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Abstract

The conventional coprime array consists of two uniform linear subarrays to construct an effec-

tive difference coarray with desirable characteristics. Such linear coprime arrays only provide one-

dimensional (1-D) direction-of-arrival (DOA) estimation. In this paper, we propose a novel coprime

array configuration with parallel subarrays, along with an effective method for two-dimensional (2-D)

DOA estimation. The 2-D DOA estimation problem is cast as two separate 1-D problems for reduced

complexity and is solved using one of the two mechanisms based on the number of sensors and that

of sources. When there are less sources than the number of sensors, subspace-based and rank-reduction

estimation (RARE) techniques are sequentially applied to the physical array output. On the other hand,

when the number of sources is equal to or larger than that of sensors, a virtual difference coarray is

formed and group sparse reconstruction and least squares operations are then applied. In both scenarios,

the proposed methods automatically pair the corresponding azimuth and elevation angles. The proposed

methods resolve up to MN sources using 2M + N − 1 sensors, which are the same as in the 1-D

DOA estimation using conventional coprime arrays. Simulations results are presented delineating both

the accuracy and resolution capability of the proposed method.
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I. INTRODUCTION

Direction-of-arrival (DOA) estimation determines the spatial spectrum of the impinging elec-

tromagnetic waves on a sensor array. It finds variety of applications in radar, sonar, radio astron-

omy, and mobile communication systems [1]. A large volume of work has investigated linear

arrays for one-dimensional (1-D) DOA estimation, namely, the azimuth domain. Among existing

DOA estimation techniques, the multiple signal classification (MUSIC) [2], estimation of signal

parameters via rotational invariance techniques (ESPRIT) [3], and propagator method (PM) [4]

are commonly used due to their high-resolution direction finding capabilities utilizing eigen-value

decomposition (EVD), singular value decomposition (SVD), and linear operations with respect to

the estimated covariance matrix of the received signals, respectively. Recently, super-resolution

algorithms are proposed for massive MIMO based on deep learning [5]. In practice, however,

many problems require two-dimensional (2-D) DOA estimation in both azimuth and elevation

domains. While it is straightforward to extend the above methods to their 2-D counterparts

[6]–[8] to deal with a planar or circular array, the involved 2-D peak search is computationally

expensive, especially for large number of sensors. Therefore, it is desirable to develop an accurate

2-D DOA estimation algorithm with reduced complexity.

Several methods for 2-D DOA estimation problem were proposed with parallel uniform linear

array (ULA) configurations that consist of several linear subarrays, converting the problem into

separate 1-D DOA estimations. In doing so, either the PM based [9]–[12] or subspace based

[13] algorithm can be applied to estimate only one variable, avoiding 2-D angular search. In

[9], a fast algorithm was proposed based on two parallel ULAs with N and N + 1 sensors. The

resulting configuration lends itself to formulating three N -sensor subarrays where the azimuth and

elevation angles can be estimated separately. However, an additional pair matching process for

the estimated azimuth and elevation angles is required when multiple sources exist. In addition,

the total number of sensors, i.e., Nt = 2N + 1, is not fully utilized in each estimation stage. The

method developed in [10] considers the same two parallel ULA structure as used in [9], but it

automatically pairs the 2-D DOA estimates and achieves improved DOA estimation accuracy by

constructing three 2N -sensor subarrays rather than the N -sensor counterparts in [9]. Nevertheless,

it still falls short in utilizing all degrees-of-freedoms (DOFs) offered by the array sensors. In

addition, the array configuration used in [9] and [10] assumes a small aperture in the elevation

domain owing to the half-wavelength distance constraint between the parallel ULAs which



3

circumvents creation of grating lobes. Therefore, the performance of the above methods degrades

significantly with high elevation angles, which is typical in mobile communication environments.

The methods in [11], [12] enlarge the aperture in the elevation domain by exploiting three parallel

ULAs. However, the number of DOFs in these methods remains lower than half of the number of

sensors (i.e., Nt/2), limiting the possible number of resolvable sources. A method was proposed

in [13] based on the MUSIC technique. Particularly, the rank-reduction (RARE) estimator [14]

was applied enabling the three parallel ULAs to be treated as subarrays displaced from a long

ULA, and allowing the resolution of up to (Nt− 3) sources. Clearly, such a ULA-based parallel

array design imposes a strict restriction on the array aperture and does not achieve a high number

of DOFs.

For detecting more sources than sensors, it is necessary to have a higher number of DOFs

which can be achieved by exploiting a sparse array configuration under the coarray equivalence

[15], [16]. A sparse array also renders a larger array aperture for high resolution spatial spectrum

estimation. Among the different techniques for sparse array construction, the recently proposed

coprime configurations [17], [18] and nested configuration [19] offer systematical design capa-

bility and DOF analysis involving sensors, samples, or frequencies [20]–[43].

The conventional coprime array developed in [18] consists of two collocated uniform linear

subarrays, where one uses 2M antennas with an interelement spacing of N units, whereas the

other one uses N elements with an interelement spacing of M units. By choosing the integer

numbers M and N to be coprime, i.e., their greatest common divisor is one, MN sources can

be identified with only 2M + N − 1 sensors. A variety of coprime array configurations were

developed to achieve higher DOFs and more flexible array design [44]. However, the above

coprime arrays are limited to the 1-D case. In [45], we proposed a coprime array configuration

for the 2-D DOA estimation, where the two subarrays are placed in parallel rather than co-

linearly. The resulting configuration is able to resolve the same number of sources in the 2-D

DOA domain as compared with the conventional linear coprime array with the same number of

sensors for 1-D DOA estimation. A similar problem was investigated in [46] and [47]. However,

all these methods have difficulties to resolve the sources with high elevation angles.

In this paper, we propose a novel coprime array configuration with three parallel subarrays

for 2-D DOA estimation. Unlike the methods in [11] and [12] where each of the three parallel

subarrays is uniform, the proposed method undertakes a sparse array topology to resolve a

significantly higher number of sources. In addition, the proposed array configuration outperforms
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the methods in [45]–[47] given the same number of DOFs. From array design perspective, the

extended array aperture in the proposed array configuration improves resolution in the elevation

domain. Such offering is more pronounced for high elevation angles. From an algorithmic

perspective, we propose an effective method to perform 2-D DOA estimation. The problem

is similarly cast as two separate 1-D DOA estimations, with adopting two different schemes

depending on the number of sensors, Nt, and sources, Q. More specifically, for the case of

Q < Nt, the MUSIC and RARE techniques are sequentially applied to the data received at

the physical array, whereas when Q ≥ Nt, a virtual difference coarray is first formed from the

cross-covariance matrix of the subarray data, and group sparse reconstruction and least squares

operations are then used to estimate the 2-D DOAs. In both schemes, the proposed method

achieves improved DOA estimation accuracy and properly pairs the source azimuth and elevation

angles.

The rest of the paper is organized as follows. In Section II, we describe the signal model

of the proposed coprime array configuration with parallel subarrays. In Section III, an effective

DOA estimation method is presented in two different cases based on the relationship between

Nt and Q. Simulation results are provided in Section IV to numerically compare the estimation

performance of the proposed method with those of existing methods. Section V concludes the

paper.

Notions: We use lower-case (upper-case) bold characters to denote vectors (matrices). In

particular, IN denotes the N × N identity matrix, and 11×N and 01×N denote 1 × N vectors

with all 1’s and 0’s, respectively. (.)∗ implies complex conjugation, whereas (.)T and (.)H

respectively denote the transpose and conjugate transpose of a matrix or vector. vec(·) denotes

the vectorization operator that turns a matrix into a vector by stacking all columns on top

of the another, and diag(x) denotes a diagonal matrix that uses the elements of x as its

diagonal elements. E(·) is the statistical expectation operator and ⊗ denotes the Kronecker

product. phase(x) returns the phase of a complex variable x. N+ denotes the set of positive

integers. b·c denotes the floor function that returns the largest integer not exceeding the argument.

N (x|a, b) and CN (x|a, b) denote that random variable x follows Gaussian and complex Gaussian

distributions with mean a and variance b, respectively. ‖ · ‖2 denotes the Euclidean (l2). Tr(A)

and and |A| respectively returns the trace and determinant of matrix A. Re(x) and Im(x) denote

the real and imaginary parts of complex element x, respectively.
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II. ARRAY CONFIGURATION AND SIGNAL MODEL

As illustrated in Fig. 1, the proposed coprime array configuration consists of three sparse

ULAs. The subarray 1 has N sensors with an interelement spacing of Md, whereas the subarray

2 and 3 have M − 1 and M sensors, respectively, with an interelement spacing of Nd. The unit

interelement spacing d is set to λ/2, where the λ is the wavelength corresponding to the carrier

frequency. By choosing the M ∈ N+ and N ∈ N+ to be coprime, the minimum interelement

spacing along the y-axis remains λ/2 so as to avoid grating lobes in the azimuth domain. Without

loss of generality, we assume M < N in this paper. The array sensors are positioned at:

{(x, y)|(0,Mnd) ∪ (d,Nm1d) ∪ (d+ Ld,MNd+Nm2d)} (1)

for all n ∈ [0, N − 1], m1 ∈ [1,M − 1], m2 ∈ [0,M − 1], n,m1,m2 ∈ N+, where (x, y) denotes

the coordinate in x-y plane. Note that the difference to the conventional coprime arrays for the

1-D DOA estimation lies in the fact that these subarrays are no longer colinear, but are rather

placed in parallel with a distance d and Ld, L ∈ N+, respectively. On one hand, the minimum

interelement spacing along the x-axis, i.e., d, guarantees free of the ambiguous problem in the

elevation domain. Furthermore, the width of its mainlobe is inversely proportional to the x-axis

array aperture Lx. As L increases, the resolution improves as a result of the narrower mainlobe.

However, the corresponding spatial spectrum, which generally describes spatial correlation with

respect to the elevation grids, tends to include high-level sidelobes as the array aperture increases.

Therefore, it is undesirable to use an extremely large value of L because it will lead to a

deteriorated estimation accuracy due to the effect of spurious peaks caused by the corresponding

high sidelobe levels.

Assume that Q far-field narrowband uncorrelated sources sq(t), q = 1, . . . , Q, for t = 1, . . . , T ,

impinge on the array from the pair of 2-D angles (θq, φq), where θq ∈ [0◦, 90◦] and φq ∈

[−180◦, 180◦] denote the elevation angle and the azimuth angle corresponding to the qth signal,

respectively. Then, the data vectors received at the ith subarray can be expressed as

xi(t) =

Q∑
q=1

ai(θq, φq)e
j2π

xi
λ

sin(θq) cos(φq)sq(t) + ni(t), (2)

where

ai(θq, φq) =

[
ej2π

yi1
λ

sin(θq) sin(φq), . . . , ej2π
yi
Nit
λ

sin(θq) sin(φq)

]T
, (3)
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Fig. 1. Geometry of the proposed array configuration with three parallel coprime subarrays.

is the steering vector of the ith subarray corresponding to the pair of (θq, φq) for q = 1, . . . , Q,

i = 1, 2, 3. yij , 1 ≤ j ≤ N i
t , denotes the y-coordinate of the j-th sensor in the i-th subarray, where

N i
t is the total number of sensors in the i-th subarray, i.e., N1

t = N , N2
t = M−1, and N3

t = M .

Similarly, xi represents the position of the ith subarray along the x-axis. In addition, the elements

of the noise vectors in the i-th subarray ni(t) are assumed to be independent and identically

distributed (i.i.d.) random variables following the complex Gaussian distribution CN (0, σ2
nIN i

t
)

for i = 1, 2, 3.

In order to decouple the 2-D DOA estimation problem into two separated 1-D problems, as

shown in Fig. 2, we define αq, βq ∈ [0◦, 180◦], q = 1, . . . , Q, as the angles between the incident

direction and the y-axis and the x-axis, respectively. αq and βq are related with θq and φq through

the following relationships:

cos(αq) = sin(θq) sin(φq), (4)

cos(βq) = sin(θq) cos(φq). (5)

As a result, the received data vectors in (2) becomes

xi(t) =

Q∑
q=1

ai(αq)e
j2π

xi
λ

cos(βq)sq(t) + ni(t), (6)

with the corresponding steering vector

ai(αq) =

[
ej2π

yi1
λ

cos(αq), . . . , ej2π
yiNt
λ

cos(αq)

]T
. (7)
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Fig. 2. Illustration on relationships between (θq , φq) and (αq , βq).

Denote s(t) = [s1(t), ..., sQ(t)]T as the signal vector, and Ai = [ai(α1), ..., ai(αQ)], as the

corresponding manifold of the i-th subarray, i = 1, 2, 3. Then, the received data vectors can be

rewritten as

xi(t) = AiBis(t) + ni(t), (8)

where the diagonal matrix is expressed as

Bi = diag([ej2π
xi
λ

cos(β1), . . . , ej2π
xi
λ

cos(βQ)]). (9)

III. PROPOSED DOA ESTIMATION METHOD: Q < Nt CASE

In this and the subsequent sections, we present an effective approach for the 2-D DOA

estimation using the proposed array configuration. In the light of the relationship between Q and

Nt, two different cases are considered with distinct mechanisms. In this section, we address the

case where Q < Nt, whereas the case of Q ≥ Nt is considered in Section IV. In both cases, the

proposed method automatically pairs the 2-D angles and achieves improved estimation accuracy

over existing techniques.

When Q < Nt, the DOA estimation is based on the Nt-sensor physical array. Stacking all

data vectors received at the three subarrays xi(t), i = 1, 2, 3, yields an Nt × 1 vector x(t) =

[xT1 (t),xT2 (t),xT3 (t)]T , where x1(t) ∈ CN×1, x2(t) ∈ C(M−1)×1, x3(t) ∈ CM×1, and Nt =

2M + N − 1. As such, the x(t) is treated as the received data vector of a long linear array,

expressed as:

x(t) =

Q∑
q=1

a(αq, βq)sq(t) + n(t) = Cs(t) + n(t), (10)
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with

a(αq, βq) = ã(αq)Th(βq), (11)

where

ã(αq) = diag
(
[aT1 (αq) aT2 (αq) aT3 (αq)]

T
)
, (12)

T =


11×N 01×(M−1) 01×M

01×N 11×(M−1) 01×M

01×N 01×(M−1) 11×M


T

, (13)

h(βq) =
[
1, ejπ cos(βq), ej(L+1)π cos(βq)

]T
. (14)

Note that the azimuth and elevation angles αq and βq in the corresponding Nt × 1 steering

vector a(αq, βq) can be decoupled as the product of an Nt × Nt diagonal matrix ã(αq), which

only depends on αq, a 3 × 1 steering vector h(βq), which only depends on βq, and an Nt × 3

transformation matrix T. As such, an exhaustive 2-D search is avoided. The Nt × Q matrix

C is defined as the mainfold corresponding to all steering vectors a(αq, βq) for q = 1, ..., Q,

expressed as

C = [a(α1, β1), . . . , a(αQ, βQ)] =
[
(A1B1)

T , (A2B2)
T , (A3B3)

T
]T
. (15)

In addition, the corresponding Nt × 1 noise vector is denoted as n(t) = [nT1 (t),nT2 (t),nT3 (t)]T .

The Nt ×Nt covariance matrix of the received data vector x(t) is obtained as

Rx = E[x(t)xH(t)] = CRssC
H + σ2

nINt . (16)

Following the same process in 2-D MUSIC [6], the signal and noise subspaces can be estimated

via eigenvalue decomposition with respect to the covariance matrix, i.e.,

Rx = UsΛsU
H
s + UnΛnU

H
n , (17)

where the Nt × Q matrix Us and the Nt × (Nt − Q) matrix Un contain the signal and

noise subspace eigenvectors, respectively, and the corresponding eigenvalues are included in
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the diagonal matrices Λs = diag{λ1, . . . , λQ} and Λn = diag{λQ+1, . . . , λNt}. Then, the cost

function for MUSIC-based DOA estimation can be constructed as

f(αg1 , βg2) =
1

aH(αg1 , βg2)UnUH
n a(αg1 , βg2)

=
1

hH(βg2)T
H ãH(αg1)UnUH

n ã(αg1)Th(βg2)

=
1

hH(βg2)G(αg1)h(βg2)
, (18)

with G(αg1) = TH ãH(αg1)UnU
H
n ã(αg1)T, where g1 = 1, . . . , Gα, and g2 = 1, . . . , Gβ denotes

the search grids for angles α and β. In (18), the difference to the counterpart in the traditional

2-D MUSIC method that applied to a planar or circular array lies in the fact that αg1 and βg2

are fully decoupled, which means that the joint 2-D searching (αg1 , βg2) is not necessary when

maximizing f(αg1 , βg2) to obtain the Q largest peaks. In other words, the estimation of αq and

βq, q = 1, . . . , Q, can be simplified as two separate 1-D DOA estimation problems. We first

apply the RARE algorithm to estimate αq by maximizing the following cost function

f(αg1) =
1

|G(αg1)|
, g1 = 1, . . . , Gα. (19)

As such, the estimates of αq, i.e., α̂q, q = 1, ..., Q, can be obtained by detecting the positions

of the Q largest peaks in f(αg). Given each α̂q, we then perform a 1-D search with respect to

β, i.e.,

f(α̂q, βg2) =
1

hH(βg2)G(α̂q)h(βg2)
, g2 = 1, . . . , Gβ. (20)

The evaluation angles β̂q are identified by the angular positions of peaks, which are automatically

paired with the corresponding α̂q, q = 1, . . . , Q.

Based on the relationship between (θq, φq) and (αq, βq) in (4) and (5), the elevation and

azimuth angle for each source can be estimated as

θ̂q = sin−1

[√
cos2(α̂q) + cos2(β̂q)

]
, (21)

φ̂q = tan−1

[
cos(α̂q)

cos(β̂q)

]
. (22)

It is clear that θq and φq are also automatically paired due to the paired αq and βq.
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IV. PROPOSED DOA ESTIMATION METHOD: Q ≥ Nt CASE

While the RARE and MUSIC can achieve a high resolution in the spectrum and improved

estimation accuracy, the Q < Nt condition has to be satisfied so as to obtain the noise subspace.

The problem of detecting more sources than the number of sensors is of tremendous interests in

various applications. In this section, we present an effective approach to achieve a higher number

of DOFs under the difference coarray equivalence. In addition, both resolution and estimation

accuracy are improved by exploiting the group sparse learning techniques.

A. Difference Coarray Formulation

The cross-covariance matrix between the data vectors received at subarrays, xi(t) and xk(t),

1 ≤ i, k ≤ 3, can be obtained as

Rxik = E[xi(t)x
H
k (t)]

=

Q∑
q=1

σ2
qe
j2π

(xi−xk)
λ

cos(βq)ai(αq)a
H
k (αq) + ni(t)n

H
k (t),

=

AiRssDikA
H
k , i 6= k,

AiRssA
H
i + σ2

nIN i
t
, i = k,

(23)

where Rss = E[s(t)sH(t)] = diag([σ2
1, . . . , σ

2
Q]) is the Q × Q covariance matrix of the signals

whose diagonal entries represent the signal scattering power. In addition,

Dik = BiB
H
k = diag{[ej2π

(xi−xk)
λ

cos(β1), . . . , ej2π
(xi−xk)

λ
cos(βQ)]T}, (24)

which becomes the identity matrix when i = k.

By vectorizing the matrix Rxik , we obtain the following measurement vector:

zik = vec(Rxik) =

Āikbik, i 6= k,

Āikbik + σ2
ni, i = k,

(25)

with

Āik = [āik(α1), . . . , āik(αQ)], (26)

bik = [σ2
1e
j2π

(xi−xk)
λ

cos(β1), . . . , σ2
Qe

j2π
(xi−xk)

λ
cos(βQ)]T , (27)

where āik(αq) = ai(αq) ⊗ a∗
k(αq) for 1 ≤ q ≤ Q, and i = vec(IN i

t
). Benefiting from the

Vandermonde structure of vectors ai(αq) and ak(αq), the entries in āik(αq) remain the forms
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of ejπ(Mn−Nm) cos(αq). Therefore, zik can be regarded as a data vector received from a single-

snapshot signal vector bik, and the manifold Āik corresponds to a virtual array whose virtual

elements are located at the self- and cross-lags between different sets of subarrays. Due to the

coprime property of M and N , there are less redundant elements in these virtual arrays. As a

consequence, the number of DOFs in the resulting coarray, which is determined by the cardinality

of the unique sum of self-lags and cross-lags, can be substantially increased, thereby enabling

DOA estimation of more signals than the number of sensors, i.e., Nt.

B. Sparsity-based DOA Estimation

The signal vector in (25), zik, 1 ≤ i, k ≤ 3, can be sparsely represented over the entire

discretized angular grids as

zik =

Ā◦
ikb

◦
ik, i 6= k,

Ā◦
ikb

◦
ik + σ2

ni, i = k,
(28)

where Ā◦
ik is defined as the collection of steering vectors āik(αg) over all possible grids αg,

g = 1, . . . , Gα, with Gα � Q, and b◦
ik is the sparse vector whose non-zero entry positions

correspond to the DOAs of the estimates of αq, q = 1, . . . , Q. For different subarray pairs, the

non-zero entries generally have distinct values but share the same positions in the searching.

That is, boik exhibits a group sparsity across all subarray pairs. Thus, the estimation of αq,

q = 1, . . . , Q, can be solved in the group sparse reconstruction framework [48], and all DOFs

in self- and cross-lag can be fully used. A number of effective algorithms within the convex

optimization [49], [50] and Bayesian sparse learning [51] frameworks are available to solve

the complex-valued group sparse reconstruction problem. In this paper, the complex multitask

Bayesian compressive sensing (CMT-BCS) algorithm proposed in [52] and summarized below

is used due to its superior performance and robustness to dictionary coherence.

In order to exploit both self- and cross-lags, we reformulate the vectors zik as:

zik = Φ◦
ikb̄

◦
ik + εik, 1 ≤ i, k ≤ 3, (29)

where each vector zik employs its respective dictionary matrix,

Φ◦
ik =


[
Ā◦
ik, i
]
, i = k,[

Ā◦
ik,0N i

tN
k
t ×1

]
, i 6= k.

(30)
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Note that the dimension of the unknown sparse vector is expanded to b̄◦
ik by an additional

element of the noise power σ2
n. In this case, the first Gα elements of the obtained estimates of

b̄◦
ik are used to determine the αq, whereas the last element is discarded. Furthermore, an error

vector εik is included in (29) to account for the discrepancies between the statistical expectation

and the sample average in computing the covariance matrices. The discrepancies are modelled

as i.i.d. complex Gaussian as a result of a sufficiently large number of samples employed in the

averaging.

Assume that the entries in b̄◦
ik are drawn from the product of the following zero-mean Gaussian

distributions:

b̄◦g
ik ∼ N (b̄◦g

ik |0, γgI2), g ∈ [1, . . . , Gα], (31)

where b̄◦g
ik = [b̃◦

gR

ik b̃◦
gI

ik ]T is a 2 × 1 vector consisting of the real part coefficient b̃◦
gR

ik and the

imagery part coefficient b̃◦
gI

ik , corresponding to the gth grid. It is easy to confirm that the b̄◦g
ik trends

to be zero when γg is set to zero [53]–[55]. To encourage the sparsity of b̄◦
ik, a Gamma prior

is placed on γ−1
g ∼ Gamma(γ−1

g |a, b), where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b
x , with

Γ(·) denoting the Gamma function, and a and b are hyper-parameters. Vector γ = [γ1, . . . , γG]T

contains the variances of entries b̄◦g
ik for all g = 1, . . . , Gα and is shared by all groups to enforce

the group sparsity. Likewise, a Gaussian prior N (0, ξ0I2) is also placed on εik and the Gamma

prior is placed on ξ−1
0 with hyper-parameters c and d.

Define two Gα × 1 vectors b̄◦R
ik = [b◦1Rik , . . . , b◦GRik ]T and b̄◦I

ik = [b◦1Iik , . . . , b
◦GI
ik ]T , the joint

posterior density function of b̄◦RI
ik =

[
(b̄◦R

ik )T , (b̄◦I
ik )T

]T can be evaluated as

Pr(b̄◦RI
ik |z̄ik,Φ

◦
ik,γ, ξ0) = N (b̄◦RI

ik |µik,Σik), (32)

where

z̄RIik =
[
Re(zik)

T , Im(zik)
T
]T

(33)

µik = ξ−1
0 ΣikΨ

T
ikz̄

RI
ik , (34)

Σik =
[
ξ−1
0 ΨT

ikΨik + F−1
]−1

, (35)

Ψ =

Re(Φ◦
ik) −Im(Φ◦

ik)

Im(Φ◦
ik) Re(Φ◦

ik)

 , (36)

F = diag(γ1, . . . , γG, γ1, . . . , γGα). (37)
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It is clear that the mean and variance of each scattering coefficients in b̄◦RI
ik can be derived

using (34) and (35) when γ and ξ0 are given. On the other hand, the values of γ and ξ0 are

determined by maximizing the logarithm of the marginal likelihood, which can be implemented

via the expectation maximization (EM) algorithm to yield

γ(new)
g =

1

9

3∑
i,k=1

(µ2
ik,g + µ2

ik,g+Gα + Σik,gg + Σik,(g+Gα)(g+Gα)), (38)

ξ
(new)
0 =

1

18Gα

3∑
i,k=1

(
Tr[ΣikΨ

T
ikΨik] + ||z̃RIik −Ψikµik||22

)
, (39)

where µik,g and µik,g+Gα are the gth and (g + Gα)th elements in vector µik, and Σik,gg and

Σik,(g+Gα)(g+Gα) are the (g, g) and (g + Gα, g + Gα) entries in matrix Σik. Because γ and ξ0

depend on µik and Σik, the CMT-BCS algorithm is iterative and iterates between (34)–(35)

and (38)–(39) until a convergence criterion is reached. The estimates α̂q, q = 1, ..., Q, can be

obtained corresponding to the Q largest values in
∑3

i,k=1(b
◦gR
ik + b

◦gI
ik ), g = 1, . . . , G. Then, the

Q× 1 vector in (25), i.e., bik, i 6= k, can be estimated by least squares (LS) fitting, expressed as

b̂ik =

(
ˆ̄A
H

ik
ˆ̄Aik

)−1
ˆ̄A
H

ikzik, i 6= k, (40)

where

Āik = [āik(α̂1), . . . , āik(α̂Q)]. (41)

As such, βq, q = 1, . . . , Q are estimated by

β̂q = cos−1
(
−phase(b̂q)/π

)
, (42)

where b̂q is the qth element of vector b̂ik, and β̂q is thus automatically paired with the corre-

sponding α̂q. In the end, the elevation and azimuth angles, θ̂q and φ̂q, can be obtained with (21)

and (22).

Note that the proposed difference coarray based approach enables to resolve more sources

than the number of sensors. While it also works for the case of Q < Nt, the corresponding

estimation accuracy is interior to the counterpart described in previous section because of the

errors in the estimated covariance matrix, particularly when the number of data snapshots is not

sufficiently high [56].
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V. NUMBER OF DOFS AND COMPUTATIONAL COMPLEXITY

A. Analysis of DOFs

In the proposed approach, the resulting coarray is equivalent to the conventional coprime array

in the 1-D case. That is, the achievable number of estimated signals Qav = MN . For a given

number of physical antennas Nt = 2M +N − 1, Qav can be optimized by:

Maximize Qav = MN

subject to Nt = 2M +N − 1, (43)

M < N, M,N ∈ N+.

It is evident that the valid optimal coprime pair is the one that has 2M and N as close as

possible. This is satisfied by choosing M = b(Nt − 1)/4c. In this case, the maximum number

of estimated signals Qav is given by

Qmax =

⌊
Nt(Nt + 2)

8

⌋
. (44)

In Fig. 3, we compare the value of Qmax in the proposed approach with those obtained using the

methods described in [10], [12], [13], [46], which are referred to as Li et al., Chen et al., Zhang

et al., and Li and Jiang et al., respectively, in the plots. While Qmax increases with Nt in all

methods, it is clear that the coprime structure-based approaches (the proposed method and that

proposed by Li and Jiang et al.) significantly outperform other approaches. In particular, when

Nt > 6, the coprime structure-based approaches resolve more sources than the number of array

sensors, whereas for other methods, the number of resolvable sources is less than the number

of sensors.

B. Analysis of computational complexity

Here, we compare their computational complexity using the same number of array elements

Nt. When the number of sources Q is smaller than the number of sensors, i.e., Q < Nt, the

complexity of the proposed approach mainly includes four parts: computation of the covariance

matrix, eigenvalue decomposition, estimation of azimuth angles using RARE, and estimation of

elevation angles using 1-D MUSIC-like search. Thus, the resulting total computational load is

O(N2
t T + N3

t + GαNt + GβN
2
t ) ≈ O(N2

t T ), which is far less than that of the 2-D MUSIC

counterpart, given as O(N2
t T + N3

t + GαGβN
2
t ) ≈ O(GαGβN

2
t ), under typical circumstances
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Fig. 3. Qmax versus Nt.

such that GαGβ � T � Nt > Q, where T , Gα and Gβ are the number of snapshots, the

number of search grids in azimuth and elevation angles, respectively. As a comparison, the

methods proposed in [10], [12], [13] require a similar O(N2
t T ) complexity when T � Nt > Q.

However, the available number of DOFs in these papers are lower than that of the proposed

coprime structure-based approaches. While both [46] and the proposed approach can resolve

the case of Q > Nt through the coarray with a complexity of O(G2
αN

2
t ) in the context of

sparse reconstruction, the proposed approach outperforms the method proposed by Li and Jiang

et al. in [46] due to the benefits of the array design with a larger aperture as well as the group

sparsity-based algorithm.

VI. SIMULATION RESULTS

For illustration, we consider 2-D DOA estimation based on the proposed approach. We set

M = 3 and N = 8, leading to an array configuration of Nt = 2M + N − 1 = 13 antennas.

In addition, L = 20 is assumed. Q far-field sources with identical power are assumed to be on

elevation-azimuth plane (θq, φq), where θq ∈ [0◦, 90◦] and φq ∈ [−90◦, 90◦], for q = 1, · · · , Q.

The grid interval in the angular space is set to 0.2◦, and the hyper-parameters in group Bayesian

sparse learning is set to a = b = c = d = 0.
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Fig. 4. RMSE versus SNR (Q = 2). (a) RMSEθ; (b) RMSEφ.

In Figs. 4 and 5, we first examine the estimation accuracy and compare it with Li et al. [10],

Chen et al. [12], Zhang et al. [13], and Li and Jiang et al. [46]. The average root mean square
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Fig. 5. RMSE versus T (Q = 2). (a) RMSEθ; (b) RMSEφ.

error (RMSE) of the estimated azimuth and elevation angles, respectively expressed as

RMSEθ =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(θ̂q(i)− θq)2,

RMSEφ =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(φ̂q(i)− φq)2, (45)
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are used as the performance metric, where θ̂q(i) and φ̂q(i) are the estimates of θq and φq for the

ith Monte Carlo trial, i = 1, . . . , I .

In the first set of simulation, we consider the case Q < Nt. To enable a feasible comparison,

Q = 2 < Nt = 13 sources impinging from (40◦, 32◦) and (19◦,−26◦) are considered so that all

methods have sufficient DOFs for correct identification. We use I = 500 independent trials in the

simulations. Fig. 4 compares the RMSE performance as a function of input signal-to-noise ratio

(SNR), where T = 500 snapshots are used. Fig. 5 compares the performance with respect to the

number of snapshots, with input SNR set to 0 dB. In both figures, it is evident that the proposed

approach outperforms the other methods. The estimation accuracy of the coarray based method

(i.e., by Li and Jiang et al.) is inferior to other subspace-based approaches due to discrepancies

between the statistical expectation and the sample average in the computed covariance matrices

Ri,k when extracting the virtual array. Also, the estimates of both θ and φ are improved with

the increased SNR and the number of snapshots.

In the second set of simulation, we consider a scenario with Q = 16 sources as an example

for the Q > Nt case, and the results are depicted in Fig. 6. In this case, the number of sources

is higher than Nt as well as the available DOFs offered by the methods in [10], [12], [13].

Therefore, the performance of these methods are not depicted. Only the proposed difference

coarray based approach successfully resolve all sources, as shown in Fig. 6. In this simulation,

the input SNR remains 0 dB, whereas the number of snapshots is increased to 5,000 to further

demonstrate the capability of the proposed method in dealing with a high number of sources.

Compared to the method by Li and Jiang et al., the proposed array configuration increases the

aperture in the elevation domain to achieve an improved elevation angle resolution. Moreover,

the group sparsity makes fully utilization of data across all vectorized covariance matrices. The

proposed technique thus outperforms that of Li and Jiang et al., as presented in Fig. 6.

VII. CONCLUSIONS

In this paper, a novel coprime array configuration with parallel subarrays was proposed for

2-D DOA estimation. Two effective schemes were introduced, each is applicable to a different

scenario involving the number of sources in relation to the number of sensors. In both cases, the

2-D DOA estimation was decomposed into two separate 1-D problems where the estimates of the

elevation and azimuth angles were paired automatically avoiding any problem with associations.

The proposed method resolves 2-D signals DOAs and the number of detectable sources is the
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Fig. 6. 2-D DOA estimation results (Q = 16). (a) The proposed approach; (b) The method by Li and Jiang et al.

same as conventional coprime arrays which only resolve 1-D signal DOAs. The effectiveness of

the proposed method was demonstrated by simulations that showed the capability of resolving

a large number of sources with high angle estimation accuracy.



20

REFERENCES

[1] H. L. Van Trees, Detection, estimation, and modulation theory, optimum array processing, John Wiley & Sons, 2004.

[2] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3,

pp. 276–280, 1986.

[3] R. Roy and T. Kailath, “ESPRIT – Estimation of signal parameters via rotation invariance techniques,” IEEE Trans. Acoust.

Speech Signal Process., vol. 37, no. 7, pp. 984–995, 1989.

[4] S. Marcos, A. Marsal, and M. Benidir, “The propagator method for source bearing estimation,” Signal Process., vol. 42,

no. 2, pp. 121–138, 1995.

[5] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, “Deep learning for super-resolution channel estimation and DOA

estimation based massive MIMO system,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8549–8560, 2018.

[6] J. W. Odendaal, E. Barnard, and C. W. I. Pistorius, “Two-dimensional superresolution radar imaging using the MUSIC

algorithm,” IEEE Trans. Antennas Propag., vol. 42, no. 10, pp. 1386–1391, 1994.

[7] J. Li and R. T. Compton, “Two-dimensional angle and polarization estimation using the ESPRIT algorithm,” IEEE Trans.

Antennas Propag., vol. 40, no. 5, pp. 550–555, 1992.

[8] P. Li, B. Yu, and J. Sun, “A new method for two-dimensional array signal processing in unknown noise enviroments,”

Signal Process., vol. 47, no. 3, pp. 319–327, 1995.

[9] Y. Wu, G. Liao, and H. C. So, “A fast algorithm for 2-D direction-of-arrival estimation,” Signal Process., vol. 83, no. 8,

pp. 1827–1831, 2003.

[10] J. Li, X. Zhang, and H. Chen, “Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays

using propagator method,” Signal Process., vol. 92, no. 12, pp. 3032–3038, 2012.

[11] N. Tayem and H. M. Kwon, “Azimuth and elevation angle estimation with no failure and no eigen decomposition,” Signal

Process., vol. 86, no. 1, pp. 8–16, 2006.

[12] H. Chen, C. Hou, Q. Wang, L. Huang, W. Yan, and L. Pu, “Improved azimuth/elevation angle estimation algorithm for

three-parallel uniform linear arrays,” IEEE Antennas Wirel. Propag. Lett., vol. 14, no. 1, pp. 329–332, 2014.

[13] Y. Zhang, X. Xu, Y. A. Sheikh, and Z. Ye, “A rank-reduction based 2-D DOA estimation algorithm for three parallel

uniform linear arrays,” Signal Process., vol. 120, no. 1, pp. 305–310, 2016.

[14] M. Pesavento, A. B. Gershman, and K. M. Wong, “Direction finding in partly calibrated sensor arrays composed of multiple

subarrays,” IEEE Trans. Signal Process., vol. 50, no. 9, pp. 2103–2115, 2002.

[15] S. Pillai, Array Signal Processing, Springer, 1989.

[16] R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in aperture synthesis for coherent and incoherent

imaging,” Proc. IEEE, vol. 78, no. 4, pp. 735–752, 1990.

[17] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Trans. Signal Process., vol. 59,

no. 2, pp. 573–586, 2011.

[18] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” in Proc. IEEE Digital Signal Process.

Workshop and IEEE Signal Process. Educ. Workshop (DSP/SPE), Sedona, AZ, 2011, pp. 289–294.

[19] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,”

IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4167–4181, 2010.

[20] Q. Wu and Q. Liang, “Coprime sampling for nonstationary signal in radar signal processing,” EURASIP J. Wireless

Commun. Netw., doi:10.1186/1687–1499–2013–58, 2013.



21

[21] J. Chen, Q. Liang, B. Zhang and X. Wu, “Spectrum efficiency of nested sparse sampling and coprime sampling,” EURASIP

J. Wireless Commun. Netw., doi:10.1186/1687–1499–2013–47, 2013.

[22] Z. Tan and A. Nehorai, “Sparse direction-of-arrival estimation using co-prime arrays with off-grid targets,” IEEE Signal

Process. Lett., vol. 21, no. 1, pp. 26–29, 2014.

[23] K. Adhikari, J. R. Buck and K. E. Wage, “Extending coprime sensor arrays to achieve the peak side lobe height of a full

uniform linear array,” EURASIP J. Wireless Commun. Netw., doi:10.1186/1687–6180–2014–148, 2014.

[24] Z. Tan, Y. C. Eldar, and A. Nehorai, “Direction of arrival estimation using co-prime arrays: A super resolution viewpoint,”

IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5565–5576, 2014.

[25] S. Qin, Y. D. Zhang, Q. Wu, and M. G. Amin, “Structure-aware Bayesian compressive sensing for near-field source

localization based on sensor-angle distributions,” Int. J. Antennas Propag., vol. 2015, article ID 783467, 2015.

[26] E. Boudaher, Y. Jia, F. Ahmad, and M. G. Amin, “Multi-frequency co-prime arrays for high-resolution direction-of-arrival

estimation,” IEEE Trans. Signal Process., vol. 63, no. 14, pp. 3797–3808, 2015.

[27] C.-L. Liu and P. P. Vaidyanathan, “Remarks on the spatial smoothing step in coarray MUSIC,” IEEE Signal Process. Lett.,

vol. 22, no. 9, pp. 1438–1442, 2015.

[28] C.-L. Liu and P. P. Vaidyanathan, “Super nested arrays: Linear sparse arrays with reduced mutual coupling - Part I:

Fundamentals,” IEEE Trans. Signal Process., vol. 64, no. 15, pp. 3997–4012, 2016.

[29] C.-L. Liu and P. P. Vaidyanathan, “Super nested arrays: Linear sparse arrays with reduced mutual coupling - Part II:

High-order extensions,” IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4203–4217, 2016.

[30] S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA estimation exploiting a uniform linear array with multiple co-prime

frequencies,” Signal Process., vol. 130, pp. 37–46, 2017.

[31] S. Qin, Y. D. Zhang, M. G. Amin, and A. M. Zoubir, “Generalized coprime sampling of Toeplitz matrices for spectrum

estimation,” IEEE Trans. Signal Process., vol. 65, no. 1, pp. 81–94, 2017.

[32] S. Qin, Y. D. Zhang, M. G. Amin, and F. Gini, “Frequency diverse coprime arrays with coprime frequency offsets for

multi-target localization,” IEEE J. Sel. Top. Signal Process., vol. 11, no. 2, pp. 321–335, 2017.

[33] S. Qin, Y. D. Zhang, and M. G. Amin, “DOA estimation of mixed coherent and uncorrelated targets exploiting coprime

MIMO radar,” Digital Signal Process., vol. 61, pp. 26–34, 2017.

[34] C.-L. Liu and P. P. Vaidyanathan, “Correlation subspaces: Generalizations and connection to difference coarrays,” IEEE

Trans. Signal Process., vol. 65, no. 19, pp. 5006–5020, 2017.

[35] R. Bautista and J. R. Buck, “Statistical characterization of coprime sensor arrays: Array gain vs. spatially correlated noise,”

J. Acoust. Soc. Am., vol. 141, no. 5, pp. 3843–3843, 2017.

[36] H. Huang, B. Liao, X. Wang, X. Guo, and J. Huang, “A new nested array configuration with increased degrees of freedom,”

IEEE Access, vol. 6, pp. 1490–1497, 2018.

[37] H. Huang, B. Liao, and Q. Shen, “DOA estimation of quasi-stationary signals with a nested array in unknown noise field,”

in Proc. IEEE SAM, Sheffield, UK, 2018, pp. 41–45.

[38] I. M. Rooney, Y. Liu, and J. R. Buck, “Spatial power spectral density estimation using a multitapered coprime sensor array

minimum processor,” J. Acoust. Soc. Am., vol. 143, no. 6, pp. 3959–3971, 2018.

[39] Y. Liu and J. R. Buck, “Gaussian source detection and spatial spectral estimation using a coprime sensor array with the

min processor,” IEEE Trans. Signal Process., vol. 66, no. 1, pp. 186–199, 2018.

[40] R. Bautista and J. R. Buck, “Processor dependent bias of spatial spectral estimates from coprime sensor arrays,” J. Acoust.

Soc. Am., vol. 143, no. 6, pp. 3972–3978, 2018.



22

[41] M. Yang, L. Sun, X. Yuan, and B. Chen, “A new nested MIMO array with increased degrees of freedom and hole-free

difference coarray,” IEEE Signal Process. Lett., vol. 25, no. 1, pp. 40–44, 2018.

[42] M. Yang, A. M. Haimovich, X. Yuan, L. Sun, and B. Chen, “A unified array geometry composed of multiple identical

subarrays with hole-free difference coarrays for underdetermined DOA estimation,” IEEE Access, vol. 6, pp. 14238–14254,

2018.

[43] R. Bautista and J. R. Buck, “Detection Gaussian signals using coprime sensor arrays in spatially correlated Gaussian

noise,” IEEE Trans. Signal Process., vol. 67, no. 5, pp. 1296–1306, 2019.

[44] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime array configurations for direction-of-arrival estimation,” IEEE

Trans. Signal Process., vol. 63, no. 6, pp. 1377–1390, 2015.

[45] S. Qin, Y. D. Zhang, and M. G. Amin, “Two-dimensional DOA estimation using parallel coprime subarrays,” in Proc.

IEEE Sens. Array Multichannel Signal Process. Workshop (SAM), Rio de Janeiro, Brazil, 2016.

[46] J. Li, D. Jiang, and X. Zhang, “Sparse representation based two-dimensional direction of arrival estimation using co-prime

array,” Multidimension. Syst. Signal Process., doi:10.1007/s11045–016–0453–9, 2016.

[47] F. Sun, P. Lan, B. Gao, and G. Zhang, “An efficient dictionary learning-based 2-D DOA estimation without pair matching

for co-prime parallel arrays,” IEEE Access, vol. 6, pp. 8510–8518, 2018.

[48] J. Huang and T. Zhang, “The benefit of group sparsity,” Ann. Statist., vol. 38, no. 4, pp. 1978–2004, 2010.

[49] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[50] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” J. R. Stat. Soc., Ser. B, vol.

68, no. 1, pp. 49–67, 2006.

[51] S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 92–106,

2009.

[52] Q. Wu, Y. D. Zhang, and M. G. Amin, “Complex multitask Bayesian compressive sensing,” in Proc. IEEE Int. Conf.

Acoust. Speech Signal Process. (ICASSP), Florence, Italy, May 2014, pp. 3375–3379.

[53] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J. Mach. Learn. Res., vol. 1, no. 9, pp.

211–244, 2001.

[54] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346–2356,

2008.

[55] D. J. C. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4, no. 3, pp. 415–447, 1992.

[56] C.-L. Liu and P. P. Vaidyanathan, “Cramér-Rao bounds for coprimeand other sparse arrays, which find more sources than

sensors,” Digital Signal Process., vol. 61, pp. 43–61, 2017.


