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Single-Satellite EMI Geolocation via Flexibly
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Abstract—Single-satellite geolocation achieves effective local-
ization of ground electromagnetic interference (EMI) signals with
a low cost compared to the multi-satellite counterparts. In such
systems, the Doppler and Doppler rate are commonly exploited
to extract the information of the ground EMI sources and the
constrained Unscented Kalman filter (cUKF) is found effective
to provide instantaneous EMI locations over time. In this letter,
we address the benefit of exploiting Doppler acceleration in
the underlying single-satellite geolocation problem, and point
out that exploiting additional constraint on the altitude of the
ground emitter provides enhanced EMI tracking performance.
The importance of such constraint is more pronounced in
the beginning of the tracking process, whereas removing such
constraint after a short period of time does not compromise the
performance. The effect of sampling rates on performance and
the required time to converge are investigated.

Index Terms—Electromagnetic interference, single-satellite ge-
olocation, constrained unscented Kalman filter, Doppler fre-
quency, Doppler acceleration

I. INTRODUCTION

The capability of satellites to detect and precisely locate
stationary ground electromagnetic interference (EMI) sources
holds significant value in space situational awareness and in-
telligence surveillance. Single-satellite geolocation reduces the
operational cost and avoids the needs of synchronization as in
multi-satellite systems [1]. Compared to the techniques based
on angle-of-arrival estimation [2], [3], Doppler-based methods
are simpler and often provide higher accuracy [4]–[6], and thus
are widely applied for geolocation using a single satellite [7]–
[11]. In [8], the instantaneous frequency is estimated based
on the received signal, and the emiiter location is determined
by minimizing the difference between the estimated Doppler
frequency, which is calculated from the relative geometry
between the estimated emitter and known satellite receiver,
and that extracted from the received signal. A closed-form
solution is obtained in [9] for an initial estimate of the emitter
position using the Doppler frequency measurements collected
by a single low earth-orbit (LEO) satellite.
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For parametric characterization of the time-varying Doppler
frequencies in emitter geolocation exploiting a single satellite,
Doppler frequency and Doppler rate are commonly used [4],
[12], [13]. The nonlinear properties in Doppler and Doppler
rate make the unscented Kalman filter (UKF) a preferred
candidate for geolocation because of its superiority in handling
high nonlinearity or large uncertainties over the extended
Kalman filter (EKF) [14], [15]. Further, the constraint un-
scented Kalman filter (cUKF) [16] utilizes additional side
information to speed up the convergence of emitter geoloca-
tion [4], [13]. For example, since the EMI source is known
to be on the earth’s surface, a constraint is applied for the
cUKF in [4] to project the solution space to the earth’s
ellipsoidal surface. Another constraint is proposed in [13],
which ensures that the emitter’s altitude is non-negative in
the latitude longitude altitude (LLA) coordinate system.

In this letter, we make two important contributions to cUKF-
based single-satellite EMI geolocation. First, because the non-
linear Doppler frequencies are generated primarily due to the
motion of the satellite with an elliptical orbit, it is importance
to account for the Doppler acceleration, which is associated
with the satellite jerk, in the underlying problem. This is
motivated by the application of jerk motion in the detections
for high-maneuvering targets with complex motions [17], [18].
Our second contribution is, because the ground EMI sources
have a negligible altitude from the earth surface, adding
such constraint to the tracking problem provides additional
information to enhance the EMI tracking performance. We
point out that the importance of such additional constraint is
more pronounced in the beginning of the tracking process,
whereas removing such constraint after a short period of time
does not compromise the performance. The effect of sampling
rates on performance and the required time to converge are
investigated. Simulation results are provided to verify the
effectiveness of the proposed work.

II. SIGNAL MODEL

We consider the problem of locating a single stationary
ground EMI source, located at pe = [xe, ye, ze]

T, using a sin-
gle satellite, flying on its orbit ps(t) = [xs(t), ys(t), zs(t)]

T.
We denote r(t) = ps(t) − pe, and its norm g(t) = ∥r(t)∥ =
∥ps(t)−pe∥ represents the distance between the ground EMI
source and the satellite. The signal received by the satellite
from the emitter undergoes a Doppler shift brought by the
satellite motion, given as [19]

fd(t) = −fc
c

vT
s (t)r(t)

g(t)
, (1)
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where fc is the carrier frequency, c is the speed of light, and
vs(t) is the instantaneous speed of the satellite. The Doppler
rate is given as [4]

fr(t) =
dfd(t)

dt
= −fc

c

aTs (t)r(t) + ∥vs(t)∥2 − ġ2(t)

g(t)
, (2)

where ġ(t) = dg(t)/dt, and as(t) = dvs(t)/dt is the
acceleration of the satellite. Following the steps depicted
in the Appendix, the acceleration of the Doppler frequency
fa(t) = dfr(t)/dt is expressed as

fa(t)=
−fc
cg(t)

[ȧTs (ps(t)−pe)+3aTs (t)vs(t)−3ġ(t)g̈(t)], (3)

where g̈(t) = dġ(t)/dt, and ȧs(t) = das(t)/dt is the
acceleration rate of the satellite.

III. UKF ALGORITHM WITH FLEXIBLE CONSTRAINTS

A. UKF Algorithm

The basic framework of a Kalman filter associating with the
state estimation for a nonlinear dynamic system is given as

xk+1 = F(xk) + vk, yk = H(xk) + nk, (4)

where k represents the discrete time index, vectors xk ∈ RL

and yk ∈ Rm represent the states and measurements, vk ∼
N (0,Q) and nk ∼ N (0,R) are, respectively, the process-
ing and measurement noise vectors. For the geolocalization
problem considered, the state vector describes the stationary
emitter position with xk+1 = xk, and the measurement
vector contains three components, i.e., Doppler, Doppler rate,
and Doppler acceleration. The measurement function H(·)
is nonlinear as described in Eqs. (1)–(3). Compared to [4],
[13] where only 2D measurements (Doppler and Doppler rate)
are used, we use 3D measurements by adding the Doppler
acceleration to account for the high nonlinearity of the Doppler
signatures for further performance improvement.

Applying the unscented transformation, the UKF selects a
set of sigma points [14], [15]. Let set χ collect 2L+1 sigma
points with corresponding weights wi for i = 0, 1, · · · , 2L,
and x̂k is denoted as the kth estimate of x. Given the initial
estimate of the state x̂0 and its covariance matrix P0, the
sigma points at the (k− 1)th time instant is generated as [20]

χ
k−1

= [x̂k−1, x̂k−1 + γ
√

Pk−1, x̂k−1 − γ
√
Pk−1], (5)

where γ =
√
L+ λ, and scaling factor λ controls the spread of

the sigma points. The sigma points are then used to predict the
state and measurement vectors at the subsequent time-instant
as χx

k|k−1
= F(χ

k−1
), x̂−

k =
∑2L

i=0 w
m
i χx

i,k|k−1, Yk|k−1 =

H(χx
k|k−1

), and ŷ−
k =

∑2L
i=0 wi

mYk|k−1. Finally, the mea-
surement is applied to update the mean and covariance matrix
of the state. The weights are calculated by wm

0 = λ
L+λ , w

c
0 =

λ
L+λ +(1−α2+β), wm

i = wc
i =

1
2(L+λ) , i = 1, · · · , 2L, and

α and β are the weighting factors.

B. Constrained UKF Algorithm with Flexible Turnoff Time

Considering the fact that the emitter sits on the surface of the
earth, the cUKF algorithm in [4] projects the sigma points to
the earth’s surface by the equation x2

e+y2
e

R2
eq

+
z2
e

R2
p
= 1, where Req

and Rp are earth’s equatorial radius and polar radius, respec-
tively. Another constraint is proposed in [13], where the earth-
centered, earth-fixed (ECEF) coordinates ECEF(x, y, z) are
first transformed to the LLA coordinates LLA(Lon,Lat,Alt),
and the altitude is set to a nonnegative value as Alt = µ ≥ 0.

In this letter, both constraints are accounted for. However,
instead of applying these constraints for the entire duration
of UKF implementation, we only enforce the constraint for a
short duration at the start of UKF, resulting a cUKF with a
flexible time duration of constraints. The constraint period is
proper determined to ensure the performance of the UKF is
not compromised.

A standard algorithm for cUKF is described in [16]. The
flexibly constrained UKF algorithm proposed in this letter is
described as bellow:

• Determine the sigma points;
• Apply the above mentioned constraints to the sigma

points only for time duration t ∈ (0, τ ], where τ is a
given threshold;

• Predict the state and measurement using the sigma points;
• Apply the UKF algorithm.

Compared to the conventional cUKF, the computational cost
is reduced since the constraint is enforced only for a short
duration of τ . It is noted that the required time threshold τ
depends on the sampling rate.

IV. SIMULATION RESULTS

In the simulations, the emitter tracking performance is
evaluated using the root mean square error (RMSE) of the
estimated emitter location, defined as

RMSE(k) =

√√√√ 1

M

M∑
i=1

∥ p̂e(k, i)− pe ∥2, (6)

where P̂e(k, i) is the estimated position at discrete-time instant
k in the ith trial, M is the total number of Monte Carlo
trials and is chosen as 800 unless specified otherwise in the
simulations. The ground truth of the emitter in the ECEF
coordinates is [xe, ye, ze] = [1902.56, 4828.21, 4008.39] km
which maps to the LLA coordinate system as [Lon Lat Alt]
= [39.20◦,−77.25◦, 10 m]. The initial state of the cUKF is
set in the ECEF coordinates as [xe − 400, ye + 400, ze − 50]
km. The UKF parameters are α = 0.8, β = 2, and λ is set to
−0.184 for 3D measurement and 0.176 for 2D measurement.
Suppose accurate satellite position and velocity are available.
Doppler, Doppler rate, and Doppler acceleration measurements
with Gaussian noise of variances 2.317, 0.0625, and 10−4,
respectively, are assumed. The simulations are carried out
using the first five (or less) seconds of the measurements.
Fig. 1 plots the measurement components for the Doppler,
Doppler rate, and Doppler acceleration.

It is noted that, in practice, various factors, such as at-
mospheric conditions, other interference sources, and satellite
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Fig. 1: Measurements for Doppler, Doppler rate, and Doppler
acceleration with noise variances of 2.317, 0.0625, and 10−4.

Fig. 2: Performance for 2D and 3D measurements.

hardware inaccuracies, could affect Doppler measurement and
EMI localization performance [21], [22]. Such factors are not
accounted for in this letter due to the space limitation.

A. Performance improvement using Doppler acceleration

Fig. 2 compares the RMSE performance between those
based on 2D (Doppler and Doppler rate) and 3D (Doppler,
Doppler rate, and Doppler acceleration) measurements. The
sampling rate is fs = 1 kHz. Both constraints proposed in [4]
and [13] (with µ = 2) are applied with a full duration of
τ = 5 seconds. The RMSE results simulated by the constraints
in [4] with 2D and 3D measurements are labeled as “Ellis
2D” and “Ellis 3D”, respectively, and those in [13] as “ECEF-
LLA 2D” and “ECEF-LLA 3D”. For a given dimension size
(two or three) of the measurements, as shown in the detail
windows in the figure, the performances of the two constraints
in [4] and [13] are indistinguishably close. It is evident that,
for both constraints, adding the Doppler acceleration as the
third measurement assists in state estimation convergence,
thus improving the location accuracy. Such an improvement
becomes more pronounced when the measurement of Doppler
acceleration has higher accuracy with a lower variance of
σ2 = 10−5.

B. Flexible constrained time period

Fig. 3 shows the RMSE results with the ECEF-LLA
constraint exploiting 3D measurements. The sampling rate
is fs = 1 kHz. In this figure, the number of trials is
M = 1, 500. The durations of the constraint are, respectively,
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Fig. 3: Performance for different durations on constraint
ECEF-LLA with 3D measurements.
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Fig. 4: Averaged runtime with different constraint durations.

τ = 0.125, 0.25, 0.5, 1, 2, and 4 seconds. For comparison,
the performance without constraint is included as τ = 0
seconds. The performance for these different durations on the
constraint is very close (within a few meters of difference, as
shown in the detailed window). As such, we only need to use
a short period of constraint duration to enhance the tracking
performance while keeping a low complexity.

It is interesting to note that longer constraint durations with
τ > 1 second produce higher RMSE for approximately one
meter when the UKF approaches the converging phase. A
reason is that the constraint enforces an assumed Alt of µ = 2
m, which may adversely affect the performance since the true
height of the emitter is not precisely zero (10 m in this case).
Similar observations hold for the constraint in [4].

Using a shorter constrained duration helps save the com-
putational cost. Fig. 4 shows the averaged runtime with
respect to M trials for both constraints. The bar-groups for
the 3D measurements have higher magnitude than the 2D
counterparts. For a given dimension of the measurements (2D
or 3D), we have the following observations: i) The averaged
runtime increases with longer constraint durations and ii) The
constraint in [13] consumes slightly less time than that in [4].

C. Impact of sampling rate

Fig. 5 shows the RMSE for different sampling rates for
fs = 0.5, 1, 2, 5, and 10 kHz using 3D measurements under
the ECEF-LLA constraint. The duration on the constraint is
τ = 1 second. The results show that a higher sampling rate
converges faster to a lower estimation error, thus improving the
performance. Using five-second measurement data, the RMSE
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Fig. 5: RMSE performance with different sampling rates.
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Fig. 6: Averaged runtime required to achieve RMSE of 400 m.

obtained from data with a sampling rate of fs = 10 kHz
converges to a floor of about 140 m, whereas that for fs =
500 Hz converges to a floor of about 400 m.

For a given time duration used in the cUKF, longer runtime
is expected for a higher sampling rate since it produces more
data samples to be processed. To compare the runtime in
a reasonably fair manner for different sampling rates, we
examine the RMSE at 400 m, which is feasible for the lowest
interpolation rate fs = 500 Hz in the figure.

For a given sampling rate, the following steps are applied to
obtain the averaged runtime and averaged number of samples:

• For each trial m = 1, · · · ,M , run the cUKF using
6 seconds of data with the constraint duration τ = 6
seconds. Here, 6 seconds of data ensure that the RMSE
is below 400 m for all sampling rates being considered. In
addition, the constraint is applied for the entire duration
of the cUKF so that the performance is only affected by
the sampling rate.

• For the kth sample, record the runtime τ(k,m) and the
estimate error e(k,m) =∥ p̂e(k,m)− pe ∥ for k ≥ 1.

• Backtrack the error to find k0, such that e(k0,m) is below
400 m. Backtracking is used to ensure that the error is
not higher than 400 m for k > k0.

• Obtain the runtime required to achieve 400 m perfor-
mance in the mth trial as t(m) =

∑k0

k=1 τ(k,m) and the
required number of samples as S(m) = k0.

• Calculate the averaged runtime as t̄ =
∑M

m=1 t(m)/M ,
and the averaged number of required samples as S̄ =∑M

m=1 S(m)/M .
Fig. 6 shows the averaged runtime over 800 trials to achieve

the RMSE of 400 m, where the simulations are performed
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Fig. 7: Averaged number of samples required to achieve RMSE
of 400 m.

using a laptop with Intel(R) Core i7-10700k CPU @ 3.8
GHz clock and 48 GB RAM. The averaged runtime increases
approximately linearly with the sampling rate. For fs = 500
Hz, the runtime is about 0.53 seconds, and that for fs = 10
kHz is 1.06 seconds. Fig. 7 plots the averaged number of
samples required for different sampling rates and the results
show a similar trend as that in Fig. 6.

V. CONCLUSION

In this letter, we investigated the benefit of Doppler ac-
celeration in the cUKF for EMI geolocation exploiting a
single satellite. Flexibility on the duration for the constraint
is explored. Without compromising the performance, the time
duration to enforce the constraint can be much shorter to save
the computational cost. Simulation results also indicate that
interpolating the measurements can improve the performance
of the cUKF.

APPENDIX
DERIVATION OF DOPPLER ACCELERATION

The range between the satellite and emitter is g = ∥ps −
pe∥ = ∥r∥, where we drop (t) for notation simplicity. The
range rate is ġ = dg/dt = vT

s r/g. The Doppler frequency is

fd = η
dg

dt
=

η(vs − ve)
T r

g
, (7)

where η = − fc
c . The Doppler rate is fr = dfd

dt = η d2g
dt2 = ηg̈.

Let as = v̇s and ae = v̇e. We have

g̈ =
1

g

d(vT
s r)

dt
− 1

g2
dg

dt
vT
s r =

1

g
[aTs r+ vT

s vs]−
1

g2
ġvT

s r

=
1

g

[
aTs r+ vT

s vs − ġ2
]
=

A

g
. (8)

The Doppler acceleration is

fa =
dfr
dt

= η

(
1

g

dA

dt
− 1

g2
Aġ

)
=

η

g

(
dA

dt
− ġg̈

)
, (9)

where
dA

dt
= ȧs

T r+aTs vs+2aTs vs−2ġg̈= ȧs
T r+3aTs vs−2ġg̈. (10)

Inserting this into (9), the Doppler acceleration is

fa=
η

g
[(ȧs−ȧe)

T r+ 3(as − ae)
T (vs − ve)− 2ġg̈]. (11)
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