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Abstract

A wideband off-grid model is proposed to represent dictionary mismatch un-

der the compressive sensing framework exploiting difference co-arrays. A group

sparsity based off-grid method is proposed for underdetermined wideband di-

rection of arrival (DOA) estimation which provides improved performance over

the existing group sparsity based method with a same search grid. A two-step

approach is then proposed which achieves an even better performance with sig-

nificantly reduced computational complexity.

Keywords: Off-Grid, difference co-array, group sparsity, DOA estimation,

compressive sensing.

1. Introduction

Sparse array geometries exploiting nonuniform sensor positions can provide

a large number of virtual sensors in the difference co-array context, enabling

direction of arrival (DOA) estimation of far more sources than the number of
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physical sensors. Two important array geometries, i.e., nested array [1, 2] and

co-prime array [3, 4, 17], have been proposed for systematic sparse array de-

sign. Several approaches, including subspace-based methods employing spatial

smoothing [1, 2, 3, 4, 5, 6] and a reshaping process to form a Toeplitz matrix [7]

were proposed to exploit the increased number of degrees of freedom (DOFs)

offered by co-arrays. In [8], a hybrid approach is presented to use a low-rank

matrix denoising algorithm followed by a MUSIC-like subspace based method

for DOA estimation. Note that all these subspace-based methods only utilize

the consecutive difference co-array lags corresponding to a virtual uniform linear

array (ULA) for DOA estimation.

On the other hand, by using compressive sensing (CS) [9, 10] based signal

reconstruction methods for underdetermined DOA estimation, a higher number

of DOFs is achieved by effectively using all consecutive and non-consecutive lags

of the resulting difference co-arrays [11, 12, 13, 14, 15, 16, 17]. A performance

analysis of the CS-based methods is provided in [18].

One of the major issues involved with the CS-based approach is the off-grid

problem. That is, the true signal DOAs may not necessarily fall on the exact

discrete grid which is defined over a finite number of spatial angles. Off-grid

sources cause so-called dictionary mismatch problem which violates the sparsity

conditions and compromises the performance as well as the identifiability of the

CS-based methods [19, 20, 21, 22, 23]. One solution to this problem is to use

a denser search grid with an increased number of angles, thus leading to higher

computational complexity. An iterative procedure reduces complexity by adap-

tively refining the grid only around the regions where the sources are located

[24]. A sparse Bayesian learning solution to such iterative algorithm is proposed

in [25]. The complexity of these iterative methods, however, still remains high.

In [26], the off-grid DOA estimation problem is considered as a nonconvex pos-

itive perturbed basis pursuit denoising problem, which is then solved using a

simpler alternating algorithm based on a convex optimization approach. In ad-

dition, a joint sparse recovery method is developed for underdetermined off-grid

DOA estimation of narrowband signals [27, 28].
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For wideband signals, by enforcing the same spatial support across the en-

tire frequency band of interest, group sparsity (GS) based method has proven

effective for DOA estimation [29]. However, except for using a denser grid, the

off-grid problem for wideband DOA estimations has not yet been considered. In

this paper, for the first time, the wideband dictionary mismatch problem is dealt

with by employing the difference co-array equivalence concept. We first extend

the narrowband off-grid model to the wideband case, and derive a GS-based

off-grid (GS-OG) DOA estimation approach for joint recovery of the sparse sig-

nal power entries and the associated off-grid calibration terms. The wideband

extension of the narrow off-grid algorithm is not a simple average of the results

obtained from different frequencies and a new formulation based on the group

sparsity concept has to be introduced to effectively exploit the information car-

ried across the frequency band of a wideband signal. In addition, although

such an extension is effective in theory, it has two additional challenges: 1) the

number of parameters to be estimated is very large (including both the on-grid

angles and the associated offsets), which renders the estimation problem diffi-

cult to solve and leads to inaccurate DOA estimation result; 2) the method’s

complexity is significantly high.

To tackle these two additional challenges, a two-step off-grid (TS-OG) ap-

proach is proposed for complexity reduction, where the signal powers and the

off-grid terms are estimated separately. In the first step, the GS-based DOA

estimation is utilized to yield a coarser grid estimation, whereas in the second

step, off-grid optimization is performed to estimate the off-grid bias vector which

is constrained to be identical across all frequency bins. Both off-grid wideband

methods outperform the GS-based one, and the two-step approach offers a sig-

nificant complexity reduction while achieving a better performance compared

with the GS-OG method.

This paper is organized as follows. A wideband signal model based on the

difference co-array concept is presented in Sec. 2. A wideband off-grid model

and two off-grid estimation methods are proposed in Sec. 3. Simulation results

are provided in Sec. 4, and conclusions are drawn in Sec. 5.
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2. Wideband Signal Model Exploiting the Difference Co-Array

Consider an N -sensor linear array and denote αnd as the n-th sensor posi-

tion and d as the unit inter-element spacing. The set of sensor positions S is

expressed as

S = {αnd, 0 ≤ n ≤ N − 1} . (1)

As presented in [1, 3], the nested array and co-prime array are designed to

optimize the virtual sensor positions corresponding to the difference co-array

concept, defined as

C = {(αn1 − αn2)d, 0 ≤ n1, n2 ≤ N − 1} . (2)

Assume that there are K mutually uncorrelated far-field wideband signals

impinging from incident angles θk, k = 1, . . . ,K. Then, the signal observed at

the n-th sensor can be expressed as

xn(t) =
K∑

k=1

sk [t− τn(θk)] + nn(t) , (3)

where 0 ≤ n ≤ N − 1, sk(t) is the k-th impinging signal, and nn(t) represents

the white noise at the corresponding sensor. Take the zeroth sensor as the

reference, τn(θk) denotes the time delay of the k-th impinging signal with the

incident angle θk arriving at the n-th sensor of the linear array.

After sampling with a frequency fs, the discrete version of the observed

signal vector in the time domain can be expressed as

x[i] =
[
x0[i], x1[i], . . . , xN−1[i]

]T
, (4)

where i represents the discrete-time variable, xn[i] is the signal observed at the

n-th sensor, and {·}T denotes the transpose operation.

Then, an L-point discrete Fourier transform (DFT) is applied, where each

received sensor signal is divided into P non-overlapping groups with length L

for DFT application, and p = 1, . . . , P is the group index. We can obtain the

4



observed signal vector X[l, p] at the p-th DFT group and the l-th frequency bin,

given by

X[l, p] =
[
X0[l, p], X1[l, p], . . . , XN−1[l, p]

]T
, (5)

where l = 0, 1, . . . , L− 1 and

Xn[l, p] =
L−1∑
i=0

xn[L · (p− 1) + i] · e−j 2π
L il . (6)

Denote S[l, p] and N[l, p] as the impinging source signal vector and the noise

vector at the p-th DFT group and the l-th frequency bin, respectively. Then,

the array output model in the frequency domain is given by

X[l, p] = A(l,θ)S[l, p] +N[l, p] , (7)

where A(l,θ) is the steering matrix whose column vector a(l, θk) represents the

steering vector at frequency fl for the l-th frequency bin and angle θk

a(l, θk) = [e
−j

2πα0d
λl

sin(θk), . . . , e
−j

2παN−1d

λl
sin(θk)]T , (8)

where λl = c/fl, and c is the signal propagation speed.

To exploit the increased DOFs provided by the virtual array based on the

difference co-array, we first calculate the correlation matrix Rxx[l] as follows,

Rxx[l] = E
{
X[l, p] ·XH [l, p]

}
=

K∑
k=1

σ2
k[l]a(l, θk)a

H(l, θk) + σ2
n̄[l]IN

≈ 1

P

P−1∑
p=0

X[l, p] ·XH [l, p] ,

(9)

where E{·} is the expectation operator and {·}H the Hermitian transpose op-

erator. σ2
k[l] is the power of the k-th impinging signal at the l-th frequency bin,

while σ2
n̄[l] is the corresponding noise power. IN is the N ×N identity matrix.

As shown in (9), P samples at the l-th frequency bin are used to estimate the

correlation matrix.
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By vectorizing Rxx[l], we obtain the following virtual array model

z[l] = vec {Rxx[l]} = B[l]u[l] + σ2
n̄[l]̃IN2 , (10)

where B[l] is the equivalent steering matrix of the difference co-array described

by C, with its k-th column vector b(l, θk) = a∗(l, θk) ⊗ a(l, θk) representing

the corresponding steering vector (⊗ denotes the Kronecker product). u[l] =[
σ2
1 [l], . . . , σ

2
K [l]

]T
is the equivalent source signal vector holding all signal powers

and ĨN2 is an N2 × 1 column vector obtained by vectorizing IN .

3. Group Sparsity Based Underdetermined Wideband DOA Estima-

tion for Off-Grid Sources

3.1. Off-grid virtual model generation for a single frequency

Under the CS framework, we first generate a predefined search grid of Kg

uniformly distributed potential incident angles θg,0, . . . , θg,Kg−1, with {·}g rep-

resenting entries, vectors or matrices related to the predefined grid. Then,

we construct an overcomplete representation of the equivalent steering matrix

Bg[l] =
[
b(l, θg,0), . . . ,b(l, θg,Kg−1)

]
, and the corresponding unknown Kg × 1

vector ug[l] for possible source powers at directions θkg , 0 ≤ kg ≤ Kg − 1, with

its kg-th entry denoted by ug,kg [l]. Under the perfect condition that the ac-

tual incident angles fall exactly on this predefined search grid, the virtual array

model (10) can be transformed into

z[l] = Bg[l]ug[l] + σ2
n̄[l]̃IN2 , (11)

where for 1 ≤ k ≤ K, we have

ug,kg [l] =

σ2
k[l], θg,kg = θk ,

0, others .
(12)

However, it is difficult to accurately represent the actual virtual structure model

with a finite number of incident angles. Clearly, a more effective model approx-

imation can be obtained by predefining a denser search grid with a much larger

number of angles, but with a significantly increased computational complexity.
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An off-grid model was investigated recently to overcome the dictionary mis-

match problem [26, 27, 28]. For a single frequency, the equivalent steering vector

at the actual incident angle θk can be approximated by applying the Taylor ex-

pansion to its nearest angle θg,mk
in the finite grid by

b(l, θk) ≈
∞∑

µ=0

∂(µ)b(l, θg,mk
)

µ! · ∂θ(µ)g,mk

(θk − θg,mk
)µ , (13)

where − r
2 ≤ θk − θg,mk

≤ r
2 with r = θg,kg+1 − θg,kg as the step size of the

predefined grid, µ! denotes the factorial of µ, and ∂(µ)f(θ)
∂θ(µ) is the µ-th derivative

of f(θ).

Using the first-order Taylor expansion, the off-grid model over the predefined

search grid can be expressed as

z[l] ≈
(
Bg[l] +B(1)

g [l]∆g[l]
)
ug[l] + σ2

n̄[l]̃IN2 , (14)

where B
(1)
g [l] =

[∂b(l,θg,0)
∂θg,0

, . . . ,
∂b(l,θg,Kg−1)

∂θg,Kg−1

]
, and the diagonal matrix is gener-

ated by ∆g[l] = diag{αg[l]} with the kg-th entry in the column bias vector αg[l]

defined as

αkg [l] =

θk − θg,kg , kg = mk ,

0, others ,

where 0 ≤ kg ≤ Kg − 1.

3.2. Group sparsity based off-grid wideband DOA estimation

In this section, we extend the narrowband off-grid model to the wideband

case by proposing a GS-based off-grid DOA estimation method through simul-

taneous estimation of both the grid angles and the corresponding off-grid biases.

Assume that the frequency band of interest covers Q ≤ L frequency bins

indexed by lq, q = 0, . . . , Q− 1, which may or may not occupy consecutive fre-

quency bands. Stack the virtual array vectors corresponding to the Q frequency

bins as z̃ =
{
zT [l0], . . . , z

T [lQ−1]
}T

and construct a block diagonal matrix B̃ as

B̃ = blkdiag {B[l0],B[l1], . . . ,B[lQ−1]} , (15)
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where blkdiag{·} denotes an operation to construct a block diagonal matrix

from the argument matrices.

The wideband model can then be expressed as

z̃ = B̃ũ+Wv , (16)

where ũ =
[
uT [l0], . . . ,u

T [lQ−1]
]T

, W = blkdiag
{
ĨN2 , . . . , ĨN2

}
is a QN2 ×Q

matrix, and v =
[
σ2
n̄[l0], . . . , σ

2
n̄[lQ−1]

]T
is a column vector holding all noise

powers across the frequency bins of interest.

With the same search grid for each frequency bin, the sparse wideband model

under the perfect condition of on-grid sources is given by

z̃ = B̃gũg +Wv , (17)

where B̃g = blkdiag
{
Bg[l0],Bg[l1], . . . ,Bg[lQ−1]

}
, and ũg =

[
uT
g [l0],u

T
g [l1], . . . ,u

T
g [lQ−1]

]T
.

In the case of off-grid sources, we exploit the first-order Taylor expansion

of the equivalent steering matrix B̃g. Accordingly, the off-grid wideband model

can be approximated by

z̃ ≈
(
B̃g + B̃(1)

g ∆̃g

)
ũg +Wv , (18)

where B̃
(1)
g = blkdiag

{
B

(1)
g [l0], . . . ,B

(1)
g [lQ−1]

}
, and ∆̃g = diag

{
α̃g

}
with

α̃g =
[
αT

g [l0], . . . ,α
T
g [lQ−1]

]T
.

Construct a Kg × Q matrix Ũg =
[
ug[l0], . . . ,ug[lQ−1]

]
, and use ũg,kg to

represent its kg-th row. Then, we obtain the following column vector by an

ℓ2-norm operation

ûg =
[∥∥ũg,0

∥∥
2
,
∥∥ũg,1

∥∥
2
, . . . ,

∥∥ũg,Kg−1

∥∥
2

]T
, (19)

where
∥∥ ·

∥∥
2
denotes the ℓ2 norm.

Joint recovery of ũg and ∆̃g results in a non-convex optimization problem.

To permit convexity, we define a column vector βg[l] = ∆g[l]ug[l] and a matrix

Yg =
[
ug[l0], . . . ,ug[lQ−1],β[l0], . . . ,β[lQ−1]

]
, and enforce joint sparsity on ug[l]

and βg[l]. Then, a column vector ŷ◦
g is formed by ŷ◦

g =
[∥∥yg,0

∥∥
2
, . . . ,

∥∥yg,Kg−1

∥∥
2
,
∥∥v∥∥

2

]T
,
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where yg,kg
is used to represent the kg-th row of the matrixYg. Finally, the pro-

posed GS-based off-grid (GS-OG) method is formulated as the following convex

optimization problem

min
ũg,β̃g,v

∥∥ŷ◦
g

∥∥
1

subject to
∥∥∥z̃− B̃gũg − B̃(1)

g β̃g −Wv
∥∥∥
2
≤ ε ,

− r

2
ũg ≼ β̃g ≼ r

2
ũg ,

(20)

where
∥∥ ·

∥∥
1
is the ℓ1 norm, ε is the allowable error bound, ≼ represents ≤

elementwise, and β̃g =
[
βT
g [l0], . . . ,β

T
g [lQ−1]

]T
. Note that ûg in (19) is the

initial DOA results over the search grid of Kg angles, and the associated off-

grid bias vector is obtained by α̂g = 1
Q

∑Q−1
q=0 β[lq]⊘ug[lq] with ⊘ representing

the elementwise division of two vectors. Only the entries in α̂g corresponding

to the non-zero entries in ûg are considered for DOA calibration.

Note in (20) that, as a common practice, the problem is formulated as an

ℓ1-norm minimization [24, 30] because the ℓ0-norm optimization is in general

an NP-hard (Non-Deterministic Polynomial Hard) problem which is difficult to

solve. On the other hand, the relaxed ℓ1-norm problem is a convex optimiza-

tion problem whose global optimum can be effectively determined by linear

programming.

3.3. Two-step off-grid wideband DOA estimation

Estimation of ũg and β̃g simultaneously based on the GS concept in (20) is a

time consuming process with extremely high complexity. Therefore, we propose

a two-step method with simplified solution of the above two variables, leading

to significant reductions in computational complexity.

The bias vectors αg[lq], q = 0, . . . , Q − 1, share the same value across the

entire frequency band. By enforcing αg[lq] = α̂g, ∀q = 0, . . . , Q − 1, with

α̂g representing the off-grid bias vector to be estimated, in lieu of βg[lq], a

significant complexity reduction can be achieved. Toward this purpose, α̃g can

be expressed as

α̃g =
[
α̂T

g , α̂
T
g , . . . , α̂

T
g

]T
= 1Kg ⊗ α̂g , (21)
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where 1Kg
is an all-one Kg × 1 column vector.

A two-step (TS) approach to separately estimate ũg and α̂g can then be

implemented. This approach is referred to as the TS-OG method, where two

convex optimization problems are formulated as

Step 1: min
ũg,v

∥∥û◦
g

∥∥
1

subject to
∥∥∥z̃− B̃gũg −Wv

∥∥∥
2
≤ ε ,

Step 2: min
α̂g

∥∥∥z̃− B̃gũg − B̃(1)
g (α̃g ⊙ ũg)−Wv

∥∥∥
2

subject to − r

2
1Kg

≼ α̂g ≼ r

2
1Kg

,

(22)

where û◦
g =

[
ûT
g ,

∥∥v∥∥
2

]T
, and ⊙ represents the elementwise multiplication of

two vectors. The first step is the former GS-based formulation used to recover

ũg, followed by a minimization problem with a bounded constraint to obtain

the off-grid bias vector α̂g. By estimating ũg and α̂g separately, the increase of

complexity associated with Step 2 becomes limited, while an improved perfor-

mance can be achieved, as shown in our simulations.

4. Simulation Results

We consider an example of K = 12 wideband source signals with their off-

grid incident angles uniformly distributed between −59.25◦ and 58.75◦. An

L = 64 point-DFT is applied. The frequency bins of interest cover the range

from 17 to 31 with Q = 15 bins in total, corresponding to the normalized

frequency range from 0.5π to π. Setting N1 = 3 and N2 = 4, a co-prime

array of 2N1 + N2 − 1 = 9 sensors is considered with sensor position set S =

{0d, 3d, 4d, 6d, 8d, 9d, 12d, 16d, 20d}, where d = λmin/2 with λmin = 2c/fs being

the minimum wavelength within the frequency band of interest. The number of

samples used for the correlation matrix calculation at each frequency bin is set

to be P = 1000. A search grid of Kg = 180
r +1 potential angles associated with

the step size r is generated within the full angle range from −90◦ to 90◦, and

the allowable error bound ε is chosen to give the best result through trial-and-

error in every experiment. In our simulations, a software package called CVX
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Figure 1: Results obtained by different wideband DOA estimation methods, where the dotted

lines represent the actual incident angles of the impinging signals, while the solid lines represent

the estimation results.

for specifying and solving convex programs [31, 32] is used to solve all these

optimization problems.

For the first set of simulations, we compare the DOA estimation performance

of the existing GS-based method, the proposed GS-OG method and the TS-OG

method. The input SNR is 0 dB, and a large step size of r = 3◦ is used for

clear demonstration. As shown in Fig. 1, all the 12 sources (more than the

number of physical sensors) have been distinguished successfully by the three

methods. With calibration using the bias vector α̂g, the results of the proposed

two off-grid methods provide closer DOA estimates to the true values.

To further compare the estimation accuracy of different methods, we focus

on the root mean square error (RMSE) results with respect to a varied input

SNR through Monte Carlo simulations of 500 trials. The RMSE of the estimated

DOAs is defined as

RMSE =

√√√√ 1

MK

M∑
m=1

K∑
k=1

(
θ̂k(m)− θk

)2

, (23)

where M = 500 is the number of independent simulation trials, and θ̂k(m)

represents the estimate of θk at the m-th trial.

Fig. 2(a) gives the RMSE results obtained by different wideband DOA es-
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Figure 2: RMSE results of different wideband DOA estimation methods with different step

sizes.

timation methods with a fixed step size of r = 1◦, where “GS-OG: ûg” is for

the initial estimation results ûg before calibration of the GS-OG method, while

“GS-OG” is for the final results after calibration using α̂g. Clearly, with the

same step size, the two proposed methods consistently outperform the existing

GS one. Furthermore, the initial estimation results of the GS-OG before cal-

ibration is worse than the existing GS-based method, which is not surprising

since there are more variables to estimate in the GS-OG method and therefore

it represents a more difficult problem.

However, we can also observe from Fig. 2(a) that the TS-OG method has

performed better than the GS-OG method. This may be explained as follows.

Since βg[l] = ∆g[l]ug[l], the recovery of the bias vector αg[l] in ∆g[l] relies

on the accuracy of both βg[l] and ug[l]. However, as we discussed earlier, the

recovered values of βg[l] and ug[l] may deviate from the true values due to the

ℓ1-norm approximation to the ℓ0-norm. Therefore, the calculated bias vector

as the element-wise ratio between the estimated βg[l] and ug[l] will not be as

accurate as expected.

For the third set of simulations, we compare the estimation accuracy of our

proposed TS-OG method with large step sizes of r = 1◦ and r = 0.5◦, with

that of the GS-based method with a small step size of r = 0.2◦,and the result is

shown in Fig. 2(b). As we can see, the GS-based method with r = 0.2◦ performs
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Table 1: Running Time of Different Methods with Different Step Sizes

Step Size Kg GS GS-OG TS-OG

r = 1◦ 181 9.158s 63.625s 11.419s

r = 0.5◦ 361 54.503s 227.202s 62.771s

r = 0.2◦ 901 170.622s 2503.378s 222.35s

a little better than the TS-OG method with r = 1◦, while the performance of

the TS-OG method with r = 0.5◦ is the best. Therefore, by introducing the

GS-based wideband off-grid model, a better performance can be achieved with

a larger step size, leading to a reduced complexity.

For different step sizes, the computation time required by the MATLAB

profiler under the environment of Intel CPU I5-3470 with a clock speed of 3.20

GHz and 12 GB RAM, is listed in Table 1 as an indication of their computational

complexity. The proposed GS-OG method has the longest running time. For

each method, a smaller the step size corresponds to a longer running time. It

is noted that a better performance with a shorter running time is achieved by

our proposed TS-OG method for a larger step size r = 0.5◦ compared with the

GS-based method with a smaller step size of r = 0.2◦.

5. Conclusion

To overcome the dictionary mismatch problem in CS-based DOA estima-

tion, a wideband off-grid signal model was developed, and two DOA estimation

methods were proposed to achieve accurate results with a coarse search grid.

The first one (GS-OG) is a direct extension of the narrowand case employing the

group sparsity concept, while the other one is a two-step method (TS-OG) to

reduce the computational complexity. Simulation results demonstrated that, for

the same grid, the proposed methods provided improved performance as com-

pared to the existing GS-based method. In particular, a significant reduction in

computations has been achieved by the two-step method, which also provides a

superior performance to the GS-OG method.
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