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Abstract—Augmented coarrays can be derived from spatially
undersampled signals of sparse arrays for underdetermined
direction-of-arrival (DOA) estimation. With the extended dimen-
sion of sparse arrays, the sampled signals can be modeled as sub-
Nyquist tensors, thereby enabling coarray tensor processing to
enhance the estimation performance. The existing methods, how-
ever, are not applicable to generalized multi-dimensional sparse
arrays, such as sparse planar array and sparse cubic array,
and have not fully exploited the achievable source identifiability.
In this paper, we propose a coarray tensor DOA estimation
algorithm for multi-dimensional structured sparse arrays and
investigate an optimal coarray tensor structure for source identi-
fiability enhancement. Specifically, the cross-correlation tensor
between sub-Nyquist tensor signals is calculated to derive a
coarray tensor. Based on the uniqueness condition for coarray
tensor decomposition, the achievable source identifiability is
analysed. Furthermore, to enhance the source identifiability, a
dimension increment approach is proposed to embed shifting
information in the coarray tensor. The shifting-embedded coarray
tensor is subsequently reshaped to optimize the source identifia-
bility. The resulting maximum number of degrees-of-freedom is
theoretically proved to exceed the number of physical sensors.
Hence, the optimally reshaped coarray tensor can be decomposed
for underdetermined DOA estimation with closed-form solutions.
Simulation results demonstrate the effectiveness of the proposed
algorithm in both underdetermined and overdetermined cases.

Keywords— Coarray tensor, direction-of-arrival estimation,
source identifiability, sparse array, sub-Nyquist tensor.

I. INTRODUCTION

IRECTION-OF-ARRIVAL (DOA) estimation using sen-
sor arrays plays an important role in many applications
including radar, sonar, and wireless communication [2, 3].
However, traditional uniform arrays have to receive signals
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at the Nyquist sampling rate. As such, the system complexity
often becomes infeasible or impractical as the size of array
increases. To break through the limit of Nyquist sampling the-
orem, sparse arrays have recently drawn tremendous attention
due to their ability to receive signals at a sub-Nyquist sampling
rate [4-7]. A series of efforts have been made to achieve DOA
estimation for sparse arrays, which can alleviate the system
burden using sub-Nyquist signals while offering an enlarged
array aperture [8—12].

Among these sparse arrays being developed, the coprime
array [4] and nested array [5] with systematic structures
are popularly considered. DOA estimation methods exploiting
these structured sparse arrays are then developed [13—-15]. In
particular, an array decomposition method is proposed for the
coprime linear array [16], where the Multiple Signal Clas-
sification (MUSIC) is separately performed on the coprime
subarray signals, and their closest spectral peaks are searched
for ambiguity-free DOA estimation. However, the array de-
composition method causes at least half degrees-of-freedom
(DOFs) loss and, as a result, fails to deal with underdetermined
cases. To increase the number of DOFs, augmented virtual
arrays are derived from the second-order sub-Nyquist signal
statistics, such that the coarray MUSIC can be implemented to
achieve underdetermined DOA estimation [13, 17]. After that,
the coarray Estimation of Signal Parameters via Rotational
Invariance Technique (ESPRIT) method [18], the coarray
matrix completion method [19, 20], and the coarray matrix
reconstruction method [21-23] have been proposed within the
framework of coarray processing.

While most of the existing methods deal with one-
dimensional (1-D) arrays which only sense angular informa-
tion in azimuth, real-world applications often require multi-
dimensional information, such as in both azimuth and el-
evation [24]. As such, the arrays need to be extended to
two-dimensional (2-D) [25] and even three-dimensional (3-
D) configurations [26]. In these cases, the above-mentioned
methods still follow the principle of matrix-based signal pro-
cessing, where the multi-dimensional sub-Nyquist signals with
multiple snapshots are simply flattened into a matrix, and the
coarray signal is derived from vectorizing the second-order
covariance matrix. As a result, the structural characteristics
of the sub-Nyquist signals cannot be exploited, resulting in a
performance deterioration. Motivated by this fact, in this paper,
we investigate a more effective strategy of multi-dimensional
sub-Nyquist signal processing to achieve DOA estimation.

Tensor, as an extension of matrix, has been adopted to model
multi-dimensional signals in array processing applications.
Meanwhile, the underlying characteristics of tensor signals
can be exploited via tensor decompositions [27], among
which canonical polyadic decomposition (CPD) [28] is the



representative one. In [29], tensor decomposition is applied
to multi-dimensional uniform array signals for DOA estima-
tion. By incorporating an array virtual translation technique,
a Vandermonde-constrained tensor decomposition-based sub-
space method is proposed to enhance the estimation accuracy
[30]. Furthermore, tensor DOA estimation has been intensively
implemented under deployments of electromagnetic vector
sensor [31], massive antenna array [32], and multiple-input-
multiple-output (MIMO) radar [33]. Meanwhile, a tensor re-
construction approach is designed for coherent sources estima-
tion with uniform arrays [34]. However, the above-mentioned
methods conform to the Nyquist sampling theorem, and the
resulting DOA estimation performance is still restricted by the
uniform array aperture.

More recently, sub-Nyquist tensor processing for DOA
estimation has been proposed to seek the performance break-
through [35]. In particular, the sub-Nyquist temporal sampling
is investigated in [36, 37], where temporally undersampled
tensor signals are completed for DOA estimation. However,
they do not consider the sub-Nyquist spatial sampling using
sparse arrays. Although the sub-Nyquist radar deploys thinned
arrays for sub-Nyquist spatial sampling [38], the sub-Nyquist
tensor is directly recovered for DOA estimation, whereas
the second-order coarray tensor statistics are not derived.
By pushing coarray processing to the tensorial domain, a
tensor MUSIC method is proposed for nested vector-sensor
arrays using the coarray statistics [35]. Furthermore, diverse
coarray tensor processing approaches have been proposed such
as the coupled coarray tensor CPD [39] and the complex
parallel factor analysis (COMFAC) for nested MIMO radar
[40]. Nevertheless, these methods only consider the sparse
L-shaped array or collocated linear array geometries, whose
corresponding coarray tensor derivation is not applicable to
generalized multi-dimensional sparse arrays, especially the
sparse planar arrays or sparse cubic arrays. Regarding this,
a self-correlation tensor processing method is proposed for
coprime planar array to improve the DOA estimation accuracy
and increase the number of DOFs [41]. Unfortunately, none
of the above-mentioned methods have explored the optimal
source identifiability. Although the identifiability for parame-
ter estimation is improved by respectively exploiting MIMO
waveform diversity [42] and tensor decomposability [43], the
principle of identifiability enhancement for the coarray tensor
has not been investigated. Hence, it remains an open problem
to excavate the potential of the coarray tensor to achieve DOA
estimation with an optimal source identifiability.

In this paper, we propose a novel coarray tensor DOA
estimation algorithm for multi-dimensional structured sparse
arrays. The array received signals are represented by a pair
of sub-Nyquist tensors, based on which the cross-correlation
tensor statistics are calculated. Then, we derive a cross-
correlation-based augmented virtual array, whose equivalent
signal is modeled as a coarray tensor. The relationship between
the coarray tensor structure and the source identifiability is
established, based on which a dimension increment approach is
proposed to embed shifting information in the coarray tensor to
enhance the source identifiability. Subsequently, directionally
reshaping and spatially reshaping approaches are designed for

the shifting-embedded coarray tensor to refine its structure.
In particular, by formulating corresponding coarray tensor
segmentation window optimization problems and comparing
the resulting number of DOFs, the optimally reshaped coarray
tensor with the best source identifiability is devised. As such,
coarray tensor decomposition leads to closed-form solutions
of the azimuth and elevation, which works for both underde-
termined and overdetermined cases. Simulation results verify
the superior performance of the proposed algorithm compared
to existing matrix-based and tensor-based methods.

The concept of completing missing slices in the coarray
tensor corresponding to partially augmentable sparse array is
considered in [44], where the missing slices are sufficiently
dispersed to ensure the best coarray tensor completion perfor-
mance. The main contribution of this paper, on the other hand,
lies in the optimization of source identifiability for coarray
tensor processing with generalized sparse array configurations.
Such results are novel and have not been considered in [44].
In [26], we devise a cross-correlation tensor-based subspace
method for sparse cubic array DOA estimation with a high
estimation accuracy, whereas both computational efficiency
and source identifiability are degraded. In [45], we develop a
sub-Nyquist tensor train decomposition method to enhance the
computational efficiency of DOA estimation with sparse cubic
array, whereas the source identifiability is still sacrificed. In
this paper, we particularly investigate the optimal source iden-
tifiability for generalized multi-dimensional structured sparse
arrays to achieve coarray tensor-based underdetermined DOA
estimation. Some preliminary results of this work are presented
in the conference paper [1]. In this paper, we further establish a
clear relationship between the coarray tensor structure and the
achievable source identifiability. Based on that, two coarray
tensor reshaping approaches are developed to realize the
optimal source identifiability. In addition, we provide details of
source identifiability optimization problems, and theoretically
analyse the maximum number of DOFs.

The rest of this paper is organized as follows. In Section
II, we introduce preliminaries about notations and tensor
operations. In Section III, we present the sub-Nyquist tensor
signal model, and in Section IV, we formulate the corre-
sponding coarray tensor. Then, in Section V, we propose an
optimal source identifiability enhancement strategy to achieve
underdetermined DOA estimation. We demonstrate simulation
results in Section VI, and draw our conclusion in Section VII.

II. PRELIMINARIES

In this section, we provide necessary preliminaries about
notations and tensor operations including CPD and generalized
tensor reshaping of a canonical polyadic (CP) model.

Notations: Scalars, vectors, matrices, and tensors are re-
spectively denoted by lower-case letters, lower-case bold-face
letters, upper-case bold-face letters, and calligraphic bold-face
letters, e.g., a, a, A, and A. x; denotes the mode-i tensor-

. io .
matrix product. A; X Ay denotes the tensor contraction along

i1
the i;-th dimension of .A; and the i5-th dimension of As.
()T, (O, (-)*, and (-)T denote the transpose, the Hermitian
transpose, the conjugation, and the pseudoinverse operators,
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Fig. 1. The geometry of the coprime planar array.

respectively. The notation E{-} represents the statistical expec-
tation. [-] denotes the CPD representation of a tensor, while
(+) denotes the Kruskal’s rank. The outer product, Kronecker
product, and the Khatri-Rao product are denoted by o, ®, and
©, respectively. [-]; denotes the mode-i unfolding of a tensor,
and [-]y, denotes the tensor concatenation along the i-th
dimension. ||-||r denotes the Frobenius norm. min(-), max(-),
and mod(-) denote the minimum, maximum, and modulo
operators, respectively. £ represents the phase of a complex
- | represents the cardinality of a set. 3 = /=1
denotes the imaginary unit. The identity matrix and all-zero
matrix with appropriate dimensions are respectively denoted
by I and O, whereas the identity tensor is denoted by Z.
Finally, the set of complex numbers is denoted by C.

CPD: The CPD factorizes an N-dimensional tensor A €
Clixlax-xIN into the sum of R outer products, i.e.,

A=Y naeae cae)
é[n;A17A27"'7AN]]a
where a,(r) € C!» is the CP factor with A, =

[an(1),an(2), -+ ,a,(R)] € CI»*" being the corresponding
factor matrix, n = 1,2,--- , N, and . = [11,72, - ,nr]T is
the scaling coefficient vector. The CPD of .A is unique as long
as it satisfies the following Kruskal’s condition'

k(A1) +K(A2) + -+ K(AN) Z2R+ (N —1).  (2)

Generalized Tensor Reshaping of CP Model: Let dimen-
sion sets {S;,j = 1,2,---, J} be a partition of {1,2,--- , N},
then the N-dimensional tensor .A in (1) can be reshaped to a

[1Ln, x [[Zn, x---x ][I,, J-dimensional tensor

n1 €Sy n2 €Sy nyESy
(A)s, 5, me yoas(r)o---oas(r). ()
The reshaped tensor still conforms to the CP model, where
I11n,
a;j(r) = [I® an,(r) € C<s " is the CP factor, j =
n,; €S,
1,2, ’j_ !

I'When one of the factor matrices has a full column rank, a necessary and
sufficient condition for uniqueness of CPD is established [43]. This condition,
however, is restrictive. Under deployment of generalized sparse arrays, (2) is
imposed as a general and sufficient condition, which is commonly used in the
literature relevant to tensor-based DOA estimation [40, 46].

III. SUB-NYQUIST TENSOR SIGNAL MODEL

Among various types of sparse arrays, we adopt the coprime
array [4] as an example of sparse array, but the results can
be extended to a general class of multi-dimensional sparse
arrays including nested array, coprime array and their variants
[47]. As shown in Fig. 1, a coprime planar array P consists
of a pair of sparse uniform rectangular arrays (URAs) M
and N. There are 2M, x 2M, sensors in M and N, x N,
sensors in N, where {M,, N,} and {M,, N,} are respective
pairs of coprime integers. The inter-element spacings for the
sparse URA M are N,d and N,d along the z-axis and the y-
axis, respectively. Here, d equals to half of the source signal
wavelength. Similarly, the inter-element spacings for the sparse
URA N are M,d and Myd along the z-axis and the y-axis,
respectively. Due to the coprime deployment between the two
sparse URAs, their sensors do not overlap except for the one
at the origin of the coordinate system (0,0,0). Therefore,
the total number of sensors in the coprime planar array P
is |P| = 4M, M, + NN, — 1.

Assume that K uncorrelated far-field narrowband source
signals impinge on the coprime planar array P, where 6 €
[—7/2,7/2] and ¢y, € [0, 7] are respectively the azimuth and
elevation of the k-th source, k = 1,2,--- , K. Traditionally,
the matrix-based model will represent the sparse URA received

signals at each time slot by a vector (t) = [z;(t), 2 (t)]T €
CAMaMy+NaNy - wwhere

K
zm(t) :Z sk(t)an (pr) @ apg(vg)+mpr(t) € CHMe My
k=1

p “
Z tan(pr) ® an(vy)+ny(t) € CN=Nv,
k=1
Here,
ani(px) = [1, eI Notte . ’e—awNm(QMx—l)uk]T,
%)
aM(Vk) — [1’6—]7rNyuk7 . ’e—jﬂNy(QMy—l)yk}T

are respectively the steering vectors of M along the z-axis and
the y-axis with directional parameters

i = sin ¢y cos O,

- : (6)
V), = sin ¢y sin Oy,
and
an(ug) = [17 6*J7TMJ;M, L 7€7j7r]\/fz(N171)uk}T
(7
an(vg) = [LeﬂwMyuk’ o 7efj7rIMy(Ny71)l,k]T

are respectively the steering vectors of N along the x-axis
and the y-axis, si(¢) is the source signal at the ¢-th time slot,
t=1,2,---, T, ny(t),ny(t) ~ CN(0,021) are independent
and identically distributed (i.i.d.) additive white Gaussian noise
vectors with o2 being the noise power. Then, the 7" snapshots
of the two sparse URAs are stacked together to form a
sub-Nyquist signal matrix X = [x(1),2(2),---,x(T)] €
CUM:My+NoNy)XT \whose auto-correlation E{x(t)z" (¢)} is
calculated for deriving the second-order coarray statistics.
However, the above matrix-based signal model ignores the
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Fig. 2. Illustration of the virtual array geometries. (a) The discontinuous virtual planar array D and its constituting virtual URA
Q. (b) The mirrored extension Q of the virtual URA Q. (c) The virtual UCA G.

original 3-D spatio-temporal structure of the sub-Nyquist

signals, resulting in an inevitable performance deterioration.
To avoid the structural information loss, we model the sparse

URA signals at the ¢-th time slot by two independent matrices

K
X (t) :ZSk(t)am(,uk)oa,M(yk) + Ny (t) € C2Max2My
k=1

®)
K
Xn(t) :ZSk (t)an(ur) oan (v ) + N (t) € CNe XNy,

k=1

where Ny (t), Ny(t) ~ CN(0,02Z) are i.i.d. additive white
Gaussian noise matrices. After that, the total 7' snapshots
of Xm(t) and X(t) are respectively concatenated along
an additional temporal dimension to generate two 3-D sub-
Nyquist tensors

XM: [XM(l)vXM(Q), . ,XM(T):I UBE(CzMz ><2My><T

K ©)
=" an(px) 0 a(vi) o s + N,
k=1
H=[Xn(1), Xn(2), -, X(T)] , CNxNoxT
K (10)
= an(u) © an(vi) o s; + N,
k=1

where s; = [s(1), s(2), - ,sk(T)]T is the signal wave-
form vector, and Ny, Ny are the noise tensors. Note that,
the signal parts in Xy (9) and X'y (10) conform to the CP
model as illustrated in (1).

Unlike the traditional matrix-based signal model, the for-
mulated sub-Nyquist tensors X'y and Xy cannot be simply
stacked to form a single tensor due to their different dimen-
sions. Therefore, the conventional auto-correlation operation
is not applicable to the sub-Nyquist tensors for calculating
their second-order tensor statistics. In this regard, the cross-
correlation between the sub-Nyquist tensors is proposed, and
the four-dimensional (4-D) cross-correlation tensor R €
C2Max2MyxNe XNy cap be calculated as

R = E{XM(t) 0X§(t)}

K (11)

= oram(u) o ant(vi) o afy(ur) o aiy(vi) + N,
k=1

where 0f = E{sy(t)s}(t)} represents the power of the k-th
source, and V' = E{Ny(t) o Nj(t)} is the noise term with
only the (1,1,1,1)-th element being o2 while all others are
0. In practice, the cross-correlation tensor R can be estimated
as ) 1 5

R = ?XM >3< Xy, (12)
which averages the tensor contraction between the two sub-
Nyquist tensors along the temporal dimension.

IV. COARRAY TENSOR DERIVATION

In this section, we derive an augmented virtual uniform
array, and model its equivalent signal as a coarray tensor. We
analyse the uniqueness condition for coarray tensor decompo-
sition, and then propose a dimension increment approach for
the coarray tensor to enhance the source identifiability.

A. Virtual Uniform Cuboid Array Formulation

For structured sparse arrays, augmented virtual arrays can
be derived from the second-order sub-Nyquist signal statistics.
The equivalent second-order signal of the derived virtual array
(i.e., coarray signal) can then be processed to achieve Nyquist-
matched DOA estimation. To this end, we derive a virtual
array from the cross-correlation tensor R (11) corresponding
to the coprime planar array P. Specifically, the CP factor pairs
{am(px), afy(pk)} and {am(v), af(vi)} of R are capable
of generating difference sets

Dm:{mzNz*anﬂmz:Oa 1? ) 2M:E*17 nm:()a 13 T sz]-}a

Dy={my Ny—n, M, |m,=0,1, -, 2M,~1,1,=0,1, -, N,~1},
(13)

which yield a discontinuous virtual planar array D =
{(zp, yp)|zp=D4yd,yp=D,d}, as shown in Fig. 2(a). Hence,
we combine the first and third dimensions {1, 3}, as well as
the second and fourth dimensions {2,4} of R to generate
Kronecker products of the CP factor pairs. According to the
definition of generalized tensor reshaping in (3), R can be
reshaped as

Ré<R>{1’3}’{2’4} c (CQMT,NQCXQMyNy

K (14)
=> otlafi(i) @ am(ux)]o[afi(vi) @ am(vi)+N,
k=1



where IV is the reshaped noise term with only the (1,1)-th
element being o2 while all others are 0.

It is noted that the difference sets D, and DD, in (13) contain
the following contiguous subsets [47]
Qz:{_Nx+1a_Nw+27;MwN:E+M:v_1}; 5
(15)
Qy={-N,+1,-Ny,+2,--- ,M,N, + M, —1}.
Thus, a virtual URA Q = {(zq,y0)|zq = Q.d,yo = Qyd}
as shown in Fig. 2(b) can be extracted from D with

(16)
|Qy| = MyNy + M, + Ny — 1

representing the numbers of virtual sensors in Q along the
z-axis and the y-axis, respectively. By properly extracting
elements in R and reorganizing them to map the locations of
virtual sensors in the virtual URA @Q, the equivalent second-
order signal of Q can be obtained as

K
U=> opb(ux)ob(vy) + Z € Cl&1xI1%1,
k=1

a7

where

—m(=Ng+Hl —m (=N 42 — 97 (M N g+M —1 T
b(ur)= [e TNt e =9 (Not2)pk .. gl + )Mk} 7

b(l/k) _ I:e—.]ﬂ(—Ny+1)Vk7 e—jfr(—Ny—i-Q)l/k7 e e—.]TF(MyNy+My—1)Vk:| T

(18)

respectively serve as the steering vectors of Q along the x-axis
and the y-axis, and Z is the corresponding noise term with
only the (N, N,)-th element being o2 while others are 0.

It is known that the size of the derived virtual URA Q affects
the achievable source identifiability for DOA estimation. The
optimization problems we design will maximize the number
of DOFs, which depends on the size of Q. To ensure that the
resulting maximum number of DOFs is an integer, we provide
the following remark on the even number property of the size
of Q before proceeding to the derivation of the coarray tensor.

Remark. The size of the virtual URA Q, namely, |Q,| and
|Qy| in (16), can be equivalently expressed as |Qg| = (M, +
1)(Ny +1) —2 and |Qy| = (M, + 1)(Ny, + 1) — 2. Since the
coprime integers M, and N, cannot be even numbers together,
there is at least one even number in M, 41 and N, + 1, which
means that (M, + 1)(N, + 1) is an even number. Therefore,
|Q| is an even number. Likewise, |Q,| is also an even number.

Different from the auto-correlation-based virtual array
which is symmetric to the coordinate axes due to the Her-
mitian property of the covariance matrix, the virtual URA
Q derived from the cross-correlation statistics is asymmetric
to the coordinate axes [48]. To expand the attainable virtual
array aperture, we exploit the mirrored image of Q, i.e., @,
as shown in Fig. 2(b). According to the conjugate symmetry
property of the array manifold matrix [49], the coarray signal

U c Cl%IxIQ! corresponding to Q@ can be obtained by
reversing the elements in each dimension of U™ as

K

o [b(ur)v(pr)] © [blv)o(vi)] + Z,
k=1

19)

where

v(pg) = eI (=Mg Ny —Myz+Ng)pk

v(vy)

= e*Jﬂ'(*M/yNy*M’yJFNy)”k (20)

respectively reflect the symmetric projection from Q to Q
along the z-axis and the y-axis, and Z is the symmetric noise
term.

Then, as shown in Fig. 2(c), the virtual URA Q and its
mirrored extension Q can be piled in the lateral direction
to formulate a 3-D virtual uniform cuboid array (UCA) G.
Accordingly, concatenating U and U along an additional
dimension leads to a coarray tensor U € ClQIxIQ|x2
corresponding to G as

21

where T
v(k) = [1,v(uk)o(v)]

is the symmetric factor, B, = [b(u1),b(u2), - ,b(ux)] €
ClQ|xK B, = [b(yl),b(w)v e ,b(uK)] € ClolxK
V = [v(1),v(2), - ,v(K)] € C**¥ are the factor matrices,
o = [0},03,---,0%|T is the source power vector, and Z
is the noise tensor with the (NN, N,,1)-th and (M,N, +
M, M, N, + M,,2)-th elements being o2 while all others are
0. Note that, following the CP model of sub-Nyquist tensors in
(9) and (10), the corresponding coarray tensor in (21) is also
represented as a CP model, whose unique decomposability
enables the analysis of source identifiability. The other tensor
representations, such as the Tucker representation, will cause
a problem of model mismatch, and may not be unique when
it comes to coarray tensor decomposition.

(22)

B. Dimension Increment for Coarray Tensor

Although the virtual UCA G provides an increased number
of virtual sensors compared to the number of physical sensors,
the achievable source identifiability for DOA estimation is de-
termined by the uniqueness condition for coarray tensor CPD.
In particular, the source identifiability for DOA estimation
using direct CPD of the coarray tensor U conforms to the
following proposition.

Proposition. The direct CPD of U results in a limited
number of DOFs, which cannot exceed the number of physical
sensors in the coprime planar array P.

Proof: According to (2), the CPD of U is unique only if

k(Bg) + k(By) + k(V) 2 2K + 2, (23)

where k(B,) = min(|Q,|, K), x(B,) = min(|Q,|, K), and
(V) = min(2, K). When K > max(|Qy|,|Q,|), we can
substitute k(B,) = |Q|, k(By) = |Qy|, and «(V) = 2 into
23), leading to (1Qu| + Q,)/2 > K > max(1Qul, Q)
which is infeasible except for |Q,| = |Q,|. In that case, we
have [P| > K = [Q] = [Qy]. When [Qy] > K > [Qu],
substituting x(B,) = |Q;| and k(B,) = K into (23) yields
|P| > |Q.| > K. Likewise, when |Q;| > K > |Q,|, we have
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Fig. 3. Illustration of the dimension increment operation on the coarray tensor. (a) The segmented sub-coarray tensors U, ;).
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|P| > |Q,| > K by substituting x(B,) = K and x(B,) =
|Qy | into (23). The above analysis indicates that the achievable
number of DOFs for the direct CPD of U cannot exceed the
number of physical sensors. ]

Based on the Proposition, a dimension increment approach
is designed for the coarray tensor to embed additional spatial
information, which offers the opportunity to refine the coarray
tensor structure. As a result, the Kruskal’s ranks of the refined
coarray tensor’s CP factors can be increased for enhancing
the source identifiability. To be specific, a sub-coarray tensor
U(1,1) € CP*Pv*2 can be obtained by extracting elements
from U with a segmentation window of size P, x P, i.e.,
U1 =U(-Ny+1:=Ny+Py, =Ny+1: —Ny+P,, 1:2). Then,
as shown in Fig. 3(a), the segmentation window is sequentially
shifted along the x-axis and the y-axis, which yields L,L,
sub-coarray tensors

Ui, a,) =U(—Ng +1p: =Ny + Pp + 1, — 1,
—Ny+1l,: =Ny +P,+1,—1,1:2)
of size P, x Py x 2 for I, = 1,2,---,L; and [, =
1,2,---,L,. Here,
Lz:|Qz|+1_Pwa
Ly =|Qy+1- P
respectively denote the number of sub-coarray tensors along
the z-axis and the y-axis. To ensure that the numbers of sub-

coarray tensors satisfy 2 < L, < |Qg] —1and 2 < L, <
|Qy| — 1, we have

(24)

(25)

2<P, < Q] - 1, 26)
2<P, <[Q, - L.
The sub-coarray tensor U, ;) can be expressed as
Ua,i,) =UX1 8, X2 8, 27
where
Slz:[Osz(lI—l)yImeszOPIX(|QI|—PI—lI+1)]TGC‘QI‘XPJE7
81, =108, x(t, 1)+ Ip, x P, Op, x (10, -, 1, 41)] €CIO Py

(28)

are segmentation matrices along the x-axis and the y-axis,
respectively.

Since the L, L, sub-coarray tensors U, ; ) with adjacent
indices [, and I, respectively present a shifting relation-
ship along the z-axis and the y-axis, a shifting-embedded
coarray tensor can be constructed from concatenating these
sub-coarray tensors as shown in Fig. 3(b). Specifically, the
L, sub-coarray tensors U, for a given index [, share
the same angular information along the y-axis but own a
one-step shifting relationship along the z-axis. Thus, they
are concatenated along an additional shifting dimension to
generate a 4-D tensor

u(ly) = [u(lvly) ’ U(Qaly)’ ) u(Lrvly)] |_l4E (CPI XPy X2XLI&
(29)
Vi, =1,2,---, L.
Since the L, 4-D tensors {L_l(ly), l,=1,2,---,L,} present a
one-step shifting relationship along the y-axis, they are further
concatenated to formulate a five-dimensional (5-D) shifting-
embedded coarray tensor

H=[Un U U], € Clr ety

K
=Y oc(un) o c(vr) ov(k) o glux) 0 g(v) + Z (30)
k=1

£ [0'7 szcya V7GI7Gy]l + Z)

where
[ —m(=NH —m(—N42 —yr(—NatPs T
C(Nk)—[e 97 ( Y o= ( Y eI )uk] ’
(- o (— o T
C(I/k): [6 g7 ( Ny+1)l/k’e g7 ( Ny+2)l/k7 e g7 ( Ny+Py)uk]

(3D
are respectively angular factors along the z-axis and the y-
axis,

glug) = [1,e 7™Hx ... ,e—jrr(Lz—l)uk T

g(’/k) = [13 eiﬁwka e
are respectively shifting factors

the y-axis, C; = [c(m),c(p2), - ,cluk)] €
Cy = [C(Vl), C(VQ)a T 7C(VK):| €

32
767]7T(Ly71)l/k]T (32)

along the z-axis and
CPIXK

Py, xK
CryxH,



Go = [Q(Ml)ag(ﬂz)f" 79(MK)] € CLaxK

G, = [g(n),g(2), -+ .g(vk)] € CLv*E are the
corresponding CP factor matrices, and Z is the noise tensor.

Obviously, the five dimensions of the shifting-embedded
coarray tensor H can be categorized into the angular dimen-
sions along the x,y-axes, the symmetric dimension, and the
shifting dimensions along the z,y-axes. This enables us to
structurally combine the dimensions of H to formulate a new
coarray tensor with augmented CP factors, which contributes
to the enhanced source identifiability. More importantly, by
finding the optimal coarray tensor structure related to the max-
imum number of DOFs, the underdetermined DOA estimation
can be achieved.

V. UNDERDETERMINED DOA ESTIMATION

In this section, we develop an optimal strategy to reshape
the shifting-embedded coarray tensor to enhance the source
identifiability. The resulting coarray tensor with the optimal
structure can then be decomposed for underdetermined DOA
estimation.

A. Identifiability Enhancement: Directionally Reshaping

Based on the rule of generalized tensor reshaping of the
CP model, properly reshaping the shifting-embedded coarray
tensor H increases the Kruskal’s ranks of the resulting tensor’s
CP factors. As such, a directionally reshaping approach is
designed as the first identifiability enhancement strategy.

In particular, since the dimension sets {1,4}, {2,5}, and
{3} of 7 respectively represent spatial information in the
azimuthal, vertical, and lateral directions, it can be reshaped
as

Ka 2 (H) (1,4} (2,5),(33 € ColoxPulu?

K
:Z (ug) o f(vg) ov(k) + Qq (33)
=1

£ [0 F, F), V] + Qa,
where
() = g(pe) ® () € CPEe, )
Fvr) = g(v) @ e(vy) € T
are directional factors, F, = [f(u L flur)] =
G, © C, € CltxK F, [f(V1) f(V2) - flv)] =

G, ®C,eCllvxK gre the corresponding directional factor
matrices, and Q4 is the directionally reshaped noise tensor.
The directional factors can be retrieved from the CPD of
the directionally reshaped coarray tensor KCq (33) for DOA
estimation, and the source identifiability obeys the following
property.

Theorem 1. The source identifiability of decomposing the
directionally reshaped coarray tensor }Cq can be given by

DOFq= [ min(|Qq|, |Qy[) (min(|Qql, |Qy)+2)] /4. (39)
Proof: The CPD of ICq4 is unique if
K(Fg) + k(Fy) + (V) > 2K + 2. (36)

Based on the Kruskal’s rank of the Khatri-Rao product [50],
we have

min(P, Ly, K) 2 k(F,) >min (k(Gy)+£(Cr) —1, K)
min(P, Ly, K) > k(F,) >min (k(Gy)+x(Cy)—1,K),

where x(G,) = min(L,, K), K(Cm) = min(P,, K),
k(Gy) = min(Ly, K), and (C,) = min(P,, K).

When K > max(P, Ly, PyL,), the inequality (36) can be
transformed into (P,L, + P,L,)/2 > K > P,L,,P,L,,
which leads to P,(|Qg| +1 — P;) = P,(|Qy +1 — P,).
For an arbitrary coprime planar array geometry, |Q,| is not
necessarily equal to |Q,|, implying P,(|Q.| + 1 — P,) #
Py(|Qy| + 1 — P,). Therefore, there is no feasible solu-
tion under the condition of K > max(P,L,, P,L,). When
P.L, > K > P,L,, we derive the following relationship

(37

K =PyLy, = Py(|Qy +1—F). (3%)
As such, a quadratic programming problem
max Py (|Qy+1- F,)
" (39)
st. P, <|Q, —1,

is designed to maximize K, and the solution becomes P, =
(|Qy| +1)/2. According to the Remark in Subsection IV-A,
|Qy| is an even number, making (|Q,|+ 1)/2 a non-integer.
Thus, the optimal value of P, is set to

Py =1Qyl/2, (40)

such that the maximum value of K (38) is [|Q,[(|Q,|+2)]/4.
Likewise, when P L, > K > P, L,, P, can be optimized as

P, =1Q4|/2, 41)

leading to K = Po(|Qu| +1 - Po) = [|Qul(1Qu] + 2)] /4.
As a result, the maximum number of DOFs for the direc-
tionally reshaping approach can be represented as DOF4 =
[min(|Qq. [Q, ) (min(Q,, Q) +2)] /4 as in 35). ™

Note that, when the deployed coprime planar array P has
a relatively large size along the y-axis or the x-axis, we have
|Qy| > |Qg| or |Qz| > |Q,|. In either case, the resulting
number of DOFs [|Q,[(|Q.| + 2)]/4 or [|Q,(1Q,] + 2)]/4
will be much smaller than the number of physical sensors |P).

B. Identifiability Enhancement: Spatially Reshaping

To address the issue of limited source identifiability, we
propose a spatially reshaping approach as another identifia-
bility enhancement strategy. It combines the dimensions of
the shifting-embedded coarray tensor H that represent the
same category of spatial information. Specifically, considering
that the dimension sets {1,2}, {4,5}, and {3} respectively
represent the angular, shifting, and symmetric information, H
can be reshaped as

Ko £ (H) (1,23 (45143} € PPy Lo lyx2

K

=Y ore(k)og(k)o
k=1

2 [o

v(k) + Qs (42)

;C,G, V] + Q,



where

=c(w) ®c PoPy
c(k) = e(vr) ® e(ur) € C+ v, “3)

g(k) = g(vi) ® g(ux) € Chetv
are spatial factors, C' = [c(1),¢(2),-- ,¢(K)|=C, ® C, €
(CPPXK, G = [9(1)79(2)7' : ,g(K)} = GZ/ © Gw €

CLelyxK are the corresponding spatial factor matrices, and

Q, is the spatially reshaped noise tensor. The source identifi-
ability of this approach obeys the following property.

Theorem 2. The source identifiability of decomposing the
spatially reshaped coarray tensor /Cg can be given by

DOF; = [min(|Qq|, |Qy ) (max(|Qql, [Qy]) +2)] /4, (44)

which is larger than the number of physical sensors in the
coprime planar array P.

Proof: The CPD of IC; is unique if

K(C) + k(G) + K(V) = 2K + 2, (45)
where
min(P, P, K) > r(C) >min (k(Cy) +£(C. ) K), )
min(Ly Ly, K) > £(G) >min (k(Gy)+k(G )
When K > max(P, Py, L;L,), substituting P, P, /<;( ) >
P,+Py—1,LyLy > k(G) > Ly+ Ly 1and/<a(V):2
into (45) yields
(PP, + LyL,)/2 > K > P,P, L,Ly,, (47)

which leads to P, P, = L,L,. The inequality (47) is equiva-
lent to

[PoPy+ (|Qz| +1 = Po)(|Qy| +1—-Py)] /22 K,

such that K can be maximized through the following segmen-
tation window size optimization problem

max PP+ (1Qu] 41— P)(Qy] +1- P,)

(48)

st Py < |Qu] — 1, (49)

< |@u|_1

Using the Lagrange multiplier algorithm to solve (49), the
optimal {P,, P;} can be obtained as

Py = (|Q| +1)/2,

Py =(1Qyl+1)/2.

The details of solving (49) can be found in Appendix A. Since
P, and P, must be integers, they can be either rounded up or
down to integers. However, the rounding of {P,, P} in (50)
cannot satisfy P, P, = L,L,. Therefore, there is no feasible
solution under the condition of K > max(P,P,, LyL,).

(50)

Furthermore, when L, L,

K+ PP, +2>
K > P, Py,

> K > P, P,, we have

2K + 2,
(1)

leading to K = P, P,. Thus, the maximum value of K can

be obtained from
max FP,P,

P.,P,
st P <[Quf — 1, 52)
Py <1Qyf - 1,
PPy < (|Qu| +1—Po)(1Qy +1 - P,),

which is also solved by the Lagrange multiplier algorithm. The
details of solving (52) can be found in Appendix B. Although
the optimal solution {P,, P,} in (52) is the same as that of
(50), (52) does not require the constraint P, Py, = L, L,. As
such, we can set {P,, P,} to

( }:{{l@zvzu@y +2)/2} 1Qal <1Qyl;
Q] +2)/2.1Q,1/2) 100 = 1Q,],

where L,L, > P,P, can be satisfied. Likewise,
when PP, > K > L,L, we obtain the same
solution as (53). Therefore, the maximum number of

DOFs for the spatially reshaping approach is DOFg; =
[min(|Qql, Q) (max(| Q1 [Qy]) +2)] /4. n

Compared to the achievable source identifiability for the
directionally reshaping approach in (35), it is clear that
DOFg > DOFq4. More importantly, the source identifiability
for the spatially reshaping approach given in (44) is higher
than the number of physical sensors |P|, i.e.,

DOF, > 4M, M, + N,N, — 1. (54)

As such, by adopting the spatially reshaping approach to
refine the coarray tensor structure, it is guaranteed that the
underdetermined DOA estimation can be achieved with the
optimal source identifiability. It is worth mentioning that, for
generalized coprime planar array DOA estimation exploiting
the typical array decomposition approach [51], the maximum
number of DOFs is min(4M,M,, N, N, )—1, which is smaller
than that of the proposed algorithm.

C. Optimally Reshaped Coarray Tensor CPD

To achieve 2-D DOA estimation for the coprime planar
array, the spatially reshaped coarray tensor ICg is decom-
posed via CPD to obtain the estimated factor matrices C =
[Aé(l)’ 6(2)7 e 7é(K)}7 G = [g(l)’g(Q)v o 7Q(K)]’ and
V = [6(1),9(2), -+ ,0(K)], where é(k), g(k), and o(k)
are the estimated spatial factors of /C.

Specifically, the CPD of ICg can be characterized by the
following least square optimization problem

{é, G,V} = arg min ||ICS — [U;é’,é’, V]I
loXeA%

e 9

The above coarray tensor CPD problem? can be solved by the
trilinear alternating least square algorithm, which iteratively

2Note that, the high-order singular vector decomposition (HOSVD) can
also be applied to decompose the optimally reshaped coarray tensor }Cs and
obtain tensor-based signal and noise subspaces. Based on that, the HOSVD-
based spectrum can be generated, which yields the estimated source DOAs by
searching for the spectral peaks. However, without a closed-form expression,
such operation is more time-consuming. In this regard, we prefer to execute
CPD of ICs for DOA estimation.
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Fig. 4. Source identifiability of the proposed algorithm with 50 sources. (a) The directionally reshaping approach. (b) The

spatially reshaping approach.

updates the estimated factor matrices as

C = argmin
e}

K, ~C(vea) |,

LSS

G = argmin
G

(56)

LS|

V = argmin
v

|

At each iteration, {C, G, V'} can be updated in closed-form
expressions as

R ot
c=x)((Voe)),
R N A T
G=xl,(ved)), (57)
R ot
V=[] ((¢ed)").
According to the Kronecker structures of the spatial factors

c(k) and g(k) in (43), the estimated directional parameters fiy,
and 7 can be obtained as

~ Zqé (é(bl-‘rl)(k)/é(H) (k)) +Z§14 (g(§1+1)(k)/g(§1) (k))
HE= (PoPy — Py + LoLy — Ly)7

XA G (B)/ €00) ()42 A (G5t (K) /Gy (K))

)

vk (PoPy— Pt LyLy — Lo)w
(58)

Vo € A{[l,PyPy],mod(u,P)) # 0}, Va €
{[1,LyLy],mod(s1,Ly) # 0}, Vo € [1,P,P, — Py,
Vs €(1,L,L, — L;]. Finally, according to the relationship
between (0, ¢r) and (ug,vx) established in (6), the closed-
form solution to the azimuth and elevation of the k-th source
can be obtained as’

0, = arctan(iy /fir),
R (59)
¢1, = arcsin ( iz + ﬁ,f)

3Similar to the CPD of ICg, the directionally reshaped coarray tensor Ka
can also be decomposed to estimate its factor matrices {Fgc7 F,, V}, from
which (fi, Pk ) can be retrieved according to the Kronecker structures given
in (34) for DOA estimation.

)

VI. SIMULATION RESULTS

In the simulations, we deploy a coprime planar array with
M, = 2,M, = 3,N, = 3, and N, = 4. Hence, the total
number of the sensors is 35. Accordingly, the virtual UCA G
has a size of 10 x 18 x 2, where |Q,| = 10 and |Q,| = 18.
Since |Qg| < |Q,|, the segmentation window size {P,, P}
is optimized as {5,10} for both the directionally reshaping
approach and the spatially reshaping approach according to
(41) and (53), respectively. As such, the directionally reshaped
coarray tensor /Cq and the spatially reshaped coarray tensor /Cg
have sizes of 30 x90x 2 and 50 x 54 x 2, and the corresponding
source identifiability is DOF4 30 and DOFy 50
according to (35) and (44), respectively. It is obvious that the
source identifiability for the directionally reshaping approach
does not exceed the number of physical sensors in the coprime
planar array, i.e., DOF4 = 30 < 35. In contrast, the optimal
source identifiability for the spatially reshaping approach does
become larger than the number of physical sensors in the
coprime planar array, i.e., DOFg = 50 > 35. In the following
simulations, the number of snapshots is fixed at T" = 300,
while the signal-to-noise ratios (SNRs) of source signals are
set to 0 dB unless otherwise specified. For each simulated
data point, Nyi¢ = 1,000 Monte Carlo trials are run. For
the proposed algorithm, the dimension increment, reshaping,
and decomposition operations on the coarray tensor are im-
plemented with Tensorlab 3.0 [52].

As demonstrated above, we only adopt sub-Nyquist spatial
sampling with the coprime planar array, while the temporal
sampling rate conforms to the Shannon-Nyquist theorem to
provide multiple snapshots. Meanwhile, the setting of the
carrier frequency will not influence our proposed sub-Nyquist
tensor model in (9) and (10), where the value of carrier
frequency in the steering vectors (5) and (7) is offset by the
unit inter-element spacing d equaling to half of the signal
wavelength.

A. Effectiveness of Coarray Tensor Reshaping for Underde-
termined DOA Estimation

To validate the enhanced source identifiability of the pro-
posed coarray tensor DOA estimation algorithm, the result of
underdetermined DOA estimation for K = 50 sources using
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Fig. 5. Comparison of the estimation accuracy for the proposed algorithm with different coarray tensor structures. (a) RMSE

versus SNR. (b) RMSE versus the number of snapshots.

different coarray tensor reshaping approaches is presented in
Fig. 4. The azimuth angles of the 50 sources are uniformly
distributed in [—80°, —10°] U [10°, 80°], while their elevation
angles are uniformly distributed in [10°,80°]. In this example,
an infinite number of noise-free snapshots are used to provide
an ideal modeling for the coarray tensor statistics.

It is clear in Fig. 4(a) that the directionally reshaping
approach for coarray tensor fails to estimate these 50 sources
because of the limited source identifiability as claimed in
Theorem 1. In contrast, by using the spatially reshaping
approach for coarray tensor refinement, the proposed algorithm
is capable of locating all the 50 sources as shown in Fig. 4(b).
This result verifies the effectiveness of the proposed algorithm
in estimating more sources than the number of physical
sensor as claimed in Theorem 2, which is benefited from
the optimally designed coarray tensor structure with the best
source identifiability.

B. Estimation Accuracy of the Proposed Algorithm with Dif-
ferent Coarray Tensor Structures

We now present the estimation accuracy of the proposed
algorithm with different coarray tensor structures in Fig. 5,
where K = 2 sources from directions (61, ¢1)=(34.8°,26.8°)
and (02, ¢2)=(45.6°,38.6°) are considered. In partlcular the
5-D shifting- embedded coarray tensor H, the directionally re-
shaping coarray tensor KCq, and the spatially reshaping coarray
tensor ICy are respectively decomposed for DOA estimation.
The root-mean-square error (RMSE), defined as

Nuc

QKNMC 2 Z (OB e

nvc=l k=1

RMSE= (¢k_ ékﬂ’bMC)Q’

(60)
is utilized as the evaluation metric, where (ék’nMC, ng,nMc) is
the estimate of (0, ¢x) for the nyc-th Monte Carlo trial. In
addition, the Cramér-Rao bound (CRB) for DOA estimation
with coarray processing [53, 54] is presented as reference.

The spatially reshaping approach presents the best esti-
mation accuracy among all tested approaches. Although the

CPD of the shifting-embedded coarray tensor ‘H and the CPD
of the spatially reshaped coarray tensor /Cg share a very
close accuracy, it has been proved in the Proposition that
the direct CPD of H cannot deal with the underdetermined
case. Moreover, the directionally reshaping approach has a
much worse accuracy compared to the spatially reshaping
approach due to the unsatisfactory coarray tensor structure.
As such, the optimal coarray tensor structure contributes to an
enhanced capability of retrieving angular parameters in both
underdetermined and overdetermined cases. In the subsequent
simulations, we will only use the spatially reshaped coarray
tensor for DOA estimation.

C. Comparison of Estimation Accuracy

In this subsection, we compare the estimation accuracy
of the proposed algorithm to those of matrix-based meth-
ods including the array decomposition-based MUSIC method
(‘DECOM-MUSIC’) [16], the coarray ESPRIT method (‘Co-
ESPRIT’) [18], and the coarray matrix completion method
(‘Co-MC’) [19], as well as tensor-based methods includ-
ing the array decomposition-based parallel factor analysis
(PARAFAC) method (‘DECOM-PARAFAC’) [55] and the
coarray tensor MUSIC method (‘Co-T-MUSIC’) [35]. The in-
terval of spectral searching grids for the array decomposition-
based methods and the coarray tensor MUSIC method is set
to 0.1°. The RMSEs of azimuth and elevation estimations

Numc

>

nvMc= 1k: 1

RMSEy =

ak nMc 23

KNMC
(61)

Nuc

> >

nvmc=1 k=1

RMSE¢ = Qz;k,nMc)27

KNMC

are depicted in Fig. 6 and Fig. 7, respectively.

It is observed from Fig. 6(a) and Fig. 7(a) that the proposed
algorithm outperforms the matrix-based methods for the entire
simulated regime of SNR. The reason lies in that the pro-
posed algorithm successfully preserves the original structure of
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Fig. 6. Comparison of the azimuth estimation accuracy. (a) RMSEy versus SNR. (b) RMSEy versus the number of snapshots.
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multi-dimensional sub-Nyquist signals, whereas the structural
information loss brought by the matrix-based model causes
performance deterioration. Meanwhile, in comparison to the
tensor-based methods, the proposed algorithm shows a further
improvement in accuracy, which is benefited from the addition-
ally embedded spatial information in the optimally reshaped
coarray tensor. In contrast, the array decomposition-based
PARAFAC method implements PARAFAC on the decomposed
sparse URA signals, but does not derive augmented coarray
tensor statistics. Moreover, the coarray tensor MUSIC method
does not consider the optimization of coarray tensor structure,
resulting in limited performance as well. Similar simulation
results can also be found in Fig. 6(b) and Fig. 7(b), where
the proposed algorithm exhibits a superior estimation accuracy
compared to the other methods for the entire regime of number
of snapshots.

D. Comparison of Angular Resolution

The angular resolutions of all tested methods in terms
of different azimuth and elevation intervals are compared
in Fig. 8(a) and Fig. 8(b), respectively. Two closely spaced
sources from directions (61, ¢1) and (62, ¢2) are considered,
where both 6, and ¢, are randomly selected within [20°, 50°]

following the normal distribution. In Fig. 8(a), 6> has an
angular spacing of Ay with 0; whereas ¢ remains the same
as ¢1, i.e., (02,02) = (01 + dg, @1). In Fig. 8(b), ¢2 has an
angular spacing of d, with ¢; whereas 6, remains the same
as 01, ie., (02, ¢2) = (61,01 + 0y). The evaluated methods
are identified to successfully distinguish the two sources if
0k,nne — Okl < 00/2, |Pknue — ¢k| < 0/2 in Fig. 8(a), and
if |9k7nMC — gk‘ < 5¢/2, |¢k,nMc — ¢k| < 5¢/2 in Flg 8(b)
for each trial. The probability of successful resolution (PSR)
can then be calculated as the percentage of successful trials.

The proposed algorithm presents a greater angular resolu-
tion than the matrix-based methods owing to the formulated
virtual UCA with an enlarged virtual array aperture, whereas
the matrix-based methods cannot formulate multi-dimensional
virtual arrays. Moreover, compared to the tensor-based meth-
ods, the proposed algorithm manages to augment dimensions
of the coarray tensor to enhance the angular resolution.
In contrast, the resolution of the array decomposition-based
PARAFAC method is limited by physical sparse subarray
apertures, and the resolution of the coarray tensor MUSIC
method is also unsatisfactory due to the non-ideal coarray
tensor structure.
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Fig. 8. Comparison of the angular resolution. (a) PSR of azimuth versus d9. (b) PSR of elevation versus d,.

VII. CONCLUSIONS

In this paper, we proposed a coarray tensor DOA estimation
algorithm for structured sparse arrays with an optimal source
identifiability. In particular, we derived a coarray tensor from
the cross-correlation tensor between sub-Nyquist tensor sig-
nals. Then, we revealed that the coarray tensor structure can
be properly refined to enhance the source identifiability based
on the uniqueness condition for coarray tensor decomposi-
tion, which is affected by ranks of the coarray tensor’s CP
factors. Hence, in order to increase Kruskal’s ranks of these
CP factors, a dimension increment approach is proposed to
flexibly reorganize coarray tensor statistics and augment the
shifting information. The resulting shifting-embedded coarray
tensor can then be optimally reshaped to realize the best source
identifiability. It is proved that the spatially reshaped coarray
tensor offers the maximum number of DOFs, which exceeds
the number of physical sensors. As such, the CPD of the spa-
tially reshaped coarray tensor provides closed-form solutions
to both azimuth and elevation of sources. Simulation results
demonstrate that the proposed algorithm can successfully core
with the underdetermined case. Moreover, its performance is
superior to those of the competing matrix-based and tensor-
based estimation methods in terms of estimation accuracy and
angular resolution.

APPENDIX A
SOLUTION OF (49)

The Lagrangian function of (49) can be defined as
‘C(P:rv Py, A, )‘2) :_P:L’Py_(|Qr|+1_Pm)(|Qy|+1_Py)

21 (Pr—|Qu|4+1)+ X2 (Py — |Qy|+1),
(62)

where {A1, Ao} are Lagrangian multipliers. The stationary
point of (62) exists if and only if the following properties
hold,

. 8£(P$,Py,)\1,/\2)

=0

® P, ’
.. 8£(Pw,Py,)\1,)\2)

=0

(i) P, ’

(63)

(iil) A (Pr — Qx| +1) =0,
(iv) >‘2(Py*|Qy|+1) =0,
where
OL(Py, Py, A, A
Fe 2022 o, (0,4 1) + 0,
’ (64)
OL(Py, Py, A, A
0P,
Therefore, we have
A =2P, — (|Q,| +1),
1 y — (1Qy[+1) 65)

Ay =2P; — (|Qz| +1).

By respectively substituting the equalities in (65) into Prop-
erties (iii) and (iv) in (63), we obtain the solution P, =
(|Qz| +1)/2 and P, = (|Q,] + 1)/2 as in (50).

APPENDIX B
SOLUTION OF (52)
The Lagrangian function of (52) can be defined as
L(Py, Py, A3, A1, As5)
= =Py Py4+A3(Pr—|Qq| + 1)+ A (P —|Qy|41)
25 ((1Qa |+ 1) Py +(1Qy |+ 1) Pe = (|Qa | +1) (1Qy | +1)),

where {\3, \4, A5} are Lagrangian multipliers. The stationary
point of (66) exists if and only if the following properties hold,

a‘c(P:cv Pyv )\33 A47 >\5)

(66)

(1) an = 0’
o OL(Pry Py, A3, A4, As)
(ii) op, =0,
(iii) A3(Py — Q| +1) =0, (67)

Aa(Py = |Qy| +1) =0,
(V) As((1Qa] + D Py +(1Qy| + 1) Ps
= (1Qs[+1)(1Qy|+1)) =0,



where
OL(Py, Py, A3, Mgy A
( SPS :20) = =Py + A+ A:(|Qy[ + 1),
N (68)
OL(Py, Py, A3, A4y A
( Yy 3 4 5) _ _Px+)\4+)\5(|Qx| + 1)
0P,
Therefore, we have
A3 = =0,
Py —Xs5(1Qy| +1) =0, (69)
Pac - )\5(|Qx‘ + 1) = O,
which leads to
P, P,
As Y z #0. (70)

Q1 Q] +1
Then, from Property (v) shown in (67), we know that

(1Qa| + D Py +(1Qy[ + 1) Po— (|Qu [+ 1)(1Qy[+1) = 0, (71)

which is equivalent to

P, = P;|Qyl/(|Qz| + 1) + 1. (72)

Substituting (72) into (71) finally leads to P, = (|Q,| +1)/2
and P, = (|Q, ] + 1)/2.
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