensional case, illustrated using a 2-D example. 
• Outer product of 𝒎𝒎𝑔𝑔1

[1] and 𝒎𝒎𝑔𝑔2
[2] with 𝑔𝑔1, 𝑔𝑔2 = 1, 2: 

𝑴𝑴𝑔𝑔1,𝑔𝑔2 = 𝒎𝒎𝑔𝑔1
[1] 𝒎𝒎𝑔𝑔2

2 T

• Partitioned subsets can be used for 2-D array or 
array/waveform combinations. 

Example: 
• For 𝑁𝑁1 = 2 and 𝑁𝑁2 =3, each subset forms the same 

continuous difference lag set in [−5 : 5, −7 : 7]. 
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Multi-layer 1-D partitioning
• Vectorizing the masking matrix or tensor into a vector, we obtain a multi-layer partitioning 

scheme where the partitioning pattern is the Kronecker product of 𝐷𝐷 subsets (𝐷𝐷 ≥ 2): 

Identical partitioning of integer set

�𝒎𝒎𝑔𝑔1,…,𝑔𝑔𝐷𝐷 = 𝒎𝒎𝑔𝑔𝐷𝐷 ⊗⋯⊗𝒎𝒎𝑔𝑔2 ⊗𝒎𝒎𝑔𝑔1

with 𝑔𝑔1,𝑔𝑔2,⋯, 𝑔𝑔𝐷𝐷 = 1, 2, yielding 𝐺𝐺 = 2𝐷𝐷 identical subsets.
Example:
• 𝐷𝐷 = 2 lays with 𝑁𝑁1 = 2 and 𝑁𝑁2 = 3
• 4 identical subsets with same 61 

consecutive lags in each subset
• More subsets are obtained with

less lag redundancy  

Such results can be extended to multi-
dimensional case. 

𝑁𝑁2 = 3𝑁𝑁1 = 2
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• Consider an example that performs range estimation exploiting 
sparse frequencies.

• 3 targets with ranges of 227 m, 230 m, and 232 m. 
• Step-frequency continuous-wave (SFCW) radar where 𝐵𝐵 = 200 

MHz bandwidth is divided into 400 frequency bins (𝑓𝑓∆ = 0.5 MHz). 
• For a single radar unit, the range resolution is ∆𝑅𝑅 = 0.75 m, and the 

maximum unambiguous range is 𝑅𝑅max = 300 m.
• When the 400 step frequencies are partitioned into 4 orthogonal 

subsets to allow 4 radars to operation without interference, each 
subset utilizes 100 step frequencies:  
o Interleaved partitioning: The step frequency is increased to 4𝑓𝑓∆ =  2 

MHz, reducing unambiguous range to 75 m. 
o Localized partitioning: The bandwidth is reduced to 𝐵𝐵/4 , thus 

compromising the range resolution to 3 m.
o Proposed super-nested portioning: The unambiguous range remain 

the same, and the maximum frequency span of each waveform is 357 
step frequencies, rendering range resolution to be 0.84 m (a 12% 
degradation).

Application example: Range estimation

Interleaved pattern 

Localized pattern 

Partitioning pattern 
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• To provide higher design flexibility with improved efficiency, we consider identical division. 
• The difference between division and partitioning is that not all elements are used in the 

division scheme. 

Identical division of integer set

• For identical division of subsets with core 
elements separated by 3, the positions are given 
as

1, 3, 6, 9,⋯ ,3𝑁𝑁 − 3,3𝑁𝑁,3𝑁𝑁 + 1
{4, 5, 8, 11,⋯ ,3𝑁𝑁 − 1,3𝑁𝑁 + 2, 3𝑁𝑁 + 4}

• Both subarrays have consecutive difference lags 
between −3𝑁𝑁 and 3𝑁𝑁.

• For the same number of subset elements, the 
identical division scheme provides 𝑁𝑁 − 1 
additional lags in each side compared to identical 
partitioning.

A. Namboothiri, M. W. Chowdhury, and Y. D. Zhang, "Non-overlapping identical division of 
integer set," Asilomar Conference on Signals, Systems, and Computers, 2024.
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• We can similarly form multilayer division schemes.
• In a 2-layer (𝐷𝐷 = 2) case, 4 subsets are obtained, 

and the number of consecutive lags of each 
subset is increased to (3𝑁𝑁1)(3𝑁𝑁2 + 4) +
(3𝑁𝑁2) from (2𝑁𝑁1 + 4)(2𝑁𝑁2 + 1) + (2𝑁𝑁1 + 1).

Example
• When the same number of 20 subset elements 

are used as the previous example, where 𝑁𝑁1 = 2 
and 𝑁𝑁2 = 3 , a subset in the identical division 
scheme achieves 96 consecutive lags, compared 
to 61 in the identical partition case.  

• The occurrence graph (histogram of lags) clearly 
shows reduced redundancy in the identical 
division.   

Identical division of integer set
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• Consider a step-frequency radar with available bandwidth 
𝐵𝐵 = 200 MHz. 

• Three targets are located at ranges of 264 m, 265 m, and 
266 m.

• 𝐷𝐷 = 2 layers, providing 4 radars with interference-free 
subsets of step frequency bins. 

Identical partition
• 𝑁𝑁1  =  𝑁𝑁2  =  6
• 𝑁𝑁𝑓𝑓 = 256 frequency bins with 𝛥𝛥𝑓𝑓 = 781.25 kHz.
• 𝑅𝑅max = 192 m: Not enough to provide unambiguous range 

estimation

Identical division
• 𝑁𝑁1  =  𝑁𝑁2  =  6
• 𝑁𝑁𝑓𝑓 = 484 frequency bins with 𝛥𝛥𝑓𝑓 = 413.22 kHz.
• 𝑅𝑅max = 363 m: enable unambiguous range estimation

Application example: Range estimation

Identical division

Identical partition
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• By exploiting fast-time data samples to compute second-order covariances, consecutive 
slow-time lags are obtained from the sparsely partitioned slow-time pulses.

• For FMCW radar used for short-range target detection, all fast-time data may be used to 
compute the autocorrelation function for slow-time data. 

52

Application example: Range-Doppler estimation

• For pulse radar waveforms with a low duty cycle, the 
autocorrelation function can be computed based only on 
the fast-time data associated with the range cells where 
targets are detected in target range estimation.

• Reduced computational complexity as fewer range 
cell data are used

• Reduced noise effect as target-free fast-time samples 
are excluded

• Does not require range-Doppler association because 
Doppler estimation is separately performed for each 
range cell

L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, "Automotive FMCW radar with difference co-chirps," IEEE Trans. Aerospace and Electronic Systems, 2023.
M. W. T. S. Chowdhury, Y. D. Zhang, and B. Himed, "Sparse radar waveform design exploiting consecutive integer set partitioning," IEEE Int. Radar Conf., 2025.
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Application example: Range-Doppler estimation

• Three targets are present: 
• Two targets at a range of 100 km 

with radial velocities of 100 m/s and 
105 m/s 

• Another target at 99.6 km with radial 
velocity of 90 m/s

• The input SNR of the raw data is 
− 30 dB for all targets.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Doppler estimation using 2D FFT and partitioningRange spectrum of the three targets

(a) (b) (c)

• 256 slow-time slots in a CPI, which are divided into  4 super-nested slow-time pulse 
subsets.

Division of slow-time samples



54

A
 S
 P
 Lab

Sparse array design and processing: What is next?

General issues
• Low-complexity implementations
• Performance and bound analysis
• Robustness issues

Two/multi-dimensional arrays
• Array design 
• Extreme sparse arrays
• Tensor-based processing

Bandwidth exploitation
• DOF analysis for wideband signals
• Low-complexity solutions 
• Fractional sparse arrays

Signal coherency
• Coherent/correlated signals
• Mixed uncorrelated/coherent signals

Sparse Array Design and Processing

    A: More consecutive lags and lower coupling

B. Sparsity-based DOA estimation

C. Structured matrix completion for DOA 
estimation

Sparse Waveform Design and Processing

A: Sparse waveforms in slow-time and step 
frequencies

B. Shared waveform design via integer 
partitioning
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Sparse waveform design and processing: What is next?

General issues
• More generalized waveform solutions
• Real-world requirements and 

processing capability
• Performance and bound analysis
• Limited samples
• Adaptivity in dynamic situations

Joint domain design
• Fast- and slow-time waveforms
• Sparse array and sparse waveforms

Other considerations
• Strong interference
• Signal coherency

Sparse Array Design and Processing

    A: More consecutive lags and lower coupling

B. Sparsity-based DOA estimation

C. Structured matrix completion for DOA 
estimation

Sparse Waveform Design and Processing

A: Sparse waveforms in slow-time and step 
frequencies

B. Shared waveform design via integer 
partitioning
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