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Abstract—We present novel generalized non-redundant sparse
array design strategies that achieve the highest possible number
of degrees-of-freedom (DOFs) for direction-of-arrival (DOA)
estimation. These array designs offer difference co-arrays that
do not contain any lag redundancies except the unavoidable
redundancies at lag zero. We first develop a co-array-based
zero-redundancy design rule which serves as a baseline for
constructing these non-redundant arrays, and a large-aperture
naı̈ve structured non-redundant sparse array is presented. We
then develop a systematized design framework based on dis-
junctive programming to obtain non-redundant sparse array
structures with a minimum array aperture, resulting in minimum
hole arrays. The disjunctive programming framework is then
extended to an equivalent mixed-integer linear programming
problem. As a result, given the same number of physical sensors,
the design framework provides a difference co-array with the
maximum number of correlation lags and resolves more sources
than existing sparse array structures. The non-redundant sparse
array design is further generalized in two new directions, respec-
tively achieving an arbitrary array aperture and reducing mutual
coupling effects. Among the several new sparse array designs
obtained from such generalizations, the hybrid non-redundant
sparse array design simultaneously achieves the highest number
of DOFs, meets a desired array aperture requirement, and
reduces mutual coupling effects. Structured matrix completion
methods are employed to interpolate the missing lags in the
resulting difference co-arrays, thereby enabling high-resolution
gridless DOA estimation with improved performance. Simulation
results demonstrate the superiority of the generalized non-
redundant sparse array design strategies over existing sparse
array structures.

Index Terms—Sparse array, non-redundant array, difference
co-array, direction-of-arrival estimation, matrix completion.

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation is a fun-
damental problem in sensor array signal processing with

broad applications in radar, sonar, wireless communications,
radio astronomy, and many other fields [1]. Based on the
Nyquist sampling theorem, uniform linear array (ULA) has
traditionally emerged as the most popular sensor array geom-
etry for DOA estimation. ULA enjoys a simple regular array
structure and well-analyzed signal processing techniques, but
it generally resolves less sources than the number of sensors
using the traditional methods assuming stationary sources.
Therefore, significant efforts have been made to detect more
sources than the number of sensors by employing sparse arrays
in the context of difference co-arrays [2], [3]. Sparse arrays
also reduce the undesirable mutual coupling effects as a result
of larger inter-element spacing [4], [5].
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The most well-known and fundamental sparse array struc-
ture is the minimum redundancy array (MRA) that achieves
the maximum number of consecutive lags in the yielding dif-
ference co-array [3]. By constructing an augmented covariance
matrix [6], MRA presents an optimal array geometry in the
sense that it achieves the largest difference co-array aperture
for a given number of sensors while producing the maximum
number of continuous co-array lags. Another popular sparse
array design is a non-redundant array with a minimum array
aperture [7], also known as the minimum hole array (MHA)
or Golomb array, that minimizes the number of holes in the
difference co-array while achieving the maximum number
of co-array lags. Traditionally, brute-force search has to be
employed to design these arrays because there are no closed-
form solutions for these array structures [3], [7], [8].

Recently, great attention has been paid to develop sparse
array structures that can be systematically designed and ana-
lyzed. Two notable sparse arrays are the nested array [9] and
the coprime array [10]. These array designs and their variants
have been extensively studied, and their array structures and
closed-form expressions for the achievable number of degrees-
of-freedom (DOFs) are devised [11]–[15].

The nested array configuration uses two uniform linear sub-
arrays [9] such that one of the sub-arrays has unit inter-element
spacing whereas the other subarray has increased inter-element
spacing. Nested array is known to provide a hole-free differ-
ence co-array. On the other hand, multiple level nested arrays
[11] provide even more DOFs by allowing some holes in the
resulting difference co-array. Two-dimensional extensions of
nested arrays are given in [12], [13]. Super nested arrays
[16] have the same physical aperture and the same hole-
free coarray as the nested array; however, the number of
sensor pairs with small separations is significantly reduced.
Augmented nested arrays [14] employ the rearrangement of
sensors by splitting the dense part of nested arrays resulting in
an elongated difference co-array and reduced mutual coupling
effects. Nested arrays and their variants, however, provide less
DOFs compared to MRA or non-redundant arrays for the same
number of physical sensors.

On the other hand, coprime array utilizes two uniform
linear sub-arrays such that the number of elements in each
sub-array is a coprime pair, and the inter-element spacing of
each sub-array is proportional to the number of elements in
the other sub-array [10]. The coprime array is generalized
to configurations that achieve more consecutive and unique
lags [15]. Compared to the nested array, the coprime array
can further reduce mutual coupling effects due to its larger
inter-element spacing, but offers a smaller number of DOFs.
Similar to nested arrays, coprime arrays can also be arranged
into multi-level designs [18], [19], although such designs do
not generally yield a high number of unique lags. Efforts have
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been made to further improve the DOFs of the coprime array
by minimizing the cross-subarray redundancies [20], but the
achieved DOFs are still restricted due to the presence of self-
redundancies of the uniform subarrays.

Design of non-redundant arrays has been a topic with great
interest due to their ability to provide the highest number
of DOFs [7], [8]. Non-redundant arrays generally yield holes
in the rendered difference co-array and thus become difficult
to exploit all co-array lags for subspace-based DOA estima-
tion methods which requires the lags to be consecutive. On
the other hand, compressive sensing-based DOA estimation
methods can effectively use all the co-array lags [21]–[23]. In
addition, exploiting Toeplitz structure-based covariance matrix
interpolation strategies [24]–[27] can further provide higher
estimation accuracy.

Optimal non-redundant array design through brute-force
search for all the possible array configurations results in the
minimum array aperture and maximum co-array lags [7], [8].
Side information can be employed to simplify the search
operation. For example, [7] exploits the information that non-
redundant arrays have a larger aperture than the MRA and that
the sum of inter-element spacings in an array should be equal
to the array aperture, whereas [8] assumes that there should be
a pair of sensors with half-wavelength inter-element spacing
at either edge of a non-redundant sparse array. Such side
information is exploited to aid the design process and reduce
the search space of the brute-force search [7], [8]. While brute-
force search is time-consuming and infeasible for the design
of large-size arrays, optimized design of non-redundant arrays
with minimum aperture in the context of optimization is a
challenging problem due to the integer variables involved in
the design process.

Disjunctive programming [28]–[31] is an approach to model
optimization problems that involve discrete and continuous
variables, and exploits the inherent logic structure of the
problems resulting in reduced combinatronics. In order to
model discrete choices, disjunctive programming exploits re-
laxations by employing boolean variables and disjunctions.
The problems based on generalized disjunctive programming
(GDP) can contain a convex or non-convex objective function
that needs to be optimized, boolean and continuous variables,
algebraic constraints that need to be satisfied regardless of
the discrete choices, disjunctions that represent the discrete
choices, or logic propositions that contain the logic relation-
ships between the boolean variables (for details, see [28]).
Disjunctive linear programs can be converted to their integer
counterparts by employing mixed-integer linear programming
[32], [33]. MILP deals with the problems in which some
of the variables are constrained to be integers while other
variables are continuous. In this paper, we attack the non-
redundant array design problem by exploiting GDP and MILP
frameworks, which result in effective numerical optimizations.

The design of non-redundant arrays historically remained
limited to MHA. Several efforts have been made in the past to
design MHA using numerical search operations [7], [8], [34].
The formulations presented in this paper provide flexibility
to add constraints based on aperture, inter-sensor spacing,
and mutual coupling. Thus, in addition to effectively design

MHA structures, the proposed optimization frameworks also
enable us to develop and optimize novel generalized non-
redundant sparse array structures that account for several
practical requirements. Two important issues are specially con-
sidered, namely, exploitation of an arbitrary array aperture and
effective reduction of mutual coupling effects. In particular, the
hybrid sparse array architecture offers both attractive features,
i.e., support the specification of desirable array apertures and
achieve reduced mutual coupling effects. Such new classes of
generalized non-redundant sparse arrays open new possibilities
for novel sparse arrays with many practical applications.

The main contributions of this paper are summarized as:

• Based on the co-array properties, we present a zero-
redundancy rule for non-redundant sparse array design.
Under this rule, we first develop a structured non-
redundant sparse array, termed as naı̈ve non-redundant
array (NNRA), which guarantees the highest possible
number of DOFs with a simple strategy. This simple
design avoids redundancies by adding a new sensor with
an inter-element spacing that is greater than the existing
array aperture.

• By exploiting the non-redundant design rule, we de-
velop a systematized framework based on disjunctive
programming to design non-redundant sparse arrays with
a minimum aperture, i.e., MHA. The disjunctive program-
ming framework is effectively solved using two MILP
approaches. Contrary to the classical approaches for
designing non-redundant arrays, the proposed approach
exploits optimization problems that fall in the category
of GDP and MILP approaches, and provide flexibility
by employing constraints based on the properties of their
co-arrays.

• Non-redundant sparse array designs are generalized and
three new types of structures are developed. The first type
of non-redundant sparse arrays enables the use of any
desired array aperture. The second type of non-redundant
arrays results in reduced mutual coupling effects. The
third type is a hybrid non-redundant sparse array which
combines both above features, i.e., avoids the mutual
coupling effects while enjoying the desired array aperture.

• We exploit compressive sensing-based strategy to es-
timate the DOA of incoming signals. In addition, we
enable gridless DOA estimation using the subspace-based
MUSIC [35] and ESPRIT [36] algorithms by employing
the structured matrix completion which interpolates the
holes in the resulting covariance matrix by exploiting its
Toeplitz and Hermitian structure.

The rest of the paper is organized as follows. Signal models
and necessary preliminaries are introduced in Section II.
In Section III, we present the zero-redundancy design rule
and propose the simple NNRA which achieves the highest
DOFs with a large array aperture. Section IV proposes a
systematic framework to design MHA which is an optimized
non-redundant sparse array with the minimum aperture. The
optimization problems are presented in the form of disjunctive
as well as MILP approaches. In Section V, we generalize
the non-redundant array design strategy and present three
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new types of non-redundant arrays which achieve desired
features of using flexible array apertures and reducing mutual
coupling effects. Furthermore, we use an array interpolation
strategy in Section VI to fill the holes in the proposed non-
redundant array designs. Numerical results are provided in
Section VII to demonstrate the superiority of the proposed
array designs compared to popular sparse array structures.
Finally, conclusions are drawn in Section VIII.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the N×
N identity matrix, whereas 1N and 0N respectively denote the
N -element column vectors of all ones and all zeros. Similarly,
OM,N denotes a null matrix of size M × N . (.)T and (.)H

respectively represent the transpose and conjugate transpose
of a matrix or vector, vec(·) is the vectorization operator that
turns a matrix into a vector by stacking all columns on top of
the another, diag(x) denotes a diagonal matrix that uses the
elements of vector x as its diagonal elements, and v�w is the
elementwise product between two vectors v and w. Notation
tr(·) represents the trace of a matrix, whereas the expression
X �0 represents a non-negative semidefinite matrix X. The

inequality equation A
e

6= B illustrates that each element in
matrix A is not equal to the corresponding element in matrix
B where matrices A and B have the same size. For matrix A,
A[l] is the matrix obtained by deleting the lth row of matrix
A, the row vector a(l) denotes the lth row of A, whereas
A(i,j) denotes the element on the ith row and the jth column
of A. In addition, | · |F , | · |0, and | · |1 denote the Frobenius
norm, l0-norm, and l1-norm, respectively. Moreover, E[·] is the
statistical expectation operator, and ⊗ denotes the Kronecker
product.

II. PRELIMINARIES

A. Signal Model

Consider an N -element sparse sensor array whose sensor
positions are given by p1 · λ/2, ..., pN · λ/2, where λ is
the signal wavelength and p1, ..., pN are the non-negative
integer numbers. The first sensor position is considered as the
reference such that p1 = 0. Without loss of generality, the
sensor positions are assumed to be in the ascending order,
i.e., pn < pn+1 for n = 1, ..., N − 1.

Assume that Q uncorrelated narrowband far-field signals
impinge on the sparse array from distinct angles {θ1, ..., θQ}
with respective powers {σ2

1 , σ
2
2 , ..., σ

2
Q}. The baseband data

vector x(t) received at the sensor array at time instant t can
be modeled as:

x(t) =

Q∑
q=1

sq(t)a(θq) + n(t) = As(t) + n(t), (1)

where sq(t) denotes the baseband waveform of the qth signal
and s(t) = [s1(t), . . . , sQ(t)]T denotes the signal vector.
The elements of the noise vector n(t) ∼ CN (0N , σ̄

2
nIN )

are assumed to be independent and identically distributed
(i.i.d.) complex white Gaussian random processes and are
assumed to be uncorrelated from the impinging sources. Here,
σ̄2
n represents the noise variance. The matrix A = [a(θ1),

...,a(θQ)] represents the array manifold with a(θq) denoting
the array steering vector corresponding to angle θq given as:

a(θq) = [1, ejπp2 sin(θq), ..., ejπpN sin(θq)]T, (2)

where j =
√
−1. The covariance matrix of the received data

vector x(t) can be obtained as:

Rx = E[x(t)xH(t)] = ARsA
H + σ̄2

nIN

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ̄2
nIN ,

(3)

where Rs = E[s(t)sH(t)] = diag([σ2
1 , σ

2
2 , ..., σ

2
Q]) is the

source covariance matrix. In practice, the covariance matrix
Rx is estimated from the sample average of T samples as:

R̂x =
1

T

T−1∑
t=0

x(t)xH(t). (4)

B. Difference Co-array

Vectorizing Rx yields

z = vec(Rx) = Ãb + σ̄2
ñi, (5)

where Ã = [ã(θ1), . . . , ã(θQ)], ã(θq) = a∗(θq) ⊗ a(θq),
b = [σ2

1 , σ
2
2 , ..., σ

2
Q]T, and ĩ = vec(IN ). Comparing Eqs. (1)

and (5), the new vector z can be viewed as a single-snapshot
received data vector corresponding to a single-snapshot source
signal vector b, whereas σ̄2

n ĩ becomes a deterministic term.
The distinct columns of Ã act as the virtual array manifold of
an extended array aperture. The positions of this virtual array
are termed as the difference co-array of the original array and
can be represented as set D. Denote P = {p1, ..., pN} as an in-
teger set representing the sensor positions on half-wavelength
grid. The difference co-array D containing difference lags can
be expressed as [15]:

D = P	 P =
⋃

∀pl,pk∈P
{pl − pk}, (6)

where 	 represents the difference co-array operator.
The number of DOFs of a sparse array configuration is

determined by (η + 1)/2 where η is the achieved number of
unique correlation lags of the difference co-array. Therefore,
η is equal to the number of elements in the set represented by
Eq. (6). It is highly desirable to design a sensor array which
provides a high number of co-array lags since it is directly
associated with the number of sources that can be resolved
[15].

C. Mutual Coupling

The signal model in Eq. (1) does not contain the artifacts
introduced due to the mutual coupling among different sensors.
In practice, mutual coupling among closely-spaced sensors
cannot be neglected. A simplistic model incorporating these
mutual coupling effects can be expressed as [5]:

x(t) = CAs(t) + n(t), (7)
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where the element on the ith row and the jth column of C is
given by:

C(i,j) =

{
c|pi−pj |, |pi − pj | ≤ C,
0, otherwise,

(8)

where i, j = 1, ..., N . This model assumes that the mutual cou-
pling effects are negligible for the sensors that are more than
Cλ/2 apart. The coefficients ci are the coupling coefficients
satisfying c0 = 1 > |c1| > |c2| > ... > |cC |. It is assumed that
the magnitudes of mutual coupling coefficients are inversely
proportional to the sensor separations. It is well-known that
the co-array weight functions at small separations play pivotal
role in introducing mutual coupling artifacts. In particular, the
first two co-array weights have the highest impact on mutual
coupling of an array [5], [16].

III. NON-REDUNDANT SPARSE ARRAYS

Non-redundant arrays enjoy highest number of DOFs by
achieving the maximum possible number of unique lags in the
resulting difference co-array. All the non-zero co-array lags of
a non-redundant sparse array are unique. Note that N sensors
yield N entries of lag-0 self-lags which cannot be avoided.
Therefore, for a non-redundant array consisting of N sensors,
we have a total of N2 co-array lags among which N lags are
located at position 0. This implies that a non-redundant array
of N sensors achieves N2 −N + 1 unique co-array lags.

In this section, we describe the zero-redundancy condition
which is necessary for the development of non-redundant
sparse arrays. Subsequently, we will first present an NNRA de-
sign which satisfies the zero-redundancy condition. However,
the resulting NNRA configurations have large inter-element
spacing which can give rise to high sidelobe level for DOA
estimates. In order to counter this disadvantage and design
non-redundant sparse arrays with minimum aperture, we then
develop a systematic design framework in the next section by
employing the disjunctive and MILP methods. These results
are then generalized to develop three new types of non-
redundant arrays which enjoy the desired features of using
flexible array aperture and reducing mutual coupling effects.

Define position vector p = [p1, p2, ..., pN ]T. Our objective
is to determine the optimal p for the sparse array such that
the corresponding difference co-array contains the maximum
number of unique lags for any given number of sensors. This
can only be possible if the difference co-array of the designed
sensor array contains no lag redundancies except at lag 0.

A. Zero-Redundancy Design Rule

From Eq. (6), we know that redundancies will be present
in the co-array if different pairs of sensor positions result in a
same co-array lag. Ignoring the redundancies at lag 0, all co-
array lags are unique if the co-array lag generated from a pair
of sensor elements is not equal to the co-array lag generated
by another pair of sensor elements, i.e.,

pi − pj 6= pk − pl, i, j, k, l = 1, ..., N,
i 6= j, k 6= l, j 6= l.

(9)

The conditions i 6= j and k 6= l ensure that the co-array lags
positioned at 0 are ignored, whereas j 6= l ensures that only

different pairs of sensors are considered. Incorporating the fact
that sensor positions are sorted in an ascending order in Eq.
(9), we obtain the following zero-redundancy design rule [34]:

pi + 1 ≤ pi+1 and pj − pk 6= pl − pm, j 6= k, l 6= m, k 6= m,
(10)

where i = 1, ..., N−1 and j, k, l,m = 1, ..., N . This condition
ensures the sparse array to be a non-redundant one.

B. A Naı̈ve Non-redundant Array

Non-redundant arrays following the design rule in Eq. (10)
are not unique. That is, for a given number of physical
sensors, we can design multiple non-redundant arrays which
all result in the same maximum number of unique lags. A
naı̈ve approach for such an array design can be obtained by
choosing the inter-element spacing between the (n − 1)th
and nth sensors to be greater than the array aperture till the
(n−1)th sensor, i.e., pn−pn−1 > pn−1. The sensor positions
for such a naı̈ve design can be found as:

pn ≥ 2pn−1 + 1, n = 2, ..., N. (11)

NNRA with the smallest aperture leads to the optimally nested
array (ONA) [9]. The sensor locations for this case can be
given by pn = 2n−1 − 1 for n = 1, 2, ..., N , resulting in the
array aperture of 2N−1 − 1. Such a large aperture renders
a high level of sensor sparsity and gives rise to inherent
high sidelobe levels for the DOA estimates. To overcome this
problem, we consider optimized non-redundant array designs
in the following sections.

IV. OPTIMIZED NON-REDUNDANT SPARSE ARRAY DESIGN

In this section, we optimize the non-redundant sparse ar-
ray design such that the resulting sparse array provides the
maximum number of unique lags for the smallest possible
array aperture, i.e. an MHA is formed. In order to design such
an array, we formulate a comprehensive design framework to
implement the zero-redundancy design rule using disjunctive
programming [28]–[31]. This framework is then reformulated
as MILP optimization problems [32], [33] to enable effective
solutions. In the next section, we generalize this design and
present three special cases of the generalized non-redundant
sparse arrays that are specifically designed to achieve a desired
array aperture, reduce the mutual coupling effects, or both.

Under the design rule in Eq. (10), we formulate the follow-
ing optimization problem to ensure a minimum array aperture
[34]:

min
pn∈Z+,∀n

pN

subject to pi + 1 ≤ pi+1, i = 1, ..., N − 1,

pi − pj 6= pk − pl, i 6= j, k 6= l, j 6= l,

i, j, k, l = 1, ..., N.
(12)

Here, Z+ represents the set of all non-negative integers. Since
the difference co-array is symmetric in nature, i.e., the negative
and positive lag positions are symmetric around the lag 0,
the above optimization problem can be considered only for
the positive side of the co-array. This will provide the same
resulting co-array while reducing the search space of the
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optimization problem. Therefore, we can employ i > j and
k > l so that the lags pi − pj and pk − pl are guaranteed to
be positive [34], i.e.,

min
pn∈Z+,∀n

pN

subject to pi + 1 ≤ pi+1, i = 1, ..., N − 1,

pi − pj 6= pk − pl, i > j, k > l, j 6= l,

i, j, k, l = 1, ..., N.
(13)

In the following subsection, we employ a systematic strategy
to solve this optimization problem by employing disjunctive
programming which is subsequently expanded to two different
MILP optimization problems.

A. Disjunctive Programming Framework

Consider an (N−1)×N upper bidiagonal matrix S such that
all main diagonal elements are equal to −1, all upper diagonal
elements are equal to 1, whereas the remaining elements are
zero. This implies that S(i,i) = −1 and S(i,i+1) = 1 for i =
1, ..., N − 1. We ensure the uniqueness of sensor positions,
i.e., pN > pN−1 > ... > p1, by introducing the following
element-wise inequality:

Sp ≥ 1N−1. (14)

Now, we formulate the positive-lag uniqueness condition in
optimization problem (13) in the form of a disjunction. For
this purpose, we first construct a combination matrix J which
translates the sensor positions p into their respective positive
co-array. The matrix J, containing U = N(N − 1)/2 rows
and N columns, takes the following form:

J = [JT
1 ,J

T
2 , ...,J

T
N−1]T, (15)

where

Ji = [ON−i,i−1,−1N−i, IN−i], i = 1, ..., N − 1. (16)

For instance, when N = 4, matrix J is given by:

J =


−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

 .
The vector Jp will result in all the possible positive co-array
lags which an N -element sensor array P can provide. The
elements in Jp are generally not in an ascending or descending
order. As we only examine the positive co-array lags, when
all those positive lags in Jp are unique, the corresponding
negative co-array lags in −Jp are also unique.

The condition that all elements of vector Jp are unique can
be described as the following element-wise inequality:

1U−1j
(u)p

e

6= J[u]p, u = 1, ..., U. (17)

Define L×N matrices

JA =

1U−1j
(1)

...
1U−1j

(U)

 and JB =

J[1]

...
J[U ]

 ,

where L = U(U − 1). Then, Eq. (17) can be expressed in the
following compact form:

JAp
e

6= JBp. (18)

Using Eqs. (14) and (18), optimization problem (13) can be
expressed as the following disjunctive programming problem:

min
pn∈Z+,∀n

pN

subject to Sp ≥ 1N−1,

Ω(j
(l)
A p6=j

(l)
B p) = True, l = 1, ..., L.

(19)

Here, Ω(·) is a logical operator which returns a ‘True’ value if
the element j

(l)
A p is not equal to the element j

(l)
B p. Optimiza-

tion problem (19) is one of disjunctive programming-based
representations which satisfy the zero-redundancy design rule
depicted in Eq. (10). Since p is a vector of integers, the
logic proportion will be true only if j

(l)
A p + 1 ≤ j

(l)
B p or

j
(l)
A p ≥ j

(l)
B p + 1.

Another disjunctive optimization problem which also yields
a non-redundant array with a minimum aperture is formulated
in the following form:

min
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to Sp ≥ 1N−1,[
zl

j
(l)
A p + 1 ≤ j

(l)
B p

]
∨
[

1− zl
j
(l)
A p ≥ j

(l)
B p + 1

]
,

(20)
where ∨ represents a disjunction or logical OR operator which
is ensured for each l ∈ {1, ..., L}. The inequality on the left
hand side of ∨ is satisfied if zl = 1, whereas the inequality on
the right hand size of ∨ is satisfied if zl = 0. For instance, if
all the elements in z = [z1, z2, ..., zL]T are unity, i.e., z = 1L,
the element-wise inequality JAp+1L ≤ JBp will be satisfied.
It not only ensures the minimum array aperture by minimizing

pN , but also ensures that the element-wise inequality JAp
e

6=
JBp is satisfied, thereby resulting in a non-redundant sparse
array. Optimization problem (20) can also be simplified as:

min
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to Sp ≥ 1N−1,[
zl

k(l)p ≤ −1

]
∨
[

1− zl
k(l)p ≥ 1

]
, l = 1, ..., L,

(21)
where k(l) = j

(l)
A − j

(l)
B . Alternatively, the condition Ω(j

(l)
A p 6=

j
(l)
B p) can be expressed as Ω(k(l)p6=0) in problem (19).

The optimization problems (19), (20) and (21) fall in the
category of GDP [29]. There exist several solvers to solve GDP
problems [29]–[31]. However, many solvers only allow con-
tinuous variables within the objective function, the disjunction,
and boolean variables within Ω(·). Because the optimization
problems (19), (20), and (21) involve integer variable p, some
GDP solvers may not be directly applicable. In order to solve
these optimization problems with a high flexibility, we convert
disjunctive programming problems into MILP counterparts
in the next section which can be handled by popular MILP
solvers [32], [33].
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B. Mixed-Integer Linear Programming Framework
GDP problems can be solved by exploiting MILP. As

integer variables are involved in solving them, they are more
computationally expensive than linear programming problems.
A good way to approach an MILP problem is to obtain an
initial guess by exploiting the relaxed version of the problem.
This initial solution is then employed by advanced branch-
and-bound or branch-and-cut algorithms to obtain the optimal
solution.

In this subsection, we present two ways to convert opti-
mization problems (19) and (21) into their MILP counterpart
that can also be relaxed to obtain suboptimal solutions. The
first method, called Big-M formulation, employs an additional
variable M which helps convert the logical disjunctions into
constraints. The second method, named Convex-Hull formula-
tion, exploits the same principle but uses more variables than
the big-M method. If the binary variables of these problems are
relaxed to span the continuous region between 0 and 1, their
respective solutions can be used as an initial guess [28]–[30].
While Convex-Hull and Big-M formulations result in problems
that represent identical solution spaces, their relaxed problems
are not identical. The solution space resulting from the Big-
M formulation is larger than the minimum solution space for
the Convex-Hull formulation. This results in fewer iterations
required to solve the relaxed GDP problems formulated using
Convex-Hull. Despite this, the Big-M formulation is simpler
and requires less variables. Due to this reason, Big-M formu-
lation tends to converge faster for the branch-and-bound and
branch-and-cut-based integer programming solvers given that
its relaxed solution space is the same [28], [29].

1) Big-M Formulation: In this type of formulation, we
define a sufficiently large constant M . Then, each inequality
requirement can be reformulated such that, if it is not being
used, it becomes null and void. This implies that we modify
the inequalities on both sides of disjunction in optimization
problem (21) such that the unused inequalities are ignored.
The resulting optimization problem takes the following form:

min
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to Sp ≥ 1N−1,

1−Mzl ≤ k(l)p, l = 1, ..., L,

k(l)p ≤ −1 +M(1− zl), l = 1, ..., L.
(22)

Note that if zl = 0, 1 ≤ k(l)p is satisfied, whereas k(l)p ≤ −1
is satisfied for zl = 1. Moreover, the conditions k(l)p ≤ −1+
M and 1−M ≤ k(l)p are redundant due to a very large value
of M which is intelligently selected.

2) Convex-Hull Formulation: Another form of the MILP
optimization problem for extracting non-redundant arrays can
be given as:

min
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to Sp ≥ 1N−1,

−Mzl ≤ k(l)p1 ≤ −zl, l = 1, ..., L,

1− zl ≤ k(l)p2 ≤M(1− zl), l = 1, ..., L,
p1 + p2 = p.

(23)

Here, p1 and p2 are intermediary variables which add to make
the variable of interest p. Note that if zl = 0, we have 0 ≤
k(l)p1 ≤ 0 which results in the elements of p1 corresponding
to the non-zero elements in k(l) equal to zero. Similarly, the
entries of p2 for zl = 1 corresponding to 0 ≤ k(l)p2 ≤ 0 will
also be equal to zero. The optimization problem (23) ensures
that k(l)p is either positive or negative. Due to the presence of
intermediary variables, the optimization problem (23) involves
more variables than the optimization problem (22).

In optimization problems (22) and (23), the value of M
should be ideally equal to the aperture of the array. Big
values of M will lead to a very large search space resulting
in increased computational burden. On the other hand, the
optimization problems will become infeasible if the value of
M is smaller than the array aperture. For an N -element sparse
array, the array aperture A is given by [8]:

A = pN =
N(N − 1)

2
+H −R, (24)

where R is the number of redundancies and H is the number
of holes in the non-negative difference co-array.

The lower bound of the number of redundancies and holes
in the difference co-array of a sparse array is further expressed
as [8]:

R(6π+ 4) +H(6π− 4) ≥ 2N2−N(3π+ 2) + 3π+ 2. (25)

Since R = 0 for non-redundant arrays, we obtain from Eq.
(25):

H ≥ N2

3π − 2
− (N − 1)(3π + 2)

2(3π − 2)
. (26)

This lower bound of the number of holes increases to
N2/(3π−2) when N is large. Subsequently, the ratio between
N2 and the aperture is given by:

N2

A
=

N2

N
2 (N − 1) +H

. (27)

Substituting Eq. (26) into Eq. (27), we obtain:

A ≥ N

2
(N − 1) +

N2

3π − 2
− (N − 1)(3π + 2)

2(3π − 2)
, (28)

which acts as the lower bound on M for optimization problems
(22) and (23). For very large arrays, N

2

A → 1 [37]. Therefore,
the value of M is upper bounded by N2. Both optimization
problems (22) and (23) can be exploited directly to extract
the non-redundant arrays and can be solved using popular
MILP solvers like Gurobi [32] and MOSEK [33]. Such modern
solvers exploit advanced branch-and-cut algorithms along with
the pre-solving capabilities. Unlike the brute-force search,
MILP solvers keep the track of bounds on the minimum within
which the solution of MILP optimization problem exists.
This enables them to prune the search space and eliminate
the candidate solutions that do not belong to the optimal
solution set. Conventionally, these algorithms have been found
to perform far better than the brute-force search [32], [33].
However, the exact computational cost varies with different
problems and, in the worst-case scenario, the computational
cost can be the same as brute-force search. Some MILP solvers
also allow to terminate the search procedure before an exact
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solution is achieved. In this scenario, we can constrain the
complexity in polynomial time; however, the solution will be
approximate.

Several other candidate constraints can also be added in
the optimization problems (22) and (23) to aid the advanced
cutting plane methods used by the MILP solvers. For example,
the sum of all the inter-element spacings of an array is equal
to its aperture. Moreover, we know from Eq. (24) that the
aperture of the non-redundant array always is greater than
N(N−1)

2 . Such example constraints can be expressed as:

pN = 1T
N−1Sp, pN ≥ N(N − 1)

2
. (29)

Such constraints can be readily added in our proposed opti-
mization problems (22) and (23) to boost the search operation
as they can reduce the search space of these MILP optimiza-
tion problems.

V. GENERALIZED NON-REDUNDANT ARRAY DESIGN

In this section, we generalize the concept of non-redundant
sparse array design to further enjoy important features, such as
using a flexible sparse array aperture and reducing the unde-
sired mutual coupling effects. This is considered by proposing
three cases of new non-redundant sparse arrays. First, we
develop non-redundant sparse arrays having a desired array
aperture. Second, we present non-redundant array designs
which effectively reduce the mutual coupling effects compared
to the other array structures. Finally, we present a hybrid non-
redundant array which simultaneously enjoys both features of
a desired array aperture and mutual coupling reduction.

A. Non-redundant Arrays with Desired Array Aperture

Let M̄ be the array aperture of a non-redundant array with
a minimum aperture. If Ā is the desired array aperture for the
non-redundant array such that Ā ≥ M̄ , we can reformulate
optimization problem (19) as:

max
pn∈Z+,∀n

pN

subject to pN ≤ Ā,
Sp ≥ 1N−1,

Ω(j
(l)
A p6=j

(l)
B p) = True, l = 1, · · · , L.

(30)

The above optimization problem provides a non-redundant
array with the specified aperture Ā. Alternatively, we can
reformulate the disjunctive optimization problem (20) for non-
redundant array design with a desired array aperture as:

max
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to pN ≤ Ā,
Sp ≥ 1N−1,[

zl
JAp ≥ JBp + 1

]
∨
[

1− zl
J
(l)
A p + 1 ≤ J

(l)
B p

]
.

(31)

The corresponding MILP optimization employing big-M
formulation is obtained by substituting M by Ā given as:

max
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to pN ≤ Ā,
Sp ≥ 1N−1,

1− Āzl ≤ k(l)p, l = 1, ..., L,

k(l)p ≤ −1 + Ā(1− zl), l = 1, ..., L.
(32)

Similarly, we can obtain the corresponding Convex-Hull
formulation as:

max
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to pN ≤ Ā,

Sp ≥ 1N−1,

− Āzl ≤ k(l)p1 ≤ −zl, l = 1, ..., L,

1− zl ≤ k(l)p2 ≤ Ā(1− zl), l = 1, ..., L,
p1 + p2 = p.

(33)
The MILP problems (32) and (33) can be used to extract
non-redundant sparse arrays with a desired array aperture Ā.
Although inequality pN ≤ Ā is used in these optimization
problems, we have confirmed via simulations for M =
4, ..., 10 sensors, that such non-redundant arrays exist for all
the possible array apertures within the range M̄ ≤ Ā ≤M2.

B. Non-redundant Arrays with Reduced Mutual Coupling

In this subsection, we design non-redundant arrays with
reduced mutual coupling effects. This is ensured by designing
the non-redundant arrays such that the resulting co-array
has Lm consecutive holes in the co-array at lag positions
1, · · · , Lm, where Lm is a small positive integer. The mo-
tivation behind this array design is to avoid small co-array
lag values as they most significantly contribute to the mutual
coupling effects. In particular, co-array lag values of 1, 2 and
3 have a major impact on the mutual coupling of an array,
with lag 1 showing the highest impact [4], [5], [16].

Our objective can be achieved in two ways. Since vector Sp
contains all the inter-element spacings between consecutive
sensors, we can replace the constraint Sp ≥ 1N−1 in Eqs.
(19) and (21) by Sp ≥ (1 + Lm)1N−1 so that lag positions
1, · · · , Lm are eliminated. Another approach is to utilize the
fact that vector Jp provides all the positive co-array lags.
Instead of using Sp ≥ (1+Lm)1N−1, we can add a constraint
Jp ≥ (1 + Lm)1U in optimization problems (19) and (21).

The corresponding MILP optimization using big-M formu-
lation is expressed as:

min
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to Sp ≥ (1 + Lm)1N−1,

1−Mzl ≤ k(l)p, l = 1, ..., L,

k(l)p ≤ −1 +M(1− zl), l = 1, ..., L.
(34)
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The Convex-Hull formulation takes the following form:

min
pn∈Z+,∀n,zl∈{0,1},∀l

pN

subject to Sp ≥ (1 + Lm)1N−1,

−Mzl ≤ k(l)p1 ≤ −zl, l = 1, ..., L,

1− zl ≤ k(l)p2 ≤M(1− zl), l = 1, ..., L,
p1 + p2 = p.

(35)
Note that the new array will have a larger aperture than M̄

because the resulting co-array contains more holes. Specif-
ically, the smallest inter-element spacing is increased from
1 to Lm + 1. For the pairs of sensors in the non-redundant
array with minumum aperture which result in lags at positions
1, 2, ..., Lm, the corresponding inter-element spacing should
be increased by at least Lm, Lm− 1, ..., 1, respectively, which
leads to additional holes in the resulting difference co-array.
Therefore, if the non-redundant array with a minimum aperture
had no co-array holes from lag 1 to lag Lm, the new non-
redundant array with reduced mutual coupling will introduce
at least the following number of holes in the co-array:

Hm = Lm+(Lm−1)+...+1 =

Lm∑
k=1

k =
Lm(Lm + 1)

2
. (36)

The new lower bound on M for optimization problems (34)
and (35) can be obtained from Eqs. (28) and (36) as:

A ≥ Hm +
N

2
(N − 1) +

N2

3π − 2
− (N − 1)(3π + 2)

2(3π − 2)
. (37)

C. Hybrid Non-redundant Arrays

Now, we design hybrid non-redundant arrays which not
only enjoy reduced mutual coupling but also achieve the
desired array aperture. This can be realized by modifying the
disjunctive optimization problem (19) as follows:

max
pn∈Z+,∀n

pN

subject to pN ≤ Ā,
Sp ≥ (1 + Lm)1N−1,

Ω(j
(l)
A p6=j

(l)
B p) = True, l = 1, ..., L.

(38)

The above optimization problem is feasible if a sufficiently
large value of Ā is selected whose lower bound is given by
Eq. (37). The optimization problem (38) tends to achieve an
aperture of Ā such that the mutual coupling effects are reduced
by employing consecutive holes in the resulting co-array for
lag positions 1, ..., Lm. The corresponding MILP problems
can be derived by following the same procedures as those
in Section IV.

VI. DOA ESTIMATION

A. Compressive sensing-based method

Eq. (5) can be exploited along with compressive sensing
approach, resulting in the following constrained l0-norm min-
imization:

r̂ = arg min
r
|r|0 subject to |Br− ẑ|2F ≤ κ, (39)

where ẑ = vec(R̂x), κ is the user-specific error bound, and B
is an N2×G dictionary matrix consisting of a grid of searching
steering vectors corresponding to angles θ1, · · · , θG such that
the gth column of B can be represented by a∗(θg)⊗a(θg) and
G� Q. Moreover, r represents a sparse vector which selects
and adds the desired steering columns from B. The last entry
of r̂ represents the estimate of noise power σ̄2

n, whereas the
positions and values of other non-zero entries in r̂ illustrate
the estimated DOAs and their corresponding signal power. The
LASSO-based optimization problem corresponding to (39)
takes the following form [40]:

r̂ = arg min
r
|Br− ẑ|2F + η|r|1, (40)

where η is the regularization parameter which controls the
trade-off between the Frobenius norm minimization-based
fitting and l1-norm based sparsity measure.

B. Array interpolation-based method

We can employ structured matrix completion to fill the holes
in the difference co-array resulting from the non-redundant
sparse arrays. A binary vector v can be constructed to illustrate
the presence of real and virtual sensors. The i-th element of
v is given as:

vi =

{
1, i ∈ P,
0, i ∈ P′, (41)

where i = 0, ..., pN and P′ is the compliment set of P.
The received signal from the non-redundant array takes the
following form:

y(t) = u(t) ◦ v, (42)

where u(t) denotes the signal received by a hypothetical ULA
of aperture pN having an inter-element spacing of λ/2.

If R̂yy is the estimated covariance matrix of y(t), we can
represent its missing entries with a mask V = vvH where
the zeros in V correspond to the missing entries in R̂yy .
Recall that the covariance matrix of a ULA has ideally a
Hermitian Toeplitz structure. Therefore, the matrix completion
problem for covariance matrix recovery can be expressed as
the following semi-definite optimization problem [27]:

min
w

rank(T (w))

subject to |T (w) ◦V − R̂yy|2F ≤ γ
T (w) � 0,

, (43)

where T (w) represents the Toeplitz and Hermitian matrix with
w as the first column and γ is the error tolerance.

We can relax the rank minimization objective in (43) by
exploiting the nuclear norm of T (w) given by ‖T (w)‖∗ =
tr(
√
T H(w)T (w)) which can be further relaxed as tr(T (w))

[38]. The optimization problem (43) takes the following con-
vex form:

min
w

|T (w) ◦B− R̂yy|2F + ζ tr(T (w))

subject to T (w) � 0,
(44)

where ζ is the regularization parameter. After the covariance
matrix of the interpolated sparse array is extracted, we can
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subsequently employ popular subspace-based DOA estimation
methods, e.g., MUSIC [35] and ESPRIT [36], to obtain the
DOA estimates.

VII. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the superiority of the proposed array designs in terms of
number of DOFs, weight functions, DOA estimation perfor-
mance, and mutual coupling effects compared to popular array
structures of coprime array [10], nested array [9], coprime
array with minimum lag redundancies (CAMLR) [20], MRA
[3], super nested array (SNA) [16], augmented nested array
(ANA) [14], and MISC array [5]. We construct the proposed
array structures of NNRA, optimized non-redundant array with
minimum array aperture (ONRA, i.e., MHA), optimized non-
redundant array with desired aperture (ONRAda), optimized
non-redundant array for reduced mutual coupling (ONRAmc),
and hybrid optimized non-redundant array (ONRAhybrid).
ONRAhybrid combines the desired features of ONRAda and
ONRAmc. We consider the desired array aperture of pN = 22
for ONRAda and ONRAhybrid, whereas Lm is fixed to be 1 for
ONRAmc and ONRAhybrid. The Big-M formulation of MILP
optimizations has been used to extract sensor locations for all
the proposed array configurations.

A. Degrees-of-freedom and Weight Functions

Fig. 1 shows all the sparse array structures under consider-
ation. Their resulting non-zero co-array lags can be observed
from their weight functions in Fig. 2. It is shown that coprime
array, nested array, CAMLR, MRA, SNA, ANA, and MISC
array respectively achieve 9, 12, 12, 14, 12, 13, 14 unique non-
negative co-array lags. On the other hand, all the proposed
array structures provide maximum number of non-negative
unique lags equal to 16. We can also observe that NNRA
has a very large array aperture, whereas ONRA, ONRAda,

Fig. 1. Array structures of different types of 6-element sparse arrays under
consideration.

ONRAmc, and ONRAhybrid enjoy array compactness and have
the respective optimized array aperture of 17, 22, 20, and 22,
respectively.

It can be observed from Fig. 2 that coprime array, nested
array, CAMLR, MRA, SNA, ANA, and MISC array have
a high number of small non-negative lags. This shows that
DOA estimation using these arrays will be significantly af-
fected by mutual coupling effects. On the other hand, the
proposed array structures NNRA, ONRA and ONRAda have
only one co-array lag at the positions 1, 2, and 3. Therefore,
these array structures are less susceptible to the undersired
mutual coupling effects. Moreover, the non-redundant arrays
ONRAmc and ONRAhybrid, which are specifically designed
to avoid mutual coupling effects using Lm = 1, have holes
at co-array lag 1 that further reduces the influence of mutual
coupling for these array structures. From Figs. 1 and 2, we
observe that ONRAhybrid enjoys the desirable benefits of both
ONRAda and ONRAmc, i.e., it achieves the desired aperture
of 22 and has a hole at lag position 1. Therefore, ONRAhybrid

has the ability to provide high resolution DOA estimates while
mitigating the undesired mutual coupling effects. Another
interesting observation is that the minimum inter-element
spacing for ONRAmc and ONRAhybrid is one wavelength.
However, these arrays do not experience any angle ambiguities
as the minimum co-array spacing is half-wavelength which is
evident from Fig. 2.

B. DOA Estimation in the Absence of Mutual Coupling

We compare the DOA estimation performance of all the
arrays under consideration for the case of six sensors and
Q = 13 sources uniformly distributed from −48◦ to 48◦. We
use 500 snapshots of data for DOA estimation, and the input
signal-to-noise ratio (SNR) is fixed at 0 dB. Mutual coupling
among the sensors is ignored in this subsection.

Fig. 3 shows the LASSO spectra for the 12 sparse arrays
being compared using η = 2.5 and a grid size of 0.1◦. It
is observed that all the design examples other than the non-
redundant arrays fail to successfully resolve all sources, and
inherent bias is clearly observed in these estimation results. In
comparison, all non-redundant arrays are able to resolve all the
sources. Note that NNRA results in some false peaks due to the
high sidelobe level as the array is highly sparse. On the other
hand, the proposed ONRA, ONRAda, ONRAmc, ONRAhybrid

do not produce any artifacts and achieve a clean LASSO
spectrum. This fact verifies their superior DOA estimation
capability.

To obtain the hole-free covariance matrix using structured
matrix completion, the value of ζ is assumed to be 0.1
for all simulations. Fig. 4 shows the MUSIC and ESPRIT
spectra of all the arrays under consideration while employing
structured matrix completion. Normalized spectrum is plotted
for MUSIC, and the DOA estimates for ESPRIT are plotted
using ‘+’ marks in the same plots. It is observed that the
use of structured matrix completion significantly improves
the DOA estimation capability of many array designs under
consideration. For instance, almost all the conventional designs
can resolve most of the sources; however, several estimates
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(a) coprime array (b) nested array (c) CAMLR (d) MRA

(e) SNA (f) ANA (g) MISC array (h) NNRA (proposed)

(i) ONRA ( MHA) (j) ONRAda (proposed) (k) ONRAmc (proposed) (l) ONRAhybrid (proposed)

Fig. 2. The non-negative co-array weight functions of twelve different types of 6-element sparse arrays under consideration.

(a) coprime array (b) nested array (c) CAMLR (d) MRA

(e) SNA array (f) augmented nested array (g) MISC array (h) NNRA (proposed)

(i) ONRA (MHA) (j) ONRAda (proposed) (k) ONRAmc (proposed) (l) ONRAhybrid (proposed)

Fig. 3. The normalized LASSO spectra for twelve different types of 6-element sparse arrays. Q = 13 sources are uniformly distributed between −48◦ and
48◦, SNR is 0 dB, the number of snapshots is 500, the grid size for LASSO is 0.1◦, and the regularization parameter η is 2.5.
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(a) coprime array (b) nested array (c) CAMLR (d) MRA

(e) SNA array (f) augmented nested array (g) MISC array (h) NNRA (proposed)

(i) ONRA (MHA) (j) ONRAda (proposed) (k) ONRAmc (proposed) (l) ONRAhybrid (proposed)

Fig. 4. The MUSIC spectra and ESPRIT results for twelve different types of 6-element sparse arrays. Q = 13 sources are uniformly distributed between
−48◦ and 48◦, SNR is 0 dB, the number of snapshots is 500, and ζ = 0.1.
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Fig. 5. RMSE of DOA estimates exploiting ESPRIT in the absence of mutual coupling when Q = 5 sources are located at θ = [−30◦,−15◦, 0◦, 15◦, 30◦]
(ζ = 0.1, 1000 Monte Carlo trials).

are biased. NNRA resolves all sources with a lower bias,
but it contains false peaks because of its highly sparse array
design which yields high sidelobe levels. This result confirms
the importance of having certain cardinality with consecu-
tive lags for effective matrix completion [24]. On the other
hand, ONRA, ONRAda, ONRAmc, and ONRAhybrid achieve
accurate DOA estimation performance by providing unbiased
high-resolution DOA estimates, thereby demonstrating their
superior performance.

Now we investigate the root mean squared error (RMSE)

performance of the sparse arrays under consideration.
For these simulations, we consider 5 independent sources
impinging on the arrays under consideration at angles
−30◦,−15◦, 0◦, 15◦, and 15◦, respectively. For all the array
designs, we apply structured matrix completion-based co-array
interpolation and subsequently exploit ESPRIT algorithm to
extract DOA estimates. Fig. 5(a) shows that all the proposed
array designs provide low RMSE for a varying number of
snapshots compared to the other array structures. A similar
trend is observed in Fig. 5(b) where the RMSE performance
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is compared with varying input SNR. We observe that the
RMSE performance of all the proposed non-redundant array
structures is very close to each other. However, it is observed
that the proposed array designs have worse DOA estimation
performance when the number of snapshots is small or when
the input SNR is low. In such cases, the higher redundancy
offered in other array designs can contribute to compensate
the effect of noise and covariance matrix perturbation, whereas
the proposed non-redundant array designs lack such capability.
Such performance degradation is common in sparse signal
processing whose superiority is more clear in scenarios with
a high SNR and a large number of snapshots. We maintain,
however, that there are many real-world applications, such as
radar and sonar after coherent range and Doppler processing,
that would offer an adequate level of SNR and a large number
of snapshots to benefit from the proposed non-redundant array
designs.

In order to investigate the capability of the proposed array
designs to resolve closely spaced sources, we consider two
sources located at θ1 = 20◦ and θ1 = 23◦, respectively. The
input SNR is fixed at 0 dB, whereas the number of snapshots
is reduced to 50. The histogram of 5000 Monte Carlo trials is
plotted in Fig. 6(a). DOA estimates exploiting NNRA, ONRA
(MHA), ONRAda, ONRAmc, and ONRAhybrid yields an
RMSE of 0.0664, 1.7794, 0.2873, 0.7738, 0.2867, respectively.
It is observed that, due to the large array aperture, NNRA
gives the best resolution for closely spaced sources. On the
other hand, ONRA (MHA) gives the worst performance. Best
performance is demonstrated by ONRAda and ONRAhybrid

because both array structures enjoy the same large array aper-
ture. ONRA (MHA) and ONRAmc show worse performance
because they were not able to resolve the two closely-spaced
sources successfully in all the trials due to their smaller array
aperture. This result illustrates the importance of flexibility
in the array aperture provided by proposed generalized non-
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Fig. 6. Histogram of DOA estimates exploiting ESPRIT from 5,000 Monte
Carlo trials. Two sources are located at [20◦, 23◦] with 0 dB SNR, and 100
snapshots are considered.

redundant array designs.

C. DOA Estimation in the Presence of Mutual Coupling

Now, we investigate the DOA performance of arrays under
consideration for the case of very high mutual coupling. For
this purpose, we consider |ck| = |c1|/k, for k = 2, ..., C,
|c1| = 0.3 and C = 100. Fig. 6(b) shows the histogram
of DOA estimates in the range of [19◦, 24◦] for 5000 in-
dependent trials. DOA estimates exploiting NNRA, ONRA
(MHA), ONRAda, ONRAmc, and ONRAhybrid have an RMSE
of 0.0979, 7.8773, 2.1930, 1.5832, 0.5150, respectively. We
see that the ONRA (MHA) has a significantly higher failure
rate to resolve the two sources within the range [19◦, 24◦]
in the presence of mutual coupling. ONRAda also has poor
DOA estimation performance due to the presence of a lag at
location 1. On the other hand, ONRAmc, which is specifically
designed to reduce mutual coupling effects, performs better
than ONRA (MHA) and ONRAda. Moreover, NNRA and
ONRAhybrid provide the best performance due to their large
inter-element spacings compared to other arrays. The RMSE
results for this case exploiting ESPRIT with varying influence
of mutual coupling are plotted in Fig. 7(a). It is observed
that the NNRA performs better when the mutual coupling
effect is low. However, note that the success of NNRA is also
partially due to the large array aperture, leading to a high
DOA resolution. When the mutual coupling effects become
high, the performance of NNRA degrades rapidly. Among
the optimized array designs, ONRAhybrid and ONRAmc out-
perform all other non-redundant designs and the existing
sparse array structures under consideration. When the number
of sources is increased, Fig. 7(b) shows the RMSE with
respect to varying mutual coupling influence. It is observed
that the optimized non-redundant arrays specifically designed
to mitigate the mutual coupling effects outperform all other
array structures under consideration, with the ONRAhybrid

providing the best performance. The RMSE performance for
this case with varying number of snapshots is shown in Fig.
8(a). We observe that the proposed array designs provide low
RMSE for a varying number of snapshots compared to the
other array structures. A similar trend is observed in Fig. 8(b)
where the RMSE performance is compared with varying input
SNR. We observe that the RMSE performance of hybrid array
structure is the best compared to all the other array designs
under consideration.

All the simulation results clearly illustrate the superiority of
the proposed array design strategies.

VIII. CONCLUSIONS

In this paper, we proposed a generalized design framework
for non-redundant sparse arrays that achieve highest number
of DOFs for DOA estimation by providing the maximum
number of co-array lags. The proposed array design strategies
render difference co-arrays with no lag redundancies. The
zero-redundancy design rule developed in this paper serves
as a baseline for non-redundant sparse array design, and the
NNRA structure is developed in a straightforward manner. We
then developed a systematized array design framework based
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(a) 2 closely-spaced sources, 100 snapshots.
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Fig. 7. RMSE of DOA estimates exploiting ESPRIT with respect to the varying magnitude of mutual coupling co-efficient c1 (SNR = 0 dB, |ck| = |c1|/k
for k = 2, ..., C, C = 100, 500 Monte Carlo trials): (a) θ = [20◦, 23◦], (b) θ = [−30◦,−15◦, 0◦, 15◦, 30◦].
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Fig. 8. RMSE of DOA estimates exploiting ESPRIT in the presence of mutual coupling when Q = 5 sources are located at θ = [−30◦,−15◦, 0◦, 15◦, 30◦]
(ζ = 0.1, |ck| = |c1|/k for k = 2, ..., C, C = 100, 1000 Monte Carlo trials).

on disjunctive programming, and the results are expanded
to two MILP optimization problems which can be solved
using popular solvers. In addition to developing non-redundant
arrays with a minimum array aperture, we generalize the non-
redundant sparse array design framework with desired features
that use flexible array apertures and reduce the mutual cou-
pling effects. Employing structured matrix completion interpo-
lates missing holes in the resultant co-array and enables grid-
less DOA estimation. Simulation results were performed by
exploiting LASSO-based strategy on the resulting difference
co-array as well as MUSIC and ESPRIT using the interpolated
co-array. The hybrid non-redundant array structure enjoys
both desired array aperture and mutual coupling reduction
capability and provides best overall performance.
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