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Multi-Target Location and Doppler Estimation in
Multistatic Automotive Radar Applications

Ali Moussa, Wei Liu, Yimin D. Zhang, and Maria S. Greco

Abstract—In this paper, we develop a multistatic automotive
radar scheme for enhanced localization and Doppler estimation
of multiple targets exploiting cooperative roadside sensors. As the
range between a target and a sensing vehicle cannot be directly
measured, intermediate calculations are required to convert the
measured bistatic range to the radial range of the targets of
interest. Using the Fourier transform, the range resolution is
thereby limited by the Rayleigh criterion applied to the total
bistatic range. Developing a sparse representation for the bistatic
automotive scenario can not only bypass the intermediate calcula-
tion step, but also add super-resolution sensing capability beyond
the Rayleigh limit. As this application can benefit from the
communication capabilities of the fifth-generation (5G) new radio
(NR), multiple cooperative roadside transmitters are employed
along a smart highway, forming a multistatic configuration. In
order to process multiple realisations of the reflected signals
simultaneously, we propose a solution employing the concept of
group sparsity. Then, we show through computer simulations
that, for some added complexity, better positioning performance
can be achieved when compared to the state-of-art.

Index Terms—automotive radar, multistatic, radar signal pro-
cessing, sparse representation, location and Doppler estimation,
group sparsity.

I. INTRODUCTION

Radar-based sensing is a key enabling technology for au-
tonomous driving and future intelligent transportation systems
[1]–[4]. Recently, the automotive industry has benefited sig-
nificantly from the development of various millimetre wave
radar technologies deployed for applications such as adaptive
cruise control, lane-change assistance, parking assistance, au-
tonomous emergency brake, and advanced driver assistance
systems (ADAS) [5]–[7]. A bistatic radar relies on a transmit-
ter typically located far away from the receiver, and requires
an additional reference receiver for collecting a direct-path
signal needed as a reference for the demodulation task [8],
[9]. Without loss of generality, any form of communication
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Figure 1. Multistatic automotive localisation scenario using two cooperative
roadside sensors.

between the transmitter and the receiver that allows instanta-
neous sharing of the modulation parameters of the transmitted
waveform, as well as tight time synchronisation, is sufficient
for the operation of such radar systems.

The interests to bistatic and multistatic radars resurged in the
1990s with more research drawn into statistical multiple-input
multiple-output (MIMO) radar, bistatic synthetic-aperture-
radar (SAR), remote sensing, and stealthy detection [10]–
[14]. Bistatic and multistatic radars are also the foundation
of passive radar systems as a means of green sensing tech-
nology [15], [16]. However, bistatic radar has since then
struggled to break into the automotive industry, partly due
to the very strict synchronisation requirements (in the order
of nanoseconds [17]). Nonetheless, motivated by the drive
in the fifth-generation (5G) communications and beyond to
meet the requirements of vehicular applications [18], [19], as
well as some advances in experimental radar synchronisation
[20]–[22], automotive bistatic applications have been recently
proposed to offer joint communication and radar capability
for vehicles transmitting known communication modulation
waveforms [23], enhanced detection in smart highway scenar-
ios using cooperative roadside sensors transmitting radar sig-
nals [24], [25], and improved radar performance for vehicles
exploiting a superposition of their monostatic measurements
and bistatic ones from other road users [26]. At the same
time, there are potential problems with such applications when
employing Fourier techniques for localisation.

In this paper, a further extension to [24] is proposed where
multiple cooperative roadside sensors are considered, resulting
in a configuration known as multistatic (see Fig. 1). Our focus
is on the two-dimensional (2D) localisation problem where the
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target range and direction-of-arrival (DOA) are simultaneously
estimated followed by Doppler estimation for multiple targets.
We refer to this problem as three-dimensional (3D) motion
parameter estimation. Although the high efficiency of 3D
fast Fourier transform (FFT) [27] and its good performance
make it a straightforward candidate for extracting frequency
information from an accumulation of signals corrupted by
white noise [28], when multiple roadside sensors are in op-
eration, it becomes difficult using FFT to coherently integrate
range and Doppler measurements from different transmitter-
receiver pairs [29]. To overcome this issue, more advanced
signal processing techniques are needed, allowing processing
information from multiple bistatic transmitter-receiver pairs on
the data level.

While it is generally accepted that advanced signal pro-
cessing techniques carry the extra computational cost, this
consensus is destined to vanish as processing power retains
its increasing trend. As a result, advanced signal processing
techniques such as MUltiple SIgnal Classification (MUSIC)
[30] and sparsity-based methods under the compressive sens-
ing (CS) framework [31] have been hot topics in radar-related
research in the last few decades [7], [32]–[34]. A sparse
representation means that the signal can be modelled as a
vector of finite/infinite parameters where only a few entries are
non-zero; a set containing the indices of the non-zero entries
in this sparse vector is known as the support. Researchers
have adopted sparse representation from the CS framework
and developed radar signal models for the DOA estimation
problem [35]–[38] that can naturally be solved by popular
techniques such as group LASSO [39], [40], also known as
`2,1 minimisation, and multistatic Bayesian sparse learning
[41]–[43]. In particular, the structured sparsity problem arises
when multiple sources of information share a common support
set under the generally accepted narrowband assumption.
Therefore, it naturally exists in radar applications, for instance,
when multiple pulses, transmitters, or receivers are employed.

In this paper, we show that the extra degrees of freedom
(DoFs) offered by prior information and multiple transmitters
can be directly exploited following a sparse representation.
We map the road as a Cartesian grid and enforce sparsity for
simultaneous 2D localisation in a similar way as in [44], fol-
lowed by Doppler estimation. With this approach, we avoid an
exhaustive 3D parameter search, thereby significantly reducing
the computational complexity. In order to pair the estimated
location and Doppler parameters for each target, we propose
two data association methods with varying performance and
computational complexity. By performing extensive computer
simulations, we convey the feasibility and superiority of the
proposed sparsity-based positioning solutions in multistatic au-
tomotive configurations, and prove the success of the proposed
data association methods under different settings.

Notations used in this work are as follows. Vectors and
matrices are represented as lowercase and uppercase bold-face
letters, respectively. {.}∗, {.}T , and {.}H denote the complex
conjugate, transpose, and Hermitian transpose of a vector or
matrix, respectively. ◦, ⊗, and � denote the outer product,
the Kronecker product, and the element-wise (Hadammard)
multiplication, respectively. diag{.} returns a diagonal matrix,
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Figure 2. Geometry of the localisation problem.

vec{.} is the vectorisation operation, and E{.} is the expec-
tation. ‖.‖1, ‖.‖2 and ‖.‖F are the `1-norm, `2-norm and
the Frobenius norm, respectively. The range parameters and
Cartesian coordinates are in metres (m), velocity parameters in
metres per second (m/s), and DOA/angle parameters in degrees
(◦).

In the rest of this paper, a 3D multistatic frequency-
modulated continuous-wave (FMCW) signal model is derived
in Section II. Then, a multi-target location and Doppler
estimation solution employing the group-sparsity (GS) concept
in multistatic automotive configuration is proposed in Section
III. Finally, simulation results are presented in Section IV, and
conclusions are drawn in Section V.

II. 3D MULTISTATIC FMCW SIGNAL MODEL

Consider H stationary roadside sensors, each transmitting a
frame of M narrowband FMCW chirps, with chirp repetition
interval T and transmission duration per chirp equal to Tc.
In reality, some form of orthogonality is introduced between
the signals from different sensors to allow separating them
at the receiver end [45], so we assume that the H sensors
perform orthogonal transmissions in an appropriate domain.
A single sensing vehicle is considered with K point targets
present in the visible region of its radar module. Therefore, a
single normalised transmitted chirp can be represented in the
complex form as

s0(t) =

{
ej2π[f0t+0.5µt2] t ∈ [0, Tc),

0 otherwise,
(1)

where f0 denotes the starting frequency, t is the continuous
real time, µ = B

Tc
the modulation rate, and B the modulation

bandwidth. Then, the transmitted normalised frame can be
represented as

sM (t) =

M−1∑
m=0

s0(t−mT ). (2)

Since the signal sM (t) is periodic, time t can be decomposed
into fast time tf and slow time mT such that

t = tf +mT, tf ∈ [0, Tc). (3)

Accordingly,

s0(t) = s0(tf +mT ) = s0(tf ). (4)
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While sM (t) is a superposition of M chirps, it is convenient
with the proposed decomposition of time to represent the
normalised transmitted signal for the m-th chirp at time tf
as

s(m, tf ) = s0(tf ). (5)

Without loss of generality, we assume that all vehicles are
moving forward along the direction of the lane with a constant
velocity over the considered period of signal transmission
such that the sensing vehicle drives towards the roadside
sensor with velocity v and target vehicle drives away from
it with velocity vk. In the sequel, the subscripts k and h
denote any parameters or signals corresponding to the k-th
target and the h-th roadside sensor, respectively, and h, k
denotes any combination of both, where k = 1, 2, . . . ,K and
h = 1, 2, . . . ,H .

As depicted in Fig. 2, the velocity of the sensing vehicle
with respect to the h-th roadside sensor can be defined as

vh = v cos(θh), (6)

where θh is the DOA of the h-th roadside sensor observed
from the sensing vehicle. Similarly, the velocity projected on
each path of the bistatic target signal is the bistatic velocity
and can be defined as

vh,k = vk [cos(αh,k) + cos(θk)]− v cos(θk), (7)

where

αh,k =

arcsin
(
Rh
Rh,k

sin(|θh − θk|)
)

+ θk, for θh ≤ 0◦,

arcsin
(
Rh
Rh,k

sin(|θh − θk|)
)
− θk, for θh ≥ 0◦,

(8)
θk is the DOA of the k-th target vehicle, Rh is the range
between the h-th roadside sensor and the sensing vehicle (also
known as the baseline), and Rh,k is the range between the h-th
roadside sensor and the k-th target vehicle and can be defined
as

Rh,k = Ŕh,k −Rk, (9)

with Rk being the range between of the k-th target and the
sensing vehicle, and Ŕh,k is the bistatic range.

Suppose that the sensing vehicle is equipped with a uniform
linear array (ULA) of L antennas with adjacent sensor spacing
d [46]. By following a free-space path-loss model, the direct-
path signal received at the l-th antenna of the sensing vehicle
corresponding to the h-th roadside sensor and can be expressed
as

rh(l,m, tf ) = Ahs0(tf − τh(m, tf ))e−j2πφh(l), (10)

with
τh(m, tf ) =

Rh
c

+
vh
c

(tf +mT ), (11)

where τh denotes the time delay of the direct-path signal,
φh(l) = f0d sin θh

c l is the phase delay relative to the 0-th
antenna of the sensing vehicle array with l = 0, 1, . . . , L− 1
being the antenna index, c is the wave propagation speed, and
Ah =

√
PtGtGrc2

(4π)2f2
0R

2
h

is the amplitude of the received direct-path
signal with Pt being the transmitted power, and Gt and Gr
are the transmitter and receiver antenna gains, respectively.

Similarly, a bistatic signal reflected from the k-th target and
received at the sensing vehicle can be expressed as

rh,k(l,m, tf ) = Ah,ks0(tf − τh,k(m, tf ))e−j2πφk(l), (12)

with

τh,k(m, tf ) =
Ŕh,k
c

+
vh,k
c

(tf +mT ), (13)

where τh,k denotes the time delay of the bistatic target signal,
φk(l) = f0d sin θk

c l is the phase delay relative to the 0-th
antenna, and Ah,k =

√
PtGtGrσc2

(4π)3f2
0R

2
kR

2
h,k

is the amplitude of
the received target signal with σ being the radar cross-section
(RCS). We assume here, for the sake of simplicity, that σ is
constant and equal for all considered targets, and the received
signal amplitude is deterministic.

To extract the embedded information, the received signal
is cross-correlated with a signal identical to the one in (1)
generated locally. We assume perfect synchronisation with the
modulation settings already known. Further, we assume that
the location of the roadside sensor (Rh, θh) is known and that
the signal rh has already been removed at the receiver. Note
that knowledge of the roadside sensor location allows us to
more effectively remove the direct-path signal as explained
below:

1) The peak corresponding to the direct-path signal can
be unambiguously identified since τh < τh,k (triangle
inequality in Fig. 2 with Rh < (Rh,k + Rk)) and the
intensity of the peak is strictly higher than the ones
corresponding to bistatic reflections.

2) The Global Positioning System (GPS) coordinates of the
roadside sensor can be accessed by the sensing vehicle
through the established new radio (NR) communication
link. With access to its own GPS coordinates, the
sensing vehicle can then implement data fusion to better
estimate the direct-path signal (Note that the availability
of accurate GPS coordinates is not necessary for the
feasibility of this application but can help optimise the
estimation and the removal of the direct-path signals).

3) Direct-path removal techniques have been studied exten-
sively in the literature, and the feasibility of such task
has already been proven [47]–[49]. Moreover, having ac-
cess to two sources of information related to the direct-
path signal (through radar processing and NR commu-
nications) can intuitively improve the performance of
those techniques.

Therefore, in the presence of K targets and assuming that
the direct-path signal is removed, the resultant beat signal (also
known as the intermediate frequency (IF) signal) correspond-
ing to the h-th sensor can be modelled in line with that in
[50]. The dechirped signal can then be written as

yh(l,m, tf )

=

K∑
k=1

Ah,ke
−j2π

[
f0Ŕh,k

c +
µŔh,k
c tf+

f0vh,k
c mT

]
e−j2πφk(l)

+ wh(l,m, tf ), (14)

where wh is the additive white Gaussian noise (AWGN).
The dechirped signal is sampled at a rate fs such that
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n = 0, 1, . . . , N−1 is the sampling index and N = fsTc is the
total number of fast-time samples, also known as snapshots. It
can then be written as a function of antenna index l, slow-time
index m, and fast-time index n as

ŷh[l,m, n] =

K∑
k=1

qh,ke
−j2π

[
µŔh,k
c

n
fs

+
f0vh,k
c mT+

f0d sin θk
c l

]

+ ŵh[l,m, n], (15)

where qh,k = Ah,ke
−j2π

f0Ŕh,k
c .

The results in (15) can be structured to form a tensor Yh ∈
CL×M×N such that

Yh =

K∑
k=1

qh,k(ak ◦ vh,k ◦ rh,k) + Wh, (16)

where Wh ∈ CL×M×N is the AWGN tensor,

ak =
[
1, e−j2π

f0d sin θk
c , . . . , e−j2π

f0d sin θk
c (L−1)

]T
(17)

is an L × 1 column vector representing the array steering
vector,

vh,k =

[
1, e−j2π

f0vh,k
c T , . . . , e−j2π

f0vh,k
c (M−1)T

]T
(18)

is an M × 1 column vector representing the Doppler steering
vector, and

rh,k =

[
1, e−j2π

µŔh,k
c

1
fs , . . . , e−j2π

µŔh,k
c

N−1
fs

]T
(19)

is an N × 1 column vector representing the range steering
vector.

Next, the antenna and fast-time domains are stacked to-
gether against the slow time, and the tensor Yh can be
reshaped into a matrix Yh ∈ CLN×M such that

Yh =

K∑
k=1

qh,k
(
ph,kv

T
h,k

)
+ Wh, (20)

where ph,k = rh,k ⊗ ak and Wh ∈ CLN×M is the AWGN
matrix.

Finally, Yh can be written in a more compact format as

Yh = PhXhV
T
h + Wh, (21)

where Ph = [ph,1,ph,2, . . . ,ph,K ] ∈ CLN×K contains
the range-DOA information, Vh = [vh,1,vh,2, . . . ,vh,K ] ∈
CM×K contains the Doppler information, and Xh =
diag{qh,1, qh,2, . . . , qh,K} ∈ CK×K contains the complex
amplitude.

Let (R, θ)k := (Rk, θk) and (R, θ)h := (Rh, θh). Following
the earlier assumption, the parameters (R, θ)h are known to
the sensing vehicle. By exploiting this and using the geometry
depicted in Fig. 2, Ŕh,k can be obtained as

Ŕh,k =
√
R2
k +R2

h − 2RkRh cos(θh − θk) +Rk. (22)

The aim is to estimate (R, θ)k and vk. After applying 3D FFT
to (16), the spectrum would show K peaks corresponding to
(Ŕh,k, θk, vh,k) for all k. Using (22), Rk can be calculated as

Rk =
Ŕ2
h,k −R2

h

2Ŕh,k − 2Rh cos(θh − θk)
. (23)

Bistatic
bisector

δRh,k

Tx

Rx

Tg

Tg

Tg

βh,k
2

ψ

Figure 3. Bistatic range resolution.

The generalised bistatic range resolution can be defined as [17]

δRh,k(ψ) =
c

2B cos(βh,k/2) cosψ
, (24)

where βh,k is the bistatic angle (shown in Fig. 2) and ψ is the
rotation angle from the bistatic bisector as shown in Fig. 3.

After Rk and θk are estimated, using (7) and (8) and
assuming known v, vk can be estimated as

vk =
vh,k + v cos(θk)

cos(αh,k) + cos(θk)
. (25)

Remark. In bistatic radar, the range resolution varies in 2D
depending on the geometry. Therefore, it can no longer be
defined in one specific direction (such as down-range in the
monostatic case). In (24), the direction of range resolution is
dictated by the rotation angle ψ away from the bistatic bisector
which is considered as the reference point (see Fig. 3 for an
illustration of three possible placements of targets). Clearly,
the down-range resolution is maximum when ψ = 0◦, and
as one target rotates away from the bisector (ψ > 0◦), the
resolution is degraded. When ψ = 90◦, the two considered
targets lie on the same iso-range contour and can no longer
be resolved in the range domain.

On the other hand, βh,k determines the effect of the bistatic
geometry on the overall range resolution regardless of the
direction of interest. Clearly, when βh,k = 0◦, the bistatic
range resolution is maximised and reduces to the monostatic
one. It is important to note here that, for a given target,
the range resolution varies with the location of the h-th
roadside sensor. This highlights the advantage of multistatic
configuration in increasing the number of DoFs when signal
processing techniques permit fusion at the data level. In the
case of Fourier-based estimation, although two targets that
cannot be resolved in the range domain may still be resolved
in the range-DOA 2D FFT spectra, the conversion in (23) to
calculate the range Rk introduces some bias imposed by the
estimate of θk. Similarly, the conversion in (25) to calculate
the velocity vk introduces some bias imposed by the estimates
of Rk and θk.

Some further problems emerge when using Fourier-based
estimation in this application. The first problem occurs when
some information is known a priori, since the FFT fails to
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integrate such information directly and can only be done in
post-processing steps. The second problem naturally arises
in the multistatic configuration because the FFT cannot be
applied across the domain created by the multiple roadside
sensors. In other words, the FFT cannot be applied across
the signals received from H roadside sensors in a similar
manner to the signals received at L antennas, for instance,
since there is no correlation between the H signals. This limits
the benefit of integration gain to the domain corresponding to
the parameter being estimated [46]. It follows that the fusion of
multistatic signals in the FFT domain may only be done post-
calculation rather than at the measurement level. Furthermore,
suppose there exist H independent FFT spectra from which
Rk is estimated. The final estimate after averaging can be
expressed as

R̄k = Rk + ε̄, (26)

such that

ε̄ =
1

H

H∑
h=1

εh, (27)

where εh denotes the bias of the calculated range from the
h-th source of information. When εh follows a Gaussian
distribution N (µ̄, σ2

a) with µ̄ and σ2
a being the mean and

variance, respectively, then ε̄ follows N (µ̄, σ2
a/H). In this

case, averaging the estimates only reduces the error variance
by a factor of H , but does not affect the shape of the proba-
bility density function (PDF). This analysis also applies to the
averaging estimates of vk. For DOA estimation, one may argue
that the DOA-FFT spectra can be averaged directly because
all H signals share the same frequencies corresponding to
θk. However, such an approach, often known as incoherent
integration, may only reduce the variance of the estimated
noise floor, meaning that the average noise power level remains
unchanged.

III. PROPOSED MULTISTATIC LOCALISATION AND
DOPPLER ESTIMATION USING GS IN MULTI-TARGET

AUTOMOTIVE SCENARIO

A. Sparse Representation for Multistatic Cartesian 2D Local-
isation

One DoF associated with the representation in (21) is the
ability to design the steering matrix to incorporate (R, θ)h
known prior to estimation. Therefore, a 2D polar grid of
length Gp is defined to search for range and DOA (R, θ)gp :=
(Rgp , θgp) to simultaneously estimate (R, θ)k. Then, for each
roadside sensor, an overcomplete range-DOA steering matrix
Pg,h ∈ CLN×Gp is constructed with its gp-th column given
as ph,gp = r̃h,gp ⊗ agp , where

agp =

[
1, e−j2π

f0d sin θgp
c , . . . , e−j2π

f0d sin θgp
c (L−1)

]T
(28)

θgij
Rgij

xi

yj

Tx

Rx

k-th target

Figure 4. Proposed 2D rectangular search grid.

and

r̃h,gp =


1

e
−j2π

[(
µ
√
R2
gp

+R2
h−2RgpRh cos(θh−θgp )+Rgp

)
1
cfs

]
...

e
−j2π

[(
µ
√
R2
gp

+R2
h−2RgpRh cos(θh−θgp )+Rgp

)
N−1
cfs

]

 .
(29)

Then, (21) can be written in a standard sparse format as

YP
h = Pg,hX

P
g,h + Wh, (30)

where XP
g,h ∈ CGp×M is a sparse data matrix whose m-

th column contains K non-zero entries corresponding to the
complex coefficients of target echoes from the h-th transmitted
signal. We assume that all columns have the exact support set
containing the indices of the non-zero entries.

This road scenario motivates the idea of constructing a 2D
rectangular search grid of size I × J and coordinates (xi, yj)
with i = 1, 2, . . . , I and j = 1, 2, . . . , J as shown in Fig. 4.
By taking the sensing vehicle as the centre of the Cartesian
map, it is clear that yj is always positive whereas the sign
of xi mirrors θgp with the forward line being the reference.
Following this, gp is now replaced with gij which corresponds
to the ij-th bin in the 2D rectangular grid.

Next, the gij-th column in Pg,h can be constructed by
converting the ij-th Cartesian coordinates (xi, yj) into polar
coordinates (R, θ)gij := (Rgij , θgij ) as

(R, θ)gij =

√x2i + y2j , arcsin

 xi√
x2i + y2j

 . (31)

Accordingly, the Cartesian coordinates of the k-th target can
be defined as

(x, y)k = (Rk sin θk, Rk cos θk) (32)

and do not necessarily lie on an exact coordinate of the
generated rectangular search grid.

B. Sparse Representation for Multistatic Doppler Estimation

The raw data in (21) is reshaped to get

Zh = YT
h . (33)

A velocity grid of length Gd is defined to search for vh,gd to
estimate vh,k. Then, an overcomplete Doppler steering matrix
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Vg,h ∈ CM×Gd is constructed by replacing vh,k with vh,gd
in Vh such that

vh,gd ∈ [vmin,h, vmax,h] , (34)

where

vmin,h = min
{
vmin[cos(αh,gij ) + cos(θk)]− v cos(θk)

}
,

vmax,h = min
{
vmax[cos(αh,gij ) + cos(θk)]− v cos(θk)

}
,

αh,gij =



arcsin

(
Rh sin(|θh−θgij |)√

R2
gij

+R2
h−2RgijRh cos(θh−θgij )

)
+θgij , for θh ≤ 0◦,

arcsin

(
Rh sin(|θh−θgij |)√

R2
gij

+R2
h−2RgijRh cos(θh−θgij )

)
−θgij , for θh ≥ 0◦,

(35)
and vmin and vmax denote the minimum and maximum values
of the potential forward velocities of the target, respectively.
Accordingly, Zh can now be written in a standard sparse
format as

ZD
h = Vg,hX

D
g,h + WT

h , (36)

where XD
g,h ∈ CGd×LN is a sparse data matrix whose (lN +

n)-th column contains K non-zero entries corresponding to
the complex coefficients of the visible targets and have the
same support set.

C. Multistatic Localisation and Doppler Estimation Using GS

Firstly, the 2D location denoted by (x, y)k is to be estimated
through reconstructing XP

g,h from Yh. All columns in the H
matrices XP

g,h have the same support set corresponding to
K locations (x, y)k. So, the concept of GS can be employed
across M pulses and H sensors by generating an LN ×MH
measurement matrix BP

g and a Gp ×MH sparse data matrix
UP

g as

BP
g =

[
Pg,X

P
g,,Pg,X

P
g,, . . . ,Pg,HXP

g,H

]
, (37)

UP
g =

[
XP

g,,X
P
g,, . . . ,X

P
g,H

]
. (38)

Denote row vector uP
g,gp as the gp-th row of the matrix UP

g .
By computing the `2 norm to each row vector uP

g,gp , a new
column vector is formed as

ũP
g =

[
‖uP

g,‖2, ‖uP
g,‖2, . . . , ‖uP

g,Gp‖2
]T
. (39)

Then, the GS-based multistatic localisation method is formu-
lated as follows [51], [52]

min
UP

g

‖ũP
g ‖1 subject to ‖Y◦ −BP

g ‖F ≤ ε1, (40)

where
Y◦ = [Y,Y, . . . ,YH ] , (41)

and ε1 is the reconstruction error.
Next, after estimating (x, y)k, the bistatic velocity parameter

denoted by vh,k is to be estimated through reconstructing XD
g,h

from Zh. Notice that, while the columns in XD
g,h share the

same support set, the latter varies across H Doppler data
matrices. This is dictated by the steering matrix Vg,h that

is designed to search for vh,k rather than vk. Alternatively,
the steering matrix could be designed to directly search for
vk. In such a case, all columns in the H data matrices would
share the same support set corresponding to all K parameters.
Although this approach may offer the advantage of employing
the GS concept across H sensors as well as L antennas
and N snapshots, it may suffer from ambiguities due to the
coupling between velocity, range, and DOA in (7) and (8).
To illustrate this, the search grid would have to be populated
K times and, depending on the 2D locations of the targets,
the estimated bistatic velocities may migrate to other values
which do not necessarily correspond to their true velocities
in the search grid. This is due to the fact that there is no
mechanism in `1 norm to ensure either an even or an uneven
distribution of sparsity among all K groups of the search
grid. Ideally, sparsity can be enforced across all H sensors to
estimate Rk, θk, and vk simultaneously. However, this requires
handling steering matrices of size LMN × GdGp which is
computationally exhaustive.

For the h-th measurement matrix Zh, the GS concept can be
employed across LN snapshots. Therefore, Doppler estimation
is performed by solving the following optimisation problem

min
XD

g,h

‖x̃D
g,h‖1 subject to ‖Zh −Vg,hX

D
g,h‖F ≤ ε2,

(42)
where

x̃D
g,h =

[
‖xD

g,h,‖2, ‖xD
g,h,‖2, . . . , ‖xD

g,h,Gd
‖2
]T
, (43)

xD
g,gd

is the gd-th column of XD
g and ε2 is the reconstruction

error. Both optimisation problems (40) and (42) are convex
and can be solved using existing convex optimisation tool-
boxes. Finally, the proposed GS-based method for location and
Doppler estimation of K targets in this multistatic automotive
scenario is summarised in Algorithm 1.

D. Multi-target Parameter Association Using Cross-
Correlation and ESPRIT

While the values of (x, y)k and vh,k can be estimated using
Algorithm 1, the information regarding the association of the
location with the corresponding bistatic velocity for each target
remains unknown. Such pairing is essential for establishing
a complete profile about the targets and for computing the
velocity vk using (25). So, motivated by the cross-correlation
(CC)-based pair-matching method for elevation and azimuth in
L-shaped antenna arrays [53], a modification is proposed here
for matching the location and bistatic velocity pairs. Each 2D
location corresponds to a unique angle θk, so the parameter
association task renders a matching between the DOA and
bistatic velocity parameters. This can be done by exploiting
the CC matrix Rθυ,h which is defined as

Rθυ,h = E
{
yθ,h(n)yHυ,h(n)

}
, (44)

where the l-th entry of yθ,h(n) ∈ CL×1 is equal to ŷh[l, 0, n]
in (15) and the m-th entry of yυ,h(n) ∈ CM×1 is equal
to ŷh[0,m, n]. Clearly, Rθυ,h can only be computed when
L = M . Unlike the case in [53] where both received signals
corresponding to the two components of the L-shaped array
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Algorithm 1 A GS-based location and Doppler estimation
algorithm for multistatic automotive application.
Require: Yh, Rh, θh, v, f0, µ, d, T , M , L, fs, N , H .

1: Obtain and store the raw data Yh for all h as in (20).
2: Generate an I × J rectangular search grid of length Gp

after choosing appropriate values for (x1, y1) and (xI , yJ).
3: Convert the Cartesian coordinates (xi, yj) to polar coor-

dinates (R, θ)gij using (31).
4: For each roadside sensor, construct a range-DOA steering

matrix Pg,h whose gij-th column corresponds to (xi, yj).
5: Estimate UP

g by solving the optimisation problem (40).
6: Perform a peak search to find the estimated coordinates

of K targets.
7: Reshape the raw data as in (33) to get Zh.
8: After selecting appropriate values of vmin and vmax, using v

and all Gp values of (R, θ)gij , calculate vmin,h and vmax,h
for all h using (35).

9: Generate H velocity search grids of length Gd using (34).
10: For each roadside sensor, construct a Doppler steering

matrix Vg,h whose gd-th column corresponds to vh,gd .
11: Estimate XD

g,h by solving the optimisation problem (42)
for all h.

12: Perform a peak search to find the estimated bistatic
velocity values of K targets.

13: return Estimates of (x, y)k and vh,k for all K targets.

have the same length, L is smaller than M in the underly-
ing problem. Therefore, only the first L entries of yυ,h(n)
are considered, from which y̆υ,h(n) is formed. Accordingly,
Rθυ,h becomes an L × L matrix whose diagonal elements
lead to the following formulation

dθυ,h =[
K∑
k=1

qh,k,

K∑
k=1

qh,k, e
−jζωh,k , . . . ,

K∑
k=1

qh,k, e
−jζ(L−1)ωh,k

]T
,

(45)

where ζ = 2πf0/c and ωh,k = d sin θk − TVh,k. Denote by
d̂θυ,h, θ̂k, v̂h,k, and ω̂h,k the estimated versions of dθυ,h, θk,
vh,k, and ωh,k respectively. Our implementation for the pairing
method can then be summarised as follows.

1) Using the estimated values θ̂k and v̂h,k, calculate K2

combinations of {d sin θ̂kθ − T v̂h,kυ}, where kθ, kυ =
1, 2, . . . ,K.

2) Obtain d̂θυ,h from yθ,h and y̆υ,h as

d̂θυ,h =
1

N

N∑
n=1

yθ,h(n)� y̆∗υ,h(n), (46)

then construct a Hermitian Toeplitz matrix, R̂cc,h,
whose first column is d̂θυ,h.

3) Apply ESPRIT [54] to R̂cc,h to estimate ωh,k for K
targets.

4) For the k-th target, the correct combination of DOA
and velocity parameters is determined by solving the

following minimisation problem

min
kθ,kυ

∣∣∣e−jζω̂h,k − e−jζ(d sin θ̂kθ−T v̂h,kυ )∣∣∣ . (47)

Note that Step 4 above adopts the comments in [55] to
expand the unambiguous parameter range of this pair matching
method.

E. Multi-target Parameter Association based on Least Squares

Unlike the previous parameter association method, matching
here is done between the estimated 2D locations and the
bistatic velocity parameters. To illustrate this, consider the
following reformulation of (21)

yh = vec{Yh} = Ahxh + wh, (48)

where

Ah = [(ph,1 ⊗ vh,1), (ph,2 ⊗ vh,2), . . . , (ph,K ⊗ vh,K)] ,
(49)

xh = [qh,1, qh,2, . . . , qh,K ]
T
, (50)

and wh = vec{Wh}. By focusing on Ah we can see that
once ph,k and vh,k are constructed from the estimated location
and bistatic velocity, the task becomes to find the combination
that minimises the distance between the matrix Ah and its
reconstruction. Thus, we propose the following least-squares
(LS)-based minimisation problem

min
Âh

∥∥∥yh − Âh(ÂH
h Âh)−1ÂH

h yh

∥∥∥
2
, (51)

where Âh is the estimate of Ah and is constructed from the
estimated values of location and bistatic velocity. For K targets
with different location and bistatic velocity, K! candidates of
Âh are considered. The main advantage of this method is
that the correct combination is determined for all K targets
simultaneously. The minimisation in (51) can be interpreted as
a maximum likelihood approach due to the AWGN assumption
[28].

Remark. So far it has been assumed that all K targets
have different locations and bistatic velocities, hence only
K! candidates are considered in the LS-based pair-matching
method. While the CC-based method allows repetition in both
the location and Doppler domains, it is in fact forced to do
so by the nature of its minimisation that is repeated K times,
and there is no theoretical criterion to eliminate any of the
combinations after processing each target. On the other hand,
using the LS-based method repetition may only occur in the
Doppler domain since the targets will in reality be located at
different 2D locations. Therefore, in order to generalise this
proposed method, K! can be treated as the lower bound on
the number of possible candidates of Âh and, in an extreme
case, when some targets share the exact bistatic velocity, up
to KK candidates may need to be considered. In such case,
the computational cost may be noted as a disadvantage when
using this method.
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IV. SIMULATION RESULTS

In order to evaluate the success of the proposed GS-based
solution in processing multistatic automotive radar signals and
convey its advantage over the state-of-art, computer simula-
tions were run using MATLAB and the CVX package. The
radar settings used are shown in Table I.

Table I
RADAR SETTINGS USED IN THE SIMULATIONS

Parameter Value Parameter Value
Pt 10 dBm fs 5 MHz
Gt 23 dBi Tc 30 µs
Gr 16 dBi T 35 µs
σ 0 dBsm N 150
B 150 MHz M 128
f0 77 GHz L 8

SNRi 100− 160 dB d 1.948 mm

For parameter estimation, the root-mean-square error
(RMSE) is used as the performance metric. The MUSIC
method is used as the baseline for comparison due to its super-
resolution capability and its ability to use the same search
grids generated for the GS-based method. The performance
metric was measured in two different settings: varying input
signal-to-noise ratio (SNRi) and varying number of processed
pulses/snapshots. Note that the SNRi, defined as

SNRi =
PtGt
Pn

, (52)

where Pn is the noise power at the receiver, is used here
as opposed to the conventional output SNR defined at the
receiver. Following this approach is more suitable when the
received signal is a superposition of signals from multiple
targets with different ranges. To illustrate this, the output SNR
can be defined as

SNRo =
PtGtGrσc

2

(4π)3f20R
2
TxR

2
RxPn

=
Grσc

2

(4π)3f20R
2
TxR

2
Rx

SNRi,

(53)
where RTx is the transmitter-to-target range and RRx is the
target-to-receiver range. Suppose a target has RTx = RRx =
50 m, then using the radar settings in Table 1 with SNRi
= 150 dB, the equivalent SNRo is 16.88 dB. However, for
another target with RTx = RRx = 40 m, then SNRo =
20.75 dB. Therefore, demonstrating the performance metrics
against SNRi is more convenient as targets may have different
SNRo. For parameter association, both proposed methods are
compared using the probability defined as the ratio between
the number of successful pairings and the total number of
trials. The performance metric was measured in three different
settings: varying SNRi, varying estimation error, and varying
number of targets.

Consider a scenario where two roadside sensors are em-
ployed (H = 2), one on each side of a smart high-
way (see Fig. 1). For location estimation, the rectangular
search grid is generated such that (x1, y1) = (−4, 55) and
(xI , yJ) = (6, 65) with I = J = 21. For Doppler estimation,
vmin = 25 and vmax = 35 are considered with Gd = 128.
The known polar coordinates of the roadside sensors are

[(30.00,−7.66), (30.33, 11.41)] and the velocity of the sensing
vehicle is v = 25.

For the sake of clarity, the methods being compared are
described as follows.
• GS-Joint estimates the 2D location (x, k)k from all H

received signals simultaneously in line with Algorithm 1.
• GS-Average estimates the bistatic velocity vh,k from each
h-th received signal separately in line with Algorithm
1. Assuming perfect parameter association, the target
velocity vk is then calculated followed by averaging.

• MUSIC-Average estimates 2D location (x, k)k and
bistatic velocity vh,k from each of the H received signals
separately using MUSIC. Its implementation follows the
same steps as Algorithm 1 with Step 5 being replaced by
estimating the location-MUSIC spectrum using Pg,h, and
Step 11 being replaced by estimating the Doppler-MUSIC
spectrum using Vg,h. Assuming perfect parameter asso-
ciation, the target velocity vk is then calculated followed
by averaging.

• Pair-CC-ESPRIT pairs the location and bistatic velocity
parameters in line with the method in Section III-D.

• Pair-LS pairs the location and bistatic velocity parameters
in line with the method in Section III-E.

In Fig. 5 the result of 2D localisation is shown for a scenario
with four evenly spaced targets at SNRi = 150 dB with 8
processed pulses. It can be seen that the MUSIC-based method
fails to detect two of the targets with the location of the
detected ones clearly smeared. On the contrary, the GS-based
method results in sharp detected peaks. In Fig. 6 the estimated
bistatic velocity spectrum from 16 processed snapshots for this
scenario is shown. The GS-based method clearly yields a better
result. The running time for the MUSIC-based method is 1.56
seconds and that of the proposed method is 40.17 seconds. The
computer used is powered by an 11th Gen Intel(R) Core(TM)
i5-1145G7 chip (2.60 GHz base frequency) and carries 8.00
GB of RAM. Note that the time taken by the proposed method
could be significantly reduced if we use a dedicated GS-based
algorithm instead of the existing convex optimisation toolbox.

A. Comparison of RMSE for Parameter Estimation

1000 Monte Carlo trials are carried out to compute the
RMSE performance. In each trial, a different realisation of
the noise signal Wh is generated. One point-like target is
placed in the visible region of the sensing vehicle (K = 1),
and its parameters (x, y)k and vh,k are drawn from a uniform
distribution bounded by two adjacent grid points from their
corresponding search grids.

Firstly, the numbers of pulses and snapshots processed for
location and Doppler estimation are chosen as 8 and 16,
respectively, and SNRi is varied. The results are shown in
Fig. 7. It is evident that GS-Joint outperforms MUSIC-Average
at all levels of SNRi in both location and Doppler estimation.

Next, the number of processed pulses for location estimation
is varied between 2 and 8, and the number of processed
snapshots for Doppler estimation is varied between 4 and 16,
with SNRi being fixed at 150 dB. The results are shown
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Figure 5. A comparison of a 2D location map computed using GS (top) and
MUSIC (bottom) for 4 point targets at SNRi = 150 dB with 8 processed
pulses.
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Figure 6. A comparison of a bistatic velocity spectrum computed for 4 point
targets at SNRi = 150 dB with 16 processed snapshots.

in Fig. 8. As the number of pulses/snapshots increases, the
estimation performance of the proposed method is improved.
For all parameters being evaluated, the GS-based method
outperforms MUSIC.

B. Comparison of the Probability for Parameter Association

In each trial, the estimated target location and velocity to
be used in the pairing methods is randomly selected from a
Gaussian distribution with the mean being the true value and
the standard deviation σe ranging from 0 to 0.5. A different
realisation of Wh is generated in each trial and data from only
one roadside sensor is considered.

Firstly, two targets are considered with varied SNRi. The
results are shown in Fig. 9. Pair-LS clearly outperforms Pair-
CC-ESPRIT with the latter performing similarly only when
SNRi is above 150 dB and σe is below 0.1.

Figure 7. A comparison of RMSE for location (top) and velocity (bottom)
estimation between GS and MUSIC against different levels of SNRi.

Figure 8. A comparison of RMSE for location (top) and velocity (bottom) es-
timation between GS and MUSIC as the number of processed pulses/snapshots
increases (SNRi = 150 dB).

Next, the number of targets is varied and the SNRi is
fixed at 160 dB. The results are shown in Fig. 10. Again,
Pair-LS clearly outperforms Pair-CC-ESPRIT with the latter
performing similarly only when K = 2 and σe ≤ 0.1.
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Figure 9. A comparison of the probability of successful pairing between Pair-
LS and Pair-CC-ESPRIT against different levels of SNRi (K = 2).
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Figure 10. A comparison of the probability of successful pairing between Pair-
LS and Pair-CC-ESPRIT as the number of targets increases (SNRi = 160
dB).

V. CONCLUSION

In this paper, a sparsity-based approach for multistatic
automotive localisation was derived. The need for fusing
information from multiple sources at the data level was em-
phasised. The current state-of-art estimation techniques used in
the automotive radar industry fail to fulfil such requirements.
By employing the GS concept, a method for target location
and Doppler estimation was proposed which increases the
DoFs and allows information fusion at the data level. Since
the natural solution for this application leads to decoupled
localisation followed by Doppler estimation, two methods for
parameter association were proposed: one relies on the CC
between the antenna and pulse domains to match the DOA and
bistatic velocity parameters; and the other relies on the whole
signal to pair the location and bistatic velocity parameters for
all targets simultaneously in an LS-based approach. Computer
simulations were conducted to evaluate the performance and
verify the effectiveness of the proposed methods. It was
shown that GS-based parameter estimation clearly outperforms
MUSIC under different settings. The pairing methods also
showed evident success in data association under different
settings. Bearing the computational cost associated with GS-
based optimisation and the LS-based parameter association ap-
proach, their attractive performance encourages more research
in such advanced signal processing techniques. Accordingly,
ways for decreasing the computational complexity will be
explored in future work while extending this problem to the

four-dimensional wideband case with more extreme traffic
scenarios.
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