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Abstract—In an automotive radar scenario, transmission of sparsely
spaced chirps along slow-time creates opportunities to significantly reduce
or completely avoid mutual interference. However, non-uniform chirps
result in high Doppler sidelobes which may introduce ambiguity in
Doppler estimation. We present an automotive frequency-modulated
continuous-wave radar that exploits difference co-chirps to achieve high-
accuracy range-Doppler estimation with low complexity. By exploiting
sparsity in slow-time, the proposed method achieves the same Doppler
velocity resolution as the regular uniform pulsing but with much fewer
chirps. The silent transmission intervals become available to other
automotive radars, thereby eliminating the mutual interference. The
fast-time samples are treated as snapshots to construct the second-order
statistical information for Doppler spectrum estimation. For our proposed
non-uniform pulsing, we develop an efficient range-Doppler spectrum
estimation method and propose a matching technique that is based on
2-D compressed sensing followed by Doppler de-aliasing. This algorithm
achieves ipso facto range-Doppler pairing without grid mismatch errors
in parameter estimation and does not require an exhaustive search.
Extensive numerical experiments show that accurate range-Doppler
estimation is achieved with significantly fewer chirps compared to
the conventional consecutive transmission. Field campaigns using Texas
Instruments imaging radar support our theoretical investigations.

Index Terms—Automotive radar, difference co-chirps, frequency-
modulated continuous-wave, non-uniform pulse repetition frequency,
sparse reconstruction.

I. INTRODUCTION

AUTOMOTIVE radar sensors are fundamental to advanced
driver assistance systems and modern autonomous vehicles

largely because of their inexpensive circuitry, ability to sense during
inclement weather, and immunity to poor visibility conditions [2–
6]. Most practical automotive radar systems employ frequency-
modulated continuous-wave (FMCW) transmit signals at the
millimeter-wave band to achieve low-cost high-resolution sensing
for complex functions in autonomous driving, such as automatic
emergency braking, blind-spot detection, and adaptive cruise control
[7, 8]. The deployment of such radars operating in the same frequency
range of 76–81 GHz in dense traffic scenarios has led to concerns
regarding severe mutual interference from one radar to another.

Mutual interfering signals lead to widespread contamination
of range-Doppler spectrum and degrade radar’s performance [5,
9]. Amongst several studies that address the automotive radar
interference problem [9], notching out the contaminated samples
at the receiver is a common practice which, however, leads to
signal distortion and reduced resolution [10]. On the transmit side,
the interference can be addressed by transmitting well-designed
radar signals that are nearly orthogonal to each other in the
spectral/temporal domains [9] at the cost of additional time/frequency
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slots. In this paper, we focus on transmit-centric approaches that
address the aforementioned problems.

An alternative to traditional orthogonal transmission is to employ
non-uniform chirps (along slow-time) and recover target parameters,
such as target range and Doppler (velocity), through sparse
construction techniques [11–13]. This allows automotive radars to
utilize the media access control (MAC) [14–16] for transmission
coordination. However, radars with non-uniform pulse repetition
intervals (PRIs) [17] are known to suffer from high sidelobe levels
along slow-time as a result of undersampling. In [17], a weight
interpolation technique was considered to handle the high sidelobes
in the Doppler spectrum caused by non-uniform pulsing. In [18],
after performing interpolation to suppress these sidelobes, the non-
uniform pulses are processed via non-uniform fast Fourier transform
(NUFFT). Direct interpolation of Fourier coefficients is avoided in
[12] by employing the compressed sensing (CS) technique to recover
the Doppler information. An optimal pulse transmission structure and
sampling rules were considered in [19] to control the sidelobe level
of the Doppler spectrum.

When the number of sparse non-uniform chirps during one
coherent processing interval (CPI) is much smaller than the number
of chirps in consecutive uniform transmission, the corresponding high
sidelobes in the Doppler spectrum can hardly be reduced by using
the above approaches [11–13, 17–19]. Hence, further investigation on
non-uniform pulsing is required to design accurate slow-time sparse
structures for automotive radar signals. In this context, it is instructive
to investigate the concept of difference coarrays [20] in the slow-
time domain. By utilizing the coarray structure, difference coarrays
greatly increase the number of spatial degrees-of-freedom (DoFs) of
the corresponding physical arrays to achieve more effective direction-
of-arrival estimation.

There are several variants of sparse arrays, including minimum
redundancy array (MRA) [21, 22], nested array [23, 24], and co-prime
array [20, 25, 26], that are suited to effectively construct difference
coarrays. In a wide-sense stationary (WSS) process scenario, missing
elements (i.e., holes) in the difference coarrays can be interpolated
to form a virtual uniform linear array if the snapshots are sufficient
[27]. Very recently, [28] extended coarrays to a joint spatio-spectral
domain for a frequency diverse array (FDA) radar through co-prime
chirp pulsing by a co-prime physical array to achieve joint range-
Doppler-angle estimation. However, in automotive radar scenarios,
WSS assumption across multiple CPIs and multiple snapshots is not
always guaranteed because of the highly dynamic and high-speed
target environment [5, 29].

In this paper, we develop the concept of difference co-chirps
for the automotive radar that leaves a silent interval in the CPI
so that other automotive radars can emit signals with negligible
interference. We obtain the ambiguity functions (AFs) of our
proposed automotive radar waveforms under two representative
difference co-chirp transmissions, i.e., co-prime and nested. In
the difference co-chirp transmission, estimation of target Doppler
velocity becomes challenging because of spectral ambiguity and
difficulty in pairing the target Doppler with the corresponding
range. We address these challenges by constructing the second-
order covariance matrix for Doppler spectrum estimation using fast
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Fourier transform (FFT) with the fast-time samples used as snapshots.
Our two-dimensional (2-D) CS approach then pairs targets’ range
and Doppler, followed by Doppler de-aliasing. We further improve
the performance through an efficient boosted pairing algorithm that
leverages the information obtained from the FFT stage to avoid CS
grid mismatch errors [30, 31] and the need for an exhaustive blind
search. Extensive numerical results validate our model and methods.
Finally, we demonstrate the practical feasibility of difference co-chirp
transmission and parameter recovery through field experiments using
a Texas Instruments (TI) radar setup.

The basic concept of the co-chirp scheme was presented in [1]
with preliminary simulation results on the joint range and Doppler
estimation. The substantive novel contributions of this paper beyond
[1] include a detailed analysis of the AFs of the co-chirp waveforms,
the development of the boosted algorithm, more comprehensive
numerical studies, and verification based on field experiment results.

The rest of the paper is organized as follows. In Section II, we
briefly describe the conventional FMCW radar processing and then
generalize the difference coarray concept to difference co-chirps for
automotive FMCW radar. In Section III, the AFs of difference co-
chirps transmissions are derived for performance analysis. The range-
Doppler reconstruction method and pairing techniques to construct
the 2-D range-Doppler spectrum are presented in Section IV. We
validate our models and methods with extensive numerical and field
experiments in Section V. Finally, Section VI concludes the paper.

Throughout this paper, upper-case and lower-case bold characters
denote matrices and vectors respectively. Matrix vectorization
operation is denoted by vec(·). The conjugate transpose is (·)H and
conjugate denotes by (·)∗. The complex values set is C. The function
⌈·⌉ yields the smallest integer that is greater than or equal to its
argument. The notation ⊙ denotes the Kronecker product.

II. SYSTEM MODEL

Conventional automotive sensing is based on FMCW radar, which
offers very high-range resolutions unmatched by contemporary pulse-
Doppler radars and high resilience to the negative effects of target
Doppler. This is very useful in obtaining cleaner displays with low
clutter and tracking fast targets in automotive scenarios. The focus
of this paper is the detection of only high-speed targets. Clutter
being a low Doppler scatterer is, therefore, not considered in our
model. The clutter encountered in lane change assist, blind-spot
detection, and tune assist are not considered in this paper. Note
that stationary clutter is generally observed at a very low depression
angle yielding insignificant backscattering. The clutter is typically
homogenous with concentrated Doppler frequencies corresponding
to the platform’ speed which is known to the radar. As such, the
clutter may be easily mitigated. Usually, clutter returns tend to
be composed of discrete scatterers such as walls, vegetation, and
traffic signs. The literature suggests space-time adaptive processing
(STAP) is effective in removing both periodic [32] and non-periodic
[33] clutter in road environments. Whereas these methods were
proposed for conventional uniform chirp transmission strategies, [34–
36] have previously considered STAP-based clutter suppression for
nested/coprime structures and are applicable to our approach.

A. Uniform pulse repetition frequency FMCW Radar

Consider a monostatic FMCW radar that emits a linear frequency
ramp (Fig. 1(a)) with bandwidth B, duration time T , and carrier
frequency fc. The transmit signal for one ramp at the m-th chirp is
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Fig. 1. Non-uniform chirps transmission sequences and their difference co-
chirps. The missing chirp indices are left blank and the filled difference
chirp indices are denoted by green sawtooth waveform. (a) The uniform PRF
chirps. (b) The nested chirps transmission sequence for N1 = 3, N2 = 3.
(c) The interpolated chirps in nested transmission. (d) The co-prime chirps
transmission sequence for N1 = 3, N2 = 5. (e) The interpolated chirps in
co-prime transmission.

where Tp = 1/fPRF is the uniform PRI, fPRF is the pulse repetition
frequency (PRF), and the rectangular pulse window function is
defined as

rect

(
t− τ

T

)
=

{
1, τ ≤ t ≤ τ + T,
0, otherwise.

(2)

After integration, the phase of the transmit signal x(m, t) becomes
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where φT0
depends on the PRI Tp.

Assume K signals within the radar’s effective field-of-view. The
noise-free received signal y(m, t) is a weighted delayed version of
x(m, t), expressed as

y(m, t) =

K∑
k=1

αke
j2π

[
fc(t−τk)+

B
2T

(t−τk)
2−φT0

]
(4)

where αk denotes the reflection coefficient of signal with delay τk.
The emitted signal x(m, t) is used to de-chirp the received signal

y(m, t) to generate the beat signal, whose phase is

∆φ(t) = φT (t)− φT (t− τk) = 2π

(
fcτk +

B

T
tτk −

B

2T
τ
2
k

)
, (5)

where t is the fast-time with 0 ≤ t ≤ T , τk characterizes the delay
between the transmitted signal and the received signal of the k-th
target. The quadratic term of τk is negligible in equation (5) because
τk/T ≪ 1 hold held in short-range automotive radar.

To unfold the delay time τk, consider the k-th target located at
range rk away from the radar and moving with a constant velocity
vk. Then, the round-trip transmission delay for the k-th target is
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τk = 2(rk + vkt)/c, where c is the speed of light. The phase of the
de-chirped signal is

∆φ(t) = 2π

[
2fcrk
c

+

(
2fcvk

c
+

2Brk
cT

)
t+

2Bvk
cT

t
2

]
. (6)

The last term can be neglected for a similar reason t/T ≪ 1.
The term 2fcrk/c does not change with the fast time and is only
associated with the range and, therefore, can be absorbed into the
reflection coefficient. Simplifying, the resulting beat frequency is

f
k
b =

2fcvk
c

+
2Brk
cT

= f
k
D + f

k
R, (7)

where f
k
D = 2fcvk/c and f

k
R = 2Brk/(cT ) are, respectively, the

Doppler and range frequencies of the k-th target.
In automotive radars, the maximum detection range is typically

several hundreds of meters and, therefore, fb ≪ B holds. As a result,
the beat signals are sampled using a relatively inexpensive low-rate
analog-to-digital converter (ADC). Denote the sampling interval in
the fast-time by TA and 1/TA > 2f

max
b , where f

max
b denotes the

maximum beat frequency. Then, the i-th sample in the m-th chirp
becomes

y (m, i) =

K∑
k=1

αke
j2π

(
f
k
b iTA+f

k
DmTp

)
, (8)

where fDmTp = 2fcvkTpm/c denotes the Doppler frequency
change in the m-th chirp. The CPI consists of M chirps and the
number of samples in each chirp is I . The sampled automotive radar
data matrix of a channel is Y ∈ CI×M , whose (m, i)-th entry is
denoted as y(m, i).

In most automotive radar scenarios, fD ≪ fR holds [5]. Thus, the
Doppler frequency fD is negligible when a single chirp is considered.
However, for the high-range-resolution (HRR) radar, this term should
be compensated to realize a high range accuracy. The target range
is estimated by applying FFT to fast-time samples in the above-
mentioned data matrix. For each range bin, the range frequency fR
is constant across the slow-time. Therefore, the Doppler is estimated
by applying FFT along the slow-time in data matrix Y [5]. To avoid
ambiguity in the Doppler spectrum estimation in a uniform PRF radar,
it is required that fPRF ≥ 2f

max
D , where f

max
D denotes the maximum

Doppler frequency.

B. Difference co-chirp-based FMCW radar

Consider a uniformly spaced chirp set S = {m1,m2, ...,mM},
which has M entries with mi describing the position of the i-th
chirp. The difference co-chirp set is

Sdiff =
{
mi −mj

}
, ∀i, j ∈ S (9)

In this definition, Sdiff does not allow the repetition of its elements,
i.e., all entries have distinct values.

1) FMCW radar with nested chirps: We now examine the FMCW
radar that schedules its slow-time emission following the nested
chirp relationship. Two-level chirp indices are used in the basic
nested chirps transmission. Specifically, the first and the second levels
consist of N1 and N2 chirps with corresponding PRIs as Tp and
(N1+1)Tp, respectively. Here, two integers N1 and N2 are selected
to realize a reasonable Doppler resolution. Under the nested chirps,
the FMCW radar transmits chirps at slow-time indices as per the set

Snested = {1, 2, · · · , N1, (N1 + 1), 2(N1 + 1), · · · , N2(N1 + 1)} .
(10)

The set Sdiff = {n1 − n2|n1, n2 ∈ Snested} is called the difference
set of nested chirps, where the total number of the transmitted chirps
is N = N1 +N2.

Under the nested transmission, the first N1 transmitted chirps have
a PRI of Tp while the other N2 chirps have a PRI of (N1 + 1)Tp.
The sampled beat signal at the m-th chirp is (8) for m ∈ Snested.
Following (8), the i-th snapshot of slow-time samples or the i-th row
of the sparse radar matrix is

y
i
nested = BΣs

i
+ n

i
, (11)

where B = [b(f
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D )] ∈ CN×K is the Doppler
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j2πf
k
DTp , · · · , ej2πf

k
DNTp ]

T and s
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k
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k
b iTA ]

T . Here, ni denotes the addictive white
Gaussian noise vector in the i-th snapshot of slow-time samples and
Σ = diag ([α1, · · · , αK ]).

2) FMCW radar with co-prime chirps: A classical co-prime
structure is illustrated in Fig. 1(d), where N1 and N2 are two co-
prime integers that define a chirp slow-time slot set as

Sco−prime =

{N1(n2 − 1), 1 ⩽ n2 ⩽ N2} ∪ {N2(n1 − 1), 1 ⩽ n1 ⩽ N1} .
(12)

An FMCW signal is transmitted at the slow-time indices specified
in the above co-prime set and the total number of the transmitted
chirps is N = N1 + N2 − 1 because of the shared first chirp. The
difference co-chirps set is

Sdiff =
{
s1 − s2|s1, s2 ∈ Sco−prime

}
. (13)

However, the difference co-chirp set does not provide consecutive
chirps between time slots −N2(N1 − 1) and N1(N2 − 1), so certain
chirp indices are missing (see Fig. 1(e)).

Under the nested transmission, the transmitted chirps are scheduled
following the transmission set Sco−prime. The sampled beat signal at
the m-th chirp is (8) for m ∈ Sco−prime.

Following a similar procedure as the nested transmission, we also
obtain the i-th row y

i
co−prime for the co-prime scheme.

C. of sparse transmissions

The advantages of sparse transmission in slow-time manifest in
several ways.

1) High Doppler Resolution Using Few Chirps: The Doppler
velocity resolution ∆ν is determined by the length of a CPI,
∆ν = c/(2fcMTp). To achieve the same Doppler resolution as a
uniform PRF, an FMCW radar under the difference co-chirp needs
to sparsely occupy the whole CPI along the slow-time following the
corresponding co-prime or nested co-chirp rules. Fig. 1(a) illustrates
a case where a total of 13 chirps are transmitted under the uniform
PRF in one CPI. In comparison, for the same observation interval,
only 7 and 6 chirps are needed under the co-prime and nested chirp
strategies, respectively.

2) Significantly Reduced Interference to Victim Radar Through
Sparse Transmission: The sparse transmission along slow-time
significantly reduces the probability a victim radar would be
interfered compared to the uniform transmission scheme since much
fewer chirps the victim radars could be potentially corrupted. As
the interference sample’s amplitude is stronger than the target echo,
the interference can be further suppressed by adopting the simple
thresholding/gating approach [5] to mitigate the interference before
carrying out 2-D FFT for range-Doppler estimation. The gating
approach is chosen as the baseline method for interference mitigation
due to simplicity and relative good performance [5]. Fig. 12 illustrates
an example of the interference gating.
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3) Support Multiple Radars Simultaneous Transmission with Low
Interference: The proposed sparse transmission in slow-time offers
opportunistic transmission for other automotive radars with only
a small fraction of pulses being interfered. To take advantage of
these silent opportunities, these radars must coordinate with the
host radar using vehicle-to-vehicle (V2V) communication [37], such
as dedicated short-range communication (DSRC) [38]. Secondly,
time synchronization between radars can be realized by the global
positioning system (GPS) technology or atomic clock technology
[39–41]. For example, pulse-per-second (PPS) signals from two GPS
modules achieve 60 ns accuracy in synchronization [42]. More
specifically, timing and carrier frequency synchronization in the
case of distributed radar systems, as is the case with vehicular
traffic scenarios, may also be achieved through the use of existing
communications protocols [43], two-way time-transfer [44], and
multitone frequency transfer [45].

To analyze the maximum number of radars that can transmit
sparsely at the same time, we consider a simple example where
all radars follow the same transmission pattern but with different
starting times. In the nested transmission scheme, there are N =
N1+N2 chirps. In the first level, N1 chirps will be transmitted with
PRI = Tp. In the second level, N2 chirps will be transmitted with
PRI = (N1 + 1)Tp. Therefore, there are N2 − 1 slots available for
other radars to transmit signals, and each slot duration is N1Tp. The
maximum number of radars that can simultaneously transmit is N2.
Here, we define the collision rate as

cr = µ/(N1 +N2), (14)

where µ denotes the number of collided chirps. A simple example of
N1 = 3 and N2 = 3 is shown in Fig. 2(a). In this case, starting from
the second CPI, most of the radars will have µ = N2 overlapping
chirps with each other, and thus the collision rate is cr = N2/(N1+
N2) = 0.5.
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Fig. 2. Non-uniform chirps transmission sequences and their maximum
transmission capacity simultaneously. The different colors block denote the
different radars. (a) The maximum transmission capacity with full silence slots
usage. (b) The incremental transmission strategy with fewer collisions.

To reduce the collision rate, an incremental schedule to support
Nt radars to transmit simultaneously with a short idle time of
(Nt − 1)N1Tp is proposed. Fig. 2(b) illustrates an example of the
schedule of Nt = 5 radars, each using the nested scheme of N1 = 5
and N2 = 5. In this schedule, an idle time is introduced to allow
all Nt radars to complete one CPI transmission. The number of
the maximum overlapping chirps is µ = Nt − 1 = 4 and thus
the collision rate can be small. For example, to support 5 radars
to transmit simultaneously with N1 = N2 = 17, the collision rate
is cr = µ/(N1 + N2) = 4/34 = 0.117. A thorough simulation is
carried out in Section V-B, and the results are shown in Fig. 14.

It is worth noting that other radars can exploit the silent periods
without necessarily adhering to the same difference co-chirps as we
illustrated in this paper. For instance, by transmitting irregular sparse
chirps, utilizing compressive sensing for Doppler estimation may
achieve better performance [46, 47].

D. Detection performance with respect to signal-to-noise ratio (SNR)

The U.S. Federal Communications Commission (FCC) [48]
recommends that the peak and average power densities of automotive
radar systems operating in 76–77 GHz are respectively less than
2.79 W/m

2 and 0.88 W/m
2, at a distance of 3 meters. The typical

transmit power of automotive radar systems is around 1 Watt [5]. It
is reported in [49] that the power density is 0.88 W/m

2 at 3 meters
for a radio source with transmit power of 2 Watt, which is much
smaller than 10 W/m

2 suggested by the International Commission
on Non-Ionizing Radiation Protection (ICNIRP) [50].

Sparse transmission along slow-time results in reduced SNR, which
may lead to detection performance degradation under low SNR
scenarios compared to uniform transmission. A thorough simulation
under different SNRs has been conducted in Section V-A and the
result is shown in Fig. 11. This performance degradation under
low SNRs is common for radar systems employing sparse signal
processing [11–13]. Under high SNR scenarios, the difference co-
chirp has comparable performance to the conventional uniform
transmission.

A feasible approach to achieving comparable detection
performance to that of conventional transmission is to increase
the transmit power of each chirp in the sparse transmission,
while still satisfying the power density requirement suggested by
the ICNIRP. By doing so, the transmit signal can reach greater
distances, subsequently increasing the likelihood of interference
with a larger number of victim radars. Assuming the same total
transmit power for sparse and uniform transmissions, the worst
case is that the total interference power received by a victim radar
under both sparse and uniform transmissions will be the same.
Again, thresholding/gating can help mitigate the interference with a
higher amplitude experienced at the victim radar. In Section V-B,
we conduct a thorough performance comparison of victim radar
under sparse and uniform transmissions and the results shown in
Fig. 16 demonstrate significant performance improvement of the
proposed difference co-chirp scheme over the uniform transmission
counterpart, since much fewer chirps are corrupted and strong
interference signals due to increased transmit power are efficiently
mitigated by gating.

III. AMBIGUITY FUNCTIONS OF AUTOMOTIVE RADARS WITH

DIFFERENCE CO-CHIRP

The radar AF is an important tool for waveform design and
analysis that succinctly describes the behavior of a waveform paired
with its matched filter. The AF is useful for the analysis of the
resolution, sidelobe behavior, and ambiguities in both range and
Doppler domains for a given waveform, as well as phenomena
such as range-Doppler coupling [51, 52]. The AFs of classical CW
waveforms such as linear frequency modulated (LFM) or single-
frequency signals for uniform PRF have been investigated thoroughly
in the literature [53]. In the following Theorem 1, we derive the AFs
for the nested and co-prime transmissions.

Theorem 1. Consider a rectangular pulse with duration of T that
has the AF

A(t, fd) =

∣∣∣∣(1− |t|
T

)
sin [πfd(T − |t|)]

πfd(T − |t|)

∣∣∣∣ , |t| ⩽ T, (17)

where fd denotes the Doppler frequency. Consider a nested-chirp
transmission formed by two groups of chirps N1 and N2 with
respective PRIs T and T̂ = (N1 + 1)T , and a co-prime chirp
transmission formed by two overlapped group chirps of co-prime
numbers N1 and N2 with respective PRIs T1 and T2. The AFs under
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nested and co-prime transmissions are expressed in, respectively, (15)
and (16) at the bottom of the next page.

Proof. See Appendix A.

The unambiguous Doppler interval of nested AF is non-
uniform and it’s minimum and maximum intervals are 1/T̂ and
1/T , respectively. The unambiguous range interval is bounded by
[T, T̂ ]. The minimum unambiguous Doppler interval of co-prime
AF is min(1/T1, 1/T2) and its maximum is max(1/T1, 1/T2).
The unambiguous range interval of co-prime AF is bounded by
[min(T1, T2),max(T1, T2)].
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Fig. 3. (a) AF of nested chirp transmission sequence; (b) As in (a) but shown
in a contour plot; (c)-(d) As in, respectively, (a)-(b) but for co-prime chirp
transmission sequence.

Fig. 3 shows an example of the nested-chirp AF in the top panel.
The first (Second) group of chirps have N1 = 3 (N2 = 3) pulses
with the PRI of 1 second (4 seconds). This results in a dwell time
of 12 seconds. Figs. 3(a-b) show that the nested chirp possesses the
same Doppler resolution as the uniform one and its unambiguous
range interval and unambiguous Doppler interval are limited by the
PRIs of the inner and outer group chirps, respectively. Similarly, the
bottom panel of Fig. 3 plots the co-prime-chirp AF, where the PRI
of the first (second) group with N1 = 3 (N2 = 5) pulses is 1 second
(5 seconds). Figs. 3(c) and (d) illustrate that the unambiguous range

interval is confined by the PRI difference between N1 and N2, and
the unambiguous Doppler interval is limited by the PRI of N2 group
chirps. Fig. 3 demonstrates that, compared with co-prime, the nested-
chirp transmission does not change the maximum unambiguous range
and Doppler interval, and its sidelobes decay faster than the co-prime
transmission. However, the co-prime technique narrows down the
unambiguous Doppler interval because of non-consecutive chirps in
the transmission.

Since the difference co-chirp following the co-prime transmission
results in some missing data in the full dwell time after slow-
time interpolation, an intuitive way is to truncate the dwell time to
maintain a consecutive slow-time sequence. However, this degrades
the velocity estimation performance because of a shorter CPI.
A more effective alternative is to interpolate these missing data
via the Toeplitz matrix completion approaches [54, 55] using the
second-order statistical information. The matrix completion-based
interpolation approach requires a high SNR to guarantee bias-free
interpolation. However, the input SNR of the raw echo data in the
automotive radar is relatively low (usually less than 0 dB) [5]. In this
context, the nested co-chirp transmission is more favorable than the
coprime counterpart because of its non-hole feature in the whole CPI
duration after slow-time interpolation.

IV. RANGE-DOPPLER-ANGLE RECOVERY

In a uniform PRF FMCW radar, performing a 2-D FFT on the beat
signal directly yields paired range and Doppler information. However,
when the transmission sequence is sparse, this technique is both
inapplicable and inaccurate [11]. We address these shortcomings by
developing a Doppler estimation procedure with difference co-chirps
based on the second-order statistics of radar samples. This is followed
by an efficient pairing strategy for range-Doppler parameters.

A. Doppler estimation with difference co-chirps

In each CPI, we interpolate the missing samples along the slow-
time for Doppler estimation via the construction of a second-order
covariance matrix. Such interpolation requires a large number of
snapshots. As mentioned earlier in Section II-A, the Doppler shift
in a typical automotive radar is negligible during fast-time sampling
of a single chirp and is viewed as a constant [5]. Therefore, we treat
the fast-time samples as “snapshots” for Doppler covariance matrix
construction. The sampling Doppler covariance matrix is

Rnested =
1

I

I∑
i=1

y
i
nested

(
y
i
nested

)H

=
1

I

I∑
i=1

[
BΣs

i
(s

i
)
H
Σ

H
B

H
+ n

i
(
n
i
)H

]

Anested(t, fd) =

N1−1∑
n1=−(N1−1)

A(t− n1T, fd +
B

T
t)

∣∣∣∣∣ sin(π(fd + B
T
t)(N1 − |n1|)T )

sin(π(fd + B
T
t)T )

∣∣∣∣∣
+

N2−1∑
n2=−(N2−1)

A(t− n2T̂ , fd +
B

T̂
t)

∣∣∣∣∣ sin(π(fd + B

T̂
t)(N2 − |n2|)T̂ )

sin(π(fd + B

T̂
t)T̂ )

∣∣∣∣∣ . (15)

Aco−prime(t, fd) =

N1−1∑
n1=−(N1−1)

A(t− n1T1, fd +
B

T1

t)

∣∣∣∣∣ sin(π(fd + B
T1

t)(N1 − |n1|)T1)

sin(π(fd + B
T1

t)T1)

∣∣∣∣∣
+

N2−1∑
n2=−(N2−1)

A(t− n2T2, fd +
B

T2

t)

∣∣∣∣∣ sin(π(fd + B
T2

t)(N2 − |n2|)T2)

sin(π(fd + B
T2

t)T2)

∣∣∣∣∣ . (16)
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= BnRαB
H
n + σ

2
nI. (18)

For the same range bin, the term s
i
(s

i
)
H

= I, here I is an identity
matrix and I is the number of fast-time samples, which means
the fast-time information embedded in fb will be dismissed in the
covariance matrix and only Doppler-related samples will be extracted.
By vectorizing Rnested, the co-chirp signal model is

rnested = vec(Rnested) =
(
B

∗
n ⊙Bn

)
p+ σ

2
ni, (19)

where p = (α
2
1, · · · , α

2
K)

T and i = vec(I).
The Doppler autocorrelation y

i
nested(y

i
nested)

H
is composed

of entries including e
j2πf

k
D(n2−n1)Tp for n1, n2 ∈ Snested, i.e.,

e
j2πf

k
DnTp for n ∈ Sdiff . It follows from the properties of

the nested chirps that the indices in Sdiff are consecutive for a
given observation interval N1(N2 − 1)Tp and, therefore, the missing
Doppler samples along the slow-time can be interpolated via the
Doppler autocorrelation. The number of averaged unique consecutive
Doppler samples d

UC
diff = unique(rnested) is obtained from the

sampling covariance vector with indices defined in Sdiff .
The Doppler spectrum is then obtained by applying FFT to the

interpolated Doppler samples along the slow-time. The Doppler
spectrum is accurate and robust, which also reveals the targets’ power
as the diagonal elements of Rα = ΣΣ

H
= diag([α

2
1, · · · , α

2
K ]).

In a similar way, the decoupled range and Doppler spectrum can
also be estimated using the co-prime transmission strategy. However,
due to the co-prime chirp properties, the co-prime transmission
fashion cannot enjoy the consecutive Doppler samples for the same
dwell time as the conventional transmission scheme after slow-time
interpolation.

1 
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Fig. 4. Range-Doppler spectrum based on the unpaired results. The true
locations (marked by ×) of the targets in the range-Doppler plane are {r1 =
45 m, v1 = 35 m/s} and {r2 = 87.5 m, v2 = 10 m/s }.

For single-range multiple-Doppler or single-Doppler multiple-
range scenarios, the cross-spectrum displays the target position and
velocity information. However, for multiple target scenarios, the
cross-range-Doppler spectrum would yield redundant peaks arising
from the decoupling between the range and the velocity. Fig. 4 shows
an example of the range-Doppler spectrum based on the unpaired
range and velocity results under nested co-chirp transmission with
N1 = N2 = 17 and Tp = 15 µs. Two targets with the same radar
cross-section at ranges of r1 = 45 m, r2 = 87.5 and corresponding
velocities of v1 = 35 m/s, v2 = 10 m/s are considered in the
simulation.

B. Joint range-Doppler estimation

Sparse sampling in the Doppler domain yields high sidelobes in
the Doppler spectrum posing a challenge in correctly pairing range

and Doppler parameters in the nested transmission. Consider the
following example: There are three targets in the field-of-view of the
radar and their range-velocity pairs are [45 m, 10 m/s], [87.5 m, 10
m/s], and [45 m, 35 m/s], respectively. The reflection coefficients of
the three targets are normalized to α1 = 0.3, α2 = 0.5, and α3 = 1
and assumed to be unchanged during the processing interval. As
shown in Fig. 5, the weaker target (target 1 with α1 = 0.3 and range-
velocity pair [45 m, 10 m/s]) is buried in the high sidelobes of the
targets with larger radar cross section (RCS) and, therefore, difficult
to detect. It means that the range and Doppler results obtained from
FFT cannot be directly used to detect the true target positions. To this
end, we now present our co-chirp joint range-Doppler estimation with
DoppDler de-aliasing (CoDDler) super-resolution algorithm. The first
step of this technique employs 2-D CS to jointly estimate the range
and Doppler using sparse samples along the slow-time. In the second
step, we remove the Doppler ambiguity through a difference co-chirps
interpolation-based Doppler de-aliasing strategy.

Fig. 5. Range-Doppler spectrum of nested co-chirp transmission with three
targets.

Denote the maximum detection range and the maximum velocity
by, respectively, Ru and vmax. To construct an appropriate CS
dictionary [56, 57], we discretize range and Doppler into a fine grid
with Mr × Mv points. This results in the corresponding range and
Doppler grid sizes of Ru/Mr and 2vmax/Mv , respectively. The ξ-th
range and η-th discretized velocity are denoted as Rξ and vη . The
corresponding beat frequency is f

ξη
b = f

ξ
R + f

η
D . Denote the noise-

free data matrix by Zξη ∈ CI×N whose (n, i)-th element is

z (n, i) = e
j2π

(
f
ξη
b iTA+f

η
DnTp

)
, n ∈ Snested. (20)

The dictionary of the 2-D CS is

A =
[
vec (Z11) , · · · , vec

(
Z1Mv

)
, vec (Z21) , · · · , vec

(
ZMrMv

)]
.

(21)

In practice, the measurement is corrupted by additive noise leading
to vec(Y) = Ax + n, where n is the noise vector. Here, x ∈
CMvMr×1 is a sparse vector, where xj = αh with h = Ku or
h = Pc if the h-th target has range of Ru

Mr

⌈
j

Mv

⌉
and velocity of

−vmax +
2vmax
Mv

mod (j,Mr); otherwise, xj = 0.
We obtain the unknown range and Doppler by solving the following

relaxed ℓ1-norm optimization:

minimize ∥x∥1 subject to ∥vec (Y)−Ax∥2 ≤ δ, (22)

where δ is the noise bound. The signal vector x in (22) may be
estimated through popular solvers such as Dantzig selector [58]
or orthogonal matching pursuit (OMP) [59]. In general, for the
successful recovery of the sparse vector x, the dictionary matrix A
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Fig. 6. Mutual coherence of the dictionary matrix with respect to the
discretized grid step in range and Doppler domains.

must satisfy certain properties dictated by CS theory e.g., low value
of mutual coherence [60], defined as

µ (A) = max
l̸=j

∣∣∣aH
l aj

∣∣∣
∥al∥2

∥∥aj

∥∥
2

, (23)

where aj denotes the j-th column of matrix A.
For nested (and, similarly, for co-prime) transmission, there are

two sub-chirp sequences with two different uniform PRIs. Using the
similar phase conjugation in [61], the (r; v) dependent range-Doppler
pattern is written as

φ (r; v) =

N1+N2−1∑
n=0

I−1∑
i=0

z
∗
(ri; vn) z (r; v). (24)

The range-Doppler pattern has a peak value when ri = r and vn = v.
The a

H
l aj for l ̸= j, represents the energy leakage of the range-

Doppler steering vector pointing at (rl; vl) to range and velocity bins
of

(
rj ; vj

)
. And thus max

l̸=j

∣∣∣aH
l aj

∣∣∣ corresponds to the peak sidelobe

of the range-Doppler pattern. Let ∆r = rl − rj ,∆v = vl − vj and
Tp2 = (N1 + 1)Tp. The equations (25) and (26) hold. It is clear
that the mutual coherence µ (A) is a parameter-dependent value. For
given system parameters, its value reaches a maximum I(N1 +N2)
when ∆r and ∆v approach to zero. The mutual coherence will
decrease when ∆r and ∆v take larger values. Equation (26) reveals
that the peak sidelobe appear around the real target leading to

inaccurate detections. Therefore, a de-aliasing in range and Doppler
is necessary.

TABLE I
RADAR PARAMETERS

Parameters Values

Carrier frequency, fc 77 GHz
Maximum detection range, Rmax 200 m
Maximum detection velocity, Vmax 230 km/h
Bandwidth, B 150 MHz
Pulse duration, Td 7.3 µs

To illustrate the parameter-dependent mutual coherence, we plot
the mutual coherence of the radar dictionary as a function of
discretized grid size of the range and the Doppler in Fig. 6 with
parameters given in Table I, and the gird steps are set to the same
along the range and Doppler axes. It follows that that the mutual
coherence is highly correlated with the discretized grid step of the
velocity and the range. In order to obtain a high range and Doppler
resolutions, a finer local discretized gridding in the range and the
velocity is beneficial. However, such a small grid step results in high
mutual coherence and, subsequently, high sidelobes of the Doppler
spectrum. Algorithm 1 summarizes these steps.

Algorithm 1 Co-chirp joint range-Doppler estimation with Doppler
de-aliasing (CoDDler)

Input: N1, N2,Mv,Mr , and the received sparse data matrix Y.
Output: de-aliasing CS range-Doppler spectrum.
Doppler spectrum with interpolated Doppler samples:

1: Rnested = 1
I

I∑
i=1

y
i
nested

(
y
i
nested

)H

.

2: d
UC
diff = unique (rnested).

3: D = FFT
{
d
UC
diff

}
.

Range-Doppler estimation with 2-D CS and Doppler de-aliasing:
4: Discretize the range and velocity into a fine grid and construct

dictionary matrix A according to (21).
5: Solve ℓ1-norm optimization problem (22) by OMP.
6: Apply the Doppler spectrum D to filter out spurious velocity

peaks in CS estimation.

Although the co-chirp joint range-Doppler estimation with Doppler
de-aliasing pairs range and Doppler correctly with a high resolution,
the computation cost is relatively high. Moreover, the matching error
highly depends on the way the dictionary is constructed. For instance,

a
H
l aj =

N1−1∑
n1=0

I−1∑
i=0

e
j2π

(
f
l
biTA+f

l
Dn1Tp

)
e
−j2π

(
f
j
b iTA+f

j
Dn1Tp

)
+

N2−1∑
n2=0

I−1∑
i=0

e
j2π

(
f
l
biTA+f

l
Dn2Tp2

)
e
−j2π

(
f
j
b iTA+f

j
Dn2Tp2

)

=

N1−1∑
n1=0

I−1∑
i=0

{
e
j2π[ 2B

cT
(rl−rj)+

2fc
c

(vl−vj)]iTAe
j2π[

2fc
c

n1Tp(vl−vj)]
}
+

N2−1∑
n2=0

I−1∑
i=0

{
e
j2π[ 2B

cT
(rl−rj)+

2fc
c

(vl−vj)]iTAe
j2π[

2fc
c

n2Tp2(vl−vj)]
}

=
1− [e

j2π( 2B
cT

∆r+
2fc
c

∆v)TA ]
I

1− e
j2π( 2B

cT
∆r+

2fc
c

∆v)TA

× 1− [e
j2π

2fc
c

∆vTp ]
N1

1− e
j2π

2fc
c

∆vTp

+
1− [e

j2π( 2B
cT

∆r+
2fc
c

∆v)TA ]
I

1− e
j2π( 2B

cT
∆r+

2fc
c

∆v)TA

× 1− [e
j2π

2fc
c

∆vTp2 ]
N2

1− e
j2π

2fc
c

∆vTp2

. (25)

∣∣∣aH
l aj

∣∣∣ =
∣∣∣∣∣∣
sin

[
π
(

2B
cT

∆r +
2fc
c
∆v

)
TAI

]
sin

[
π
(

2B
cT

∆r +
2fc
c
∆v

)
TA

]
∣∣∣∣∣∣×

∣∣∣∣∣∣
sin

(
π

2fc
c
∆vTpN1

)
sin

(
π

2fc
c
∆vTp

) +
sin

(
π

2fc
c
∆vTp2N2

)
sin

(
π

2fc
c
∆vTp2

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣I
sinc

[(
2B
cT

∆r +
2fc
c
∆v

)
TAI

]
sinc

[(
2B
cT

∆r +
2fc
c
∆v

)
TA

]
∣∣∣∣∣∣×

∣∣∣∣∣∣N1

sinc
(

2fc
c
∆vTpN1

)
sinc

(
2fc
c
∆vTp

) +N2

sinc
(

2fc
c
∆vTp2N2

)
sinc

(
2fc
c
∆vTp2

)
∣∣∣∣∣∣ . (26)
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Fig. 7. The illustration of the beam vector extraction from a nested radar data cube.

if the discretized gird is small enough, the matching error will be
less significant. However, according to the mutual coherence analysis
of the dictionary, a small discretized step leads to a larger mutual
coherence value which worsens the sidelobe level in the range-
Doppler spectrum and requires high computer memory demand.
Inevitably, the inherent off-grid problem also results in pairing errors.

The cost of solving the l1-norm optimization problem (22) by OMP
is O(dim(A)G), where dim(A) is the size of dictionary matrix A
and G denotes the number of iterations [62]. In this application,
the size of a conventional dictionary matrix A is IN × MrMv .
The need for high-resolution sensing requires the discretized steps
in Mr and Mv directions to be kept small, leading to prohibitively
high computational costs. For example, storing several gigabytes for
dictionary matrix A is impractical for many embedded systems. To
mitigate such problems, we propose a minimum dictionary size-based
Doppler de-aliasing and pairing procedure. The candidate set of range
rfft = {r1, r2, ..., rK} is captured very well by FFT along fast-
time sampling with threshold techniques. After performing FFT on
consecutive interpolated Doppler samples obtained from the sampling
covariance matrix, the velocity candidate set vfft = {v1, v2, ..., vJ}
can also be estimated. Thus, the reduced-size dictionary matrix Ar

is

Ar =
[
vec(Zr1v1

), vec(Zr2v1
), ..., vec(Zrkvj

)
]
, rk ∈ rfft, vj ∈ vfft.

(27)

This boosted version of CoDDler algorithm (BoDDler) is summarized
in Algorithm 2.

Algorithm 2 Boost Co-chirp joint range-Doppler estimation with
Doppler de-aliasing (BoDDler)

Input: rfft, vfft, D and the received sparse data matrix Y.
Output: de-aliasing CS range-Doppler spectrum.

1: Construct dictionary matrix Ar according to (21).
2: Solve ℓ1-norm optimization problem (22) by OMP.
3: Apply the Doppler spectrum D to filter out fake velocity peaks

in CS estimation.

The dimension of the dictionary matrix Ar in the BoDDler is at
most IN ×KJ . Because KJ ≪ MrMv , the computation cost of
BoDDler is to be O(INKJG). The computation cost of the BoDDler
is much less than the computation complexity of the original version,
where typically MrMv is quite large (say 10

4) to realize a high
resolution. One additional advantage of the BoDDler is that it does
not require grid discretization because all detected range and Doppler
results are given to build the dictionary, which totally avoids the off-
grid issue inherent in CS [30] and the resolution limitation depends
only on the fast-time and slow-time Fourier transforms. The matching
guarantee is based on the fact that Ar is still an over-complete
dictionary and contains all atoms of the original signal.

After obtaining a range estimate from range FFT, one could apply
one-dimensional (1-D) CS [58, 59, 63] along the slow-time for each
range to automatically pair the range and the Doppler. However, this
approach does not exploit the known velocity information obtained
from slow-time FFT along the interpolated slow-time samples and,
therefore, requires a longer time for the matching process.

Conventional CS methods do have the ability to retrieve
information from sparse (non-uniform) sampling. A straightforward
non-uniform sampling could be random but it must be properly
designed to keep a low mutual coherence in the dictionary and
a low computational complexity. The co-array-based chirping is
more structured and, therefore, easy to implement in hardware when
compared to random pulsing, which usually leads to higher sidelobes.
Moreover, basic co-chirp processing may be used as a template for
analyzing other non-uniform pulsing methods (See [28, Section V.C]
for some examples). Using the coarray method, we can use the
fast-time samples as snapshots, so that the Doppler information is
recovered by exploiting the coarray feature. Combining the velocity
and the range, the pairing procedure becomes more cost-effective.

C. Direction finding and extension to four-dimensional (4-D) high-
resolution imaging radar

An application of the automotive radar with difference co-chirps
to a 4-D high-resolution imaging radar in range, Doppler, azimuth,
and elevation is shown in Fig. 7. For each channel, the interpolated
Doppler spectrum SP(d

UC
diff) ∈ CNvfft×1 is obtained by performing

Nvfft-point FFT along the interpolated Doppler. Following the same
trace, the range spectrum SP(R) ∈ CNrfft×1 is the result of
performing Nrfft-point FFT along the fast-time samples. Therefore,
the cross-spectrum is obtained as SP(CP) = SP(R)×SP(d

UC
diff)

T

∈ CNrfft×Nvfft . For specific target locations, the indexes in the range-
Doppler spectrum corresponding to the actual target positions are
obtained from the BoDDler algorithm. These true positions are
aligned with the cross-spectrum to select the actual angle information
cell pin of the i-th target for the n-th channel, where i ∈ [1, 2, ..., P ]
and n ∈ [1, 2, ..., N ]. After performing this procedure for all
channels and target locations, the actual angular cells are stacked
according to their channel index order to form the array manifold
Aangle ∈ CN×P , which is then used to perform direction finding.
Depending on the array geometry and the availability of array
snapshots, direction finding can be carried out using FFT or high-
resolution subspace methods, such as MUSIC [64], ESPRIT [65], or
CS [58], or iterative adaptive approach (IAA) [66].

For driver-over and driver-under functions [7], 2-D antenna arrays
deployed in both horizontal and vertical directions are required to
support joint azimuth and elevation direction finding. The angular
resolution is determined by the antenna array aperture, i.e., ∆θ =
2arcsin(1.4λ/(πD)), where λ is the wavelength corresponding to the
carrier frequency and D is the aperture size of the receiver array. As a
result, the hardware cost of 4-D imaging radar is high if full arrays of
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large apertures are adopted for joint azimuth and elevation direction
finding. To reduce the hardware complexity while achieving the same
angular resolution as a full-array counterpart, different strategies
are available to design 2-D sparse arrays in the context of multi-
input multi-output (MIMO) radar [5]. For example, to enable high-
resolution 4-D imaging, [7, 67] proposed to exploit a joint sparsity
design in frequency spectrum and array configurations. There are
several off-the-shelf 4-D imaging radar prototypes, such as Texas
Instruments cascade imaging radar [68] and commercial automotive
radar products, such as Continental ARS540 [69]. However, the
detailed discussion of 2-D sparse array design and direction finding
is out of the scope of this paper.

V. NUMERICAL AND FIELD EXPERIMENT RESULTS

We carried out numerical and radar field experiment results
to evaluate the performance of the proposed difference co-chirps
waveform. Table I lists the settings of a radar system consisting of
a single transmitter and 20 uniformly deployed 1-D linear receivers
used in our experiments.

(a)

(b)

Fig. 8. Range-Doppler spectrum on sparse data under nested co-chirps
transmission: (a) 2-D FFT; (b) 2-D nonuniform FFT (NUFFT). The red ×
denotes the actual positions of the targets.

A. Parameter retrieval without interference

To realize the maximum unambiguous detectable velocity
requirement listed in Table I, the PRI is bounded by Tp = 15 µs. To
determine the target velocities, for conventional FMCW radar, a total
number of 306 uniform chirps are transmitted in one CPI and the
dwell time is NTp = 4.59 ms. Consequently, the velocity resolution
is ∆v = λ/(2NTp) = 0.42 m/s. Two targets are considered with

ranges r1 = 87.5 m and r2 = 45 m, velocities v1 = 10 m/s
and v2 = 35 m/s, and azimuth angles θ1 = 15

◦ and θ2 = 37
◦.

The reflection coefficients of the two targets are normalized to
α1 = 0.5 and α2 = 1.0, and are assumed to be unchanged during
the processing interval. The input SNR is set to 0 dB.

In order to achieve the same dwell time as the conventional one
to maintain the velocity resolution, the nested co-chirp transmission
suggests that the first uniform pulse train has N1 = 17 chirps with
the same repetition interval Tp as in the traditional transmission and
the second uniform pulse train transmits a total number of N2 = 17
pulses with PRI of TP2

= (N1+1)Tp. For the co-prime transmission,
the co-prime pair is N1 = 17 and N2 = 18.

Under the nested transmission, the FFT spectrum performed on
the received sparse data directly is shown in Fig. 8(a), where it can
be found that the high sidelobes of the strong target would bury
targets with weaker reflection coefficients, thereby reducing the radar
probability of detection. Another classical technique to perform FFT
on nonuniform sampling data is the nonuniform FFT [18]. Fig. 8(b)
shows the 2-D spectrum obtained by applying NUFFT on only 11%
of the original uniform sampling data. And it can be found that the
high sidelobe levels still stand out and may mask targets with weaker
reflection coefficients.
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Fig. 9. 2-D boosted-CS on sparse data (a) Initial pairing; (b) After amplitude
de-aliasing. The red × denotes the actual positions of the targets.

With the range and Doppler estimates obtained by applying
FFTs on, respectively, fast-time and interpolated slow-time samples,
the pairing is achieved by the 2-D boosted-CS method. Certain
spurious peaks appear in the 2-D boosted-CS spectrum because of
the overestimation of the number of targets, as shown in Fig. 9(a).
To remove these, the target magnitude and velocity set D is used
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to filter out noise-like peaks in the 2-D boosted-CS spectrum. After
de-aliasing, a perfect spectrum is available in Fig. 9(b). It should be
noted for 2-D boosted-CS of carrying range and Doppler pairing, the
atoms in the dictionary are constructed from the estimations in the set
of rfft and vfft. Therefore, the resolution of 2-D boosted-CS depends
on the number of points used in the FFT.

The beam vector p
I for each target was obtained by alignment

of the clean positioning output of the 2-D enhanced CS with the
prepossessed cross-range-Doppler spectra of each channel. Applying
FFT along each beam vector is an efficient method for target angle
analysis. As shown in Fig. 10, two targets can be accurately estimated.

Fig. 10. Direction finding using nested co-chirp from a 20-element uniform
linear array, where × denotes the ground truth

To statistically evaluate the recovery performance of the nested
co-chirp, we apply the hit or missing criterion [13] to examine the
range-Doppler recovery rate under different input SNR values. Here,
a hit denotes that the absolute error of the recovered range-Doppler
pair is within the range and Doppler resolutions. For comparison, we
also show the recovered hit rate of the conventional chirp transmission
scheme. We placed two targets with normalized reflection coefficients
of α1 = 0.5 and α2 = 1.0, which remain unchanged during the
processing interval. The velocity and range of these two targets
are drawn uniformly at random from [10, 90] m/s and [10, 100] m,
respectively. For each input SNR selected from 11 uniformly-spaced
values in the interval [−25, 25] dB, we perform 1, 000 Monte Carlo
simulations. As Fig. 11(a) shows, the hit rate reaches unity when the
input SNR is above −10 dB. The root-mean-squared error (RMSE),

defined as RMSE =
√∑Mc

i=1(ŷi − yi)
2
/Mc using Mc independent

trials, is used as the performance metric to measure the deviation
of the detection result ŷ from the ground truth y. Here, ŷ and y
denote either velocity or range estimation and their corresponding
ground truth values. All detection results for conventional and nested
co-chirp schemes are obtained from the same 2048 × 2048-point
FFTs along the range and the Doppler dimensions. Fig. 11(b) shows
the RMSE of the range and velocity estimates under the nested co-
chirp are close to those obtained from a conventional uniform chirp
transmission when SNR is larger than −10 dB. The number of points
of FFT along fast-time or slow-time bounds the estimation errors.

Under the nested co-chirps transmission, we use the fast-time
samples as snapshots to construct a covariance matrix, based on
which the missing data containing Doppler information along slow-
time can be interpolated. Then, FFT is applied to this interpolated
data to retrieve the target velocity spectrum. The velocity and the
range spectra are plotted in Figs. 13(a) and (c), respectively, which
perfectly match the ground truth. Therefore, these detected range
and Doppler peaks can be imported to a 2-D boosted-CS algorithm
for pairing. However, for the co-prime transmission, the interpolated
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Fig. 11. Performance comparison between conventional and nested co-chirp
transmissions: (a) Hit rate comparison; (b) RMSE of range and velocity for
conventional (dashed lines) and nested (solid lines) transmissions.

data are not consecutive in the whole dwell time. The few missing
slow-time slots lead to energy leakage on the velocity spectrum
when performing FFT on the interpolated data. Fig. 13(b) shows
the slow-time FFT spectrum based on the interpolated data under
the co-prime transmission and the consequence of energy leakage
appears in a form of high sidelobes. Targets with weaker reflection
coefficients have the risk of being buried by the high sidelobes. Since
the mutual coherence of the dictionary matrix is high, the 2-D CS
technique is not guaranteed to find correct range-Doppler estimation
without reliable Doppler de-aliasing. Therefore, the nested-chirps
transmission is superior to its co-prime counterpart.

B. Parameter retrieval in the presence of interference

It is of great interest to see the performance of automotive radar
under difference co-chirps transmissions when there is interference,
i.e., there is no transmission coordination among multiple radars.
The radar parameters remain the same as those used in Section
V-A. The interference duration at certain chirps is given by Ti =
|2fmax

b /(Si−S)|, where f
max
b denotes the maximum beat frequency

and Si and S are the chirp slopes of the interference and the victim
radars, respectively [5]. The signal-to-interference-plus-noise ratio
(SINR) of the m-th chirp is defined as SINR = 10log10(∥y(:
,m)∥2/(∥Λ∥2) + ∥n∥2), where Λ contains the interference samples
collected within the interference duration and n denotes the noise
vector. To investigate the interference signal, we set the input SNR =
0 dB to define the fixed input noise level. After de-chirping and low-
pass filtering, the received signal consists of signal and interference
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Fig. 12. Performance under interference: (a) The fast-time samples under the nested transmission with SINR = −12 dB; (b) Range-Doppler spectrum with
SINR = −12 dB; (c) ROC curve under different SINRs in the worst-case interference setting;
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Fig. 13. Performance comparison between (a)(b)(c) without interference, (d)(e)(f) with interference of SINR = −12 dB appearing continuously with a duration
equivalent to the first 30 chirps, and (g)(h)(i) with interference of SINR = −12 dB appearing sparsely at random along the whole CPI. Doppler estimation
with FFT: (a)(d)(g) Nested transmission; (b)(e)(h) co-prime transmission; (c)(f)(i) Range estimation with FFT under the nested transmission.
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trails, as shown in Fig. 12(a). Since the interference signal comes
from a direct path, it has stronger power than the target echoes. As
shown in Fig. 12(b), the noise floor of the range-Doppler spectrum
increases significantly due to the interference.

It is imperative to evaluate the performance of the proposed
automotive radar under the nested-chirp transmission using the
receiver operating characteristic (ROC) curve for different SINR
settings. In the simulation, the interference is generated following the
above worst-case setting. Five targets are located at a range between
10 m and 90 m. Their normalized reflection coefficients vary between
α1 = 0.5 and α2 = 1. input INR varies between −16 dB and −8 dB
with a step size of 4 dB, and a total number of 3, 000 independent
trials are carried out to compute the averaged probability of detection
(PD) and probability of false alarm (PFA). Each range-Doppler map
has 512×512 samples. Here, a successful detection means that both
the ranges and velocities of the five targets are correctly estimated.
During each trial, the velocity difference between the two targets is
at least 1 m/s and the range difference between the two targets is
more than 1 m/s. Fig. 12(c) shows that, for SINR = −16 dB, only
under higher PFAs, the five targets are detected successfully. When
SINR = −8 dB, the PD is close to 1 for a small PFA, i.e., 10−4.

We consider the worst interference scenario that the interference
appears continuously in a duration equivalent to the first 30 chirps.
It is clear that the first sub-group chirps of the victim radar under
the nested chirp transmission would be contaminated by this type
of interference. As shown in Figs. 13(d) and (f), the noise floor in
both Doppler and range spectra raise drastically compared with those
in Figs. 13(a) and (c) without interference. However, the effect of
this continuous interference appearing in the first few chirps is less
significant for victim radar under the co-prime transmission because
less number of chirps are contaminated. As shown in Fig. 13(e), the
noise floor of the Doppler spectrum under the co-prime transmission
increases slightly compared with the result in Fig. 13(b) without
interference. We then consider the other interference scenarios, for
instance, when an interference appears sparsely at random along the
whole CPI. Figs. 13(g-i) indicate that the influence of this type of
interference is less significant because the victim radar under the
difference co-chirps remains silent for most of the time during one
CPI. As a result, the chance of receiving interference is greatly
reduced. If there is interference, it only appears in a few chirps.

TABLE II
PARAMETERS OF INTERFERING RADAR

Parameter Value
Distance [10− 40] m

Bandwidth [0.6− 1.05]B MHz
Pulse duration [0.9− 1.35]Td µs

PRIi [0.9− 1.35]PRI µs

To evaluate the performance of detection with different interfering
parameters, we conduct Monte Carlo simulations with a total number
of 3, 000 independent runs to assess the hit rate of the victim radar.
In the experiment, the victim radar has the following parameters,
i.e., B = 150 MHz, Td = 7.33 µs, and PRI = 9.76 µs. The
parameters of interfering radar with FMCW waveforms are given
in Table II , and the incident azimuth angle of interfering radar is
always at θi = 0

◦ . In each run, the interfering radar’s bandwidth,
pulse duration, PRI, and distance to the victim radar are randomly
drawn from the feasible region given in Table II. The simulation
result is shown in Fig. 14, where we observe that if the collision
occurs in the sparse transmission stage and hence, cr < 0.5 (e.g., we
use cr = 0.12 in the simulations), the hit rate reaches to unity when
the SINR exceeds −10 dB. A partial collision scenario (cr = 0.5)

requires SINR to be higher than −7 dB to reach similar hit rates.
Simultaneous transmission during all chirps, i.e., the full collision
case (cr = 1), requires SINR to be up to −5 dB to reach the unity
hit rate. However, full collision situation does not frequently occur
and the nested co-chirp offers good anti-interference performance in
most cases.
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Fig. 14. Hit rate with respect to SINR for different collision scenarios.
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Fig. 15. Radar detection range vs. power per chirp.

It would be highly beneficial to investigate the advantages of
the proposed sparse transmission, both with and without increased
transmit power per chirp, in reducing interference to victim radars
employing uniform transmission. Fig. 16(a) shows an example with
two targets in the field of view of a victim radar with normalized
amplitudes α1 = 1 and α2 = 0.01, ranges r1 = 20 m and r2 = 5
m, and velocities v1 = 15 m/s and v2 = 10 m/s, and azimuth angles
θ1 = 15

◦ and θ2 = 37
◦. Fig. 16(b) shows that, when both the

host and the victim FMCW radars use uniform transmission and
interference exists in the whole CPI, the targets cannot be identified
from the range-Doppler spectrum of the victim radar due to the
high interference power. As shown in Fig. 16(c), after applying the
gating technique to clip the interference with a high amplitude, the
target with a small RCS is still embedded under the noise floor. We
also utilize the singular value decomposition (SVD) method as a
comparative scheme because of its proven superiority in eliminating
interference signals within the received signal, as outlined in [70].
For the m-th chirp, the received data of the victim radar with N
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(a)
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Fig. 16. Range-Doppler spectrum of victim radar, where × denotes the ground truth; (a) targets plus noise; (b) target plus interference and noise under the
conventional uniform transmission before gating; (c) As in (b), but after gating; (d) As in (b), but after SVD mitigation; (e) target plus interference and noise
under the nested co-chirp transmission before gating; (f) As in (e), but after gating; (g) As in (e), but after SVD mitigation.

channels is Y = Ys + Yi ∈ CI×N , where Ys and Yi are targets
and interference samples, respectively. The received signal covariance
matrix is R = YY

H . Typically, the incident power of the interfering
radar to the victim radar is much higher than the power received
from the target because of the direct path between the interfering
and the victim radars. Therefore, the principal component of the
SVD of R, expressed by eigenvalue s1 and eigenvector U(:, 1), is
regarded as the contribution of the interfering radar. In this case, the
interference is suppressed by orthogonal subspace projection. The
resulting interference-free signal is expressed as Ŷ = P⊥Y, where
P⊥ = I−U(:, 1)U

H
(:, 1), and I is the identity matrix. This method

effectively restores the data matrix of the target signal with high
precision.

Fig. 16(d) shows the case when the interference signal energy is
strong and the target dynamic range is large. Although the target with
a small RCS can be distinguished with the help of SVD technique,
its strength is nevertheless very close to the sidelobe signal level of

the large RCS target. On the other hand, as shown in Fig. 16(f), with
co-chirps, the entire spectrum is free of interference. The target with
a smaller RCS is clearly distinguished, and it demonstrates that the
SVD method is superior to gating. Now, the host radar adopts the
proposed sparse transmission following the nested co-chirp scheme
with an increased transmit power to achieve the same processing
gain as the uniform transmission scheme. Fig. 16(e) shows that,
before gating, the targets are buried by the increased noise in the
range-Doppler spectrum. However, after gating or SVD interference
mitigation, the weaker target is clearly detected, as shown in Figs.
16(f) and (g). This is because only a much smaller number of chirps
are corrupted under the sparse transmission scheme compared to the
uniform transmission scheme.

Although sparse transmission can reduce the interference to other
radar systems, increasing the power of a single chirp in order
to obtain a processing gain similar to the traditional transmission
method will cause higher electromagnetic pollution. Therefore, it
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Fig. 17. Range profiles of victim radars at various distances without
interference mitigation in (a) conventional chirp and (b) nested co-chirp
transmission.

is crucial to investigate how the increased chirp power impacts the
radar illumination range. As introduced in [71], the linear gains of
the transmitting and receiving antennas of an ultra-short-range radar
(USRR) and a medium-range radar (MRR) are 4 and 10, respectively.
At the same time, the RCS of the vehicle is 10 dBsm. Therefore, in
the traditional transmission mode, the RF output power is 12 dBm and
the minimum detection power of the receiving chain is −110 dBm.
Taking into account the aforementioned link budget and observing the
relationship between the received power and the detection distance
as depicted in Fig. 15, it becomes evident that an increase in the
chirp power can effectively extend the radar illumination distance.
This implies that the transmission in the co-chirp mode amplifies the
range of radar radiation.

To further compare the power interference range of the traditional
chirp and co-chirp transmission methods, we set up victim radars
V1, V2, V3, and V4 at distances of 100 m, 150 m, 200 m, and 250
m, respectively, from the interference radar. Targets were located at
20 m and 5 m within the range of each victim radar with the RCS
of 10 dBsm and 0.1 dBsm, respectively. Fig. 17 shows that with
the conventional transmission, the victim radar is not required to
perform any interference mitigation beyond 250 m, the two goals
can be easily distinguished. However, the power of each chirp is now
greater than in the co-chirp mode, and hence, the smaller RCS target
is still submerged in noise. In other words, for the co-chirp radar, with
its greater range, more radars need to perform interference mitigation.

C. Field campaign results

A TI imaging radar [68] is used in our field experiment, and its
configuration is given in Table III. The simple scenario is shown in
Fig. 18(a), where two pedestrians walk within the radar field of view
with different velocities. The collected data consisted of 306 chirps in
a conventional transmission with uniform PRI. Following the nested
transmission, total N1 = N2 = 17 chirps are extracted from the
consecutive measurement to form an equivalent observation window
as the conventional uniform PRI one.

TABLE III
TI RADAR SETTINGS FOR FIELD EXPERIMENT

Parameter Value

Carrier frequency, fc 77 GHz
Maximum detection range, Rmax 25 m
Maximum detection velocity, Vmax 22 km/h
Bandwidth, B 3.12 GHz

Fig. 18(b) shows the range-Doppler spectrum obtained by
performing 512 points FFTs along fast-time and slow-time of
collected data from consecutive transmissions. In this figure, two
targets are located at different ranges with distinct velocities, and
the light pole is also labeled. The energy leakage from transmitters
to receivers will result in a peak corresponding to the first few range
bin indices in the range-Doppler spectrum. Since the range frequency
fR defined in (7) is proportional to the range of target [5], a high pass
filter has been implemented to suppress the leakage from transmitters
before range-Doppler processing. The Non-uniform FFT spectrum
on nested data is shown in Fig. 18(c), where it is hard to tell the
targets from the 2-D spectrum because of the high sidelobes. The
constant false alarm rate method is used to detect range candidates
rfft from the range spectrum. Following the same way, we selected
velocity candidates vfft from the Doppler spectrum. Then, the range
candidates rfft and velocity candidates vfft are exported into boost
2-D CS to pair. Many spurious peaks exist in Fig. 18(d) because
the number of targets is overestimated when dealing with pairing.
Fig. 18(e) shows that two pedestrians and a light pole are estimated
correctly after de-aliasing.

VI. CONCLUSIONS

We presented a difference co-chirps-based non-uniform PRI
automotive FMCW radar which is shown to achieve the same range-
Doppler estimation performance as conventional FMCW radar with
uniform PRI while significantly reducing the total number of chirps
along slow-time. Based on the constructed covariance matrix with
fast-time samples as snapshots, the Doppler estimation has been
estimated efficiently with FFT. A boosted 2-D CS algorithm followed
by a Doppler de-aliasing step was proposed to pair the range-Doppler
estimation for multiple targets and filter out any spurious peaks,
which has greatly reduced the computation cost of solving the pairing
problem and completely avoided off-grid issues in CS. Numerical
results demonstrated the feasibility of the proposed method. The
robustness of the range-Doppler estimation under interference with
different SINR levels was investigated. The radar field experiments
reveal that the range and velocity of multiple targets can be estimated
efficiently with high accuracy using the proposed boost 2-D CS
technique.

APPENDIX A
PROOF OF THEOREM 1

Considering a rectangular pulse

x(t) = Rect

(
t

T

)
, −T/2 ⩽ t ⩽ T/2. (28)
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Fig. 18. Difference co-chirps FMCW radar field experiment: (a) Experiment scenario; (b) Non-uniform FFT range-Doppler spectrum from nested measurement;
(c) FFT performed on collected consecutive data; (d) Boost pairing CS spectrum in nested transmission without de-aliasing; (e) Boost pairing CS spectrum
in nested transmission after de-aliasing.

The complex AF, i.e., the matched filter output of x(t) when there
is a Doppler shift fd is

Â(t, fd) =

ˆ +∞

−∞
x(s)x

∗
(s− t)e

j2πfdsds. (29)

Following the definition in [72], the AF of rectangular pulse is the
absolute value of Â(t, fd), i.e.,

A(t, fd) =
∣∣∣Â(t, fd)

∣∣∣ = ∣∣∣∣(1− |t|
T

)
sin [πfd(T − |t|)]

πfd(T − |t|)

∣∣∣∣ , |t| ⩽ T.

(30)

The waveform of a single frequency-modulated (FM) pulse is

x̂(t) = x(t)e
j2π

[
fct+(B/2T )t

2
]

and its complex AF is

Âfm(t, fd) =

ˆ +∞

−∞
x̂(s)x̂

∗
(s− t)e

j2πfdsds

=

ˆ +∞

−∞

{
x(s)e

j2π
[
fcs+

B
2T

s
2
]

· x∗
(s− t)e

−j2π
[
fc(s−t)+ B

2T
(s−t)

2
]
e
j2πfds

}
ds

=e
j2π

(
fct− B

2T
t
2
) ˆ +∞

−∞
x(s)x

∗
(s− t)e

j2π(fd+
B
T

t)sds

=e
j2π

(
fct− B

2T
t
2
)
Â

(
t, fd +

B

T
t

)
. (31)

Therefore, the AF of a FM pulse is

Afm(t, fd) =
∣∣∣Âfm(t, fd)

∣∣∣
=

∣∣∣∣∣
(
1−

|t|
T

)
sin

[
π
(
fd + B

T
t
)
(T − |t|)

]
π
(
fd + B

T
t
)
(T − |t|)

∣∣∣∣∣ , |t| ⩽ T. (32)

Compared with the rectangular pulse AF A(t, fd), only the Doppler
term is changed in the FM pulse AF Afm(t, fd).

A pulse burst can be exploited to increase the Doppler resolution.
For M burst pulses, it holds that

Âb(t, fd) =

ˆ +∞

−∞

M−1∑
m=0

x(s−mT )

M−1∑
n=0

x
∗
(s− t− nT )e

j2πfdsds,

Replacing s−mT with ŝ, it holds that

Âb(t, fd)

=

ˆ +∞

−∞

M−1∑
m=0

x(ŝ)

M−1∑
n=0

x
∗
(ŝ+ (m− n)T − t)e

j2πfdŝe
j2πfdmT

dŝ

=

M−1∑
m=0

e
j2πfdmT

M−1∑
n=0

ˆ +∞

−∞
x(ŝ)x

∗
(ŝ− [t− (m− n)T ])e

j2πfdŝdŝ

=

M−1∑
m=0

e
j2πfdmT

M−1∑
n=0

Â(t− (m− n)T, fd), (33)

Let m− n = n̂. For some function F (m,n), it is well-known that
the following equation holds [73]

M−1∑
m=0

M−1∑
n=0

F [m,n] =

0∑
n̂=−(M−1)

M−|n̂|−1∑
m=0

F [m,m− n̂]

+

M−1∑
n̂=1

M−|n̂|−1∑
m=0

F [m+ n̂,m]. (34)
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∣∣∣∣∣∣
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−∞

N1−1∑
m=0

x̂(s−mT )

N1−1∑
n=0

x̂
∗
(s− t− nT )e

j2πfdsds

∣∣∣∣∣∣ =
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Therefore,
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With the sum of geometric series, it holds that
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As a result, the AF of a simple pulse train is
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Then, the AF of the burst FM pulse train is
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Non-uniform chirp waveform under the nested transmission includes
two groups of uniform chirps with different PRIs. The number of
chirps in the first and second groups is N1 and N2 with PRI of
T and (N1 + 1)T , respectively. For the nested-chirp waveforms, it
holds
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}
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Define T̂ = (N1 + 1)T . It follows from (36) that (38) and (39) hold.
Therefore, the AF of nested-chirp waveform is obtained as (15).

Similarly, non-uniform chirp waveform under co-prime transmission

includes two overlapped groups of uniform chirp sequences with PRIs
of T1 and T2, respectively. In a similar way, the AF of co-prime chirp
waveform is obtained as in (16), which concludes the proof.
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