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Abstract—In this paper, we exploit the concept of identical
partitioning of an integer set to support orthogonal radar wave-
forms with non-overlapping slow-time pulses. The set of slow-time
pulses in a coherent processing interval (CPI) is partitioned into
multiple identical subsets, and each subset is used to design sparse
slow-time pulses for a single radar with low lag redundancy.
Such waveform design based on integer set partitioning not only
allows co-existence of multiple radars over a particular CPI, but
also ensures that each radar unit can enjoy an extended dwell
time, thereby maintaining a high-resolution estimation of the
target Doppler frequencies. A modified difference co-chirp-based
approach is exploited for range-Doppler estimation of targets
with a low computational complexity.

Keywords: Integer set partitioning, sparse waveform design,
difference co-chirp, consecutive lag, sparse sampling.

I. INTRODUCTION

Sparse modeling in the context of sensor arrays [1–6] and
radar waveform design [7–10] has attracted considerable inter-
ests and made significant advancements recently. This progress
is driven primarily by the benefits of sparsity-based signal
sampling and processing in enhancing the sensing capabilities
and accuracy, as well as optimizing the utilization of resources
[11–16]. The adoption of sparse sampling methods in wave-
form design is becoming increasingly popular due to the strong
demands for high-resolution sensing and the availability of
sparse reconstruction methods. There is a growing interest
in designing sparse waveforms that enable multiple radars
to make effective use of the time and spectrum resources.
For instance, random sparse step-frequency waveforms are
considered in [8, 10] to select a subset of step frequencies
in a step-frequency radar. By exploiting only a subset of
the available step frequencies, it becomes feasible to allow
multiple radars to operate simultaneously while sharing the
same spectrum band. An analogous approach proposed in [17–
19] introduces sparsity in slow time by incorporating radar
waveforms with non-uniform pulse repetition intervals (PRIs).

While such approaches have explored sparse waveform
design and its application to high-resolution target sensing,
investigation of jointly designing multiple sparse radar wave-
form sets for resource sharing across multiple radar systems
is lacking. Recently, identical partitioning of a consecutive
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integer set into two non-overlapping subsets was proposed in
[20]. Such partitioning strategies are developed based on the
nested structure in order to provide a high number of consec-
utive lags and low lag redundancy as compared to localized
counterparts. The prototype nested partitioning method was
further extended to super-nested partitioning schemes which
provide 2G identical subsets for some integer G ≥ 1. Such
partitioning strategies can be generalized to more flexible
integer set divisions [21].

In this paper, we consider the co-design of multiple slow-
time radar waveforms following the super-nested partition
scheme developed in [20]. The slow-time indices along a
CPI are treated as a consecutive integer set that is partitioned
into multiple identical subsets such that each subset of slow-
time pulses is used for target Doppler estimation in radar.
Such waveform design motivated by the partitioning concept
offers sparse radar waveform design that allows for multiple
radars to co-exist with effective utilization of sparse slow-
time pulses. Different super-nested partitioning approaches
are examined to provide effective solutions. It is noted that,
since the sparsely partitioned waveforms achieve consecutive
lags, existing methods developed for difference co-chirp-based
range-Doppler estimation for non-uniform PRI radars, such as
that reported in [19], can be exploited. Nevertheless, compared
to such existing methods which exploit the entire fast-time
data for lag computation, they are modified to provide fast
computation with enhanced performance.

Notations: We use bold lower-case (upper-case) characters
to represent vectors (matrices). Notations (·)∗, (·)T, and (·)H
denote complex conjugation, transpose, and Hermitian opera-
tions, respectively. diag(·) constructs a diagonal matrix and ∗⃝
represents the convolution operation. ⊗ and ◦ respectively de-
note the Kronecker and element-wise products, and ȷ =

√
−1

denotes the unit imaginary number. Furthermore, {0, 1}M×N

and CM×N stand for the M ×N binary and complex spaces,
respectively.

II. SYSTEM MODEL

A. Radar Signal Model

We consider pulse radar signals exploiting linear frequency-
modulated (LFM) waveforms. Denote Tpri and Tpw as the PRI
and the duration of the transmitted pulse, respectively, and
δ = Tpw/Tpri ≪ 1 is the duty cycle of the transmit radar
waveform. When the carrier frequency is fc and the signal



bandwidth is B, the transmit LFM waveform of the nth pulse
is given as

s(n, t) = Πn · e
ȷ2π

[
fc(t−nTpri)+

β(t−nTpri)
2

2

]
, (1)

where t is the fast time, β = B/Tpw is the chirp rate, and

Πn = rect

(
t− nTpri

Tpw

)
=

{
1, nTpri ≤ t ≤ nTpri + Tpw,

0, otherwise
(2)

is a rectangular pulse window. The maximum unambiguous
range of the radar is given by

Rmax =
cTpri

2
=

c

2fpri
, (3)

where fpri = 1/Tpri denotes the pulse repetition frequency
(PRF) and c is the propagation velocity of electromagnetic
waves.

Assuming P uncorrelated targets in the radar’s field of view,
the signal received at the radar is the weighted sum of s(n, t)
with delays reflecting the target range, given as

y(n, t) =

P∑
p=1

yp(n, t) =

P∑
p=1

αps(n, t− τp), (4)

where αp and τp respectively denote the reflectivity and
the round-trip time delay of the pth target. Applying pulse
compression, the beat signal is obtained by correlating the
received signal and the transmit signal s(n, t), expressed as

x′(n, t) = s∗(n, t) ∗⃝y(n, t) =

∫ Tpri

0

y(n, τ)s∗(n, t− τ) dτ.

(5)

Passing the beat signal through a low-pass filter yields
x(n, t) =

∑P
p=1 xp(n, t), where the phase term of xp(n, t)

is given as

ϕp(n, t) = 2π
[
fcτp(n, t)− βtτp(n, t) + 0.5βτ2p (n, t)

]
, (6)

τp(n, t) = 2(Rp0 + vpnTpri + vpt)/c is the round-trip delay,
and Rp0 denotes the initial range of the pth target.

Ignoring the higher-order terms of t, the beat frequency of
the pth target can be expressed as

fp
b = fp

R + fp
v =

2BRp

cTpw
+

2fcvp
c

, (7)

where fp
R = 2BRp/(cTpw) and fp

v = 2fcvp/c are, respec-
tively, the beat frequency components corresponding to the
pth target due to range and Doppler shift.

Given the maximum unambiguous range of Rmax, the
maximum beat frequency due to the target range is given as
f b
max = 2βRmax/c. In order to avoid under-sampling of the

beat signal, the sampling interval Ts of the beat signal should
be chosen such that T−1

s ≥ 2f b
max. In this case, the ith fast-

time sample in the nth pulse of the beat signal becomes (we
use the same notation x without confusion)

x(n, i) =

P∑
p=1

eȷ2π(f
p
RiTs+fp

vnTpri). (8)

When all slow-time pulses are present, the range and
Doppler information of the targets can be obtained by ap-
plying the fast Fourier transform (FFT) along the fast-time
and slow-time samples of x(n, i), n = 0, · · · , Nd − 1 and
i = 0, · · · , Nr − 1. However, in the underlying problem, we
use a sparse subset of slow-time pulses in each radar. To avoid
high sidelobes in the Doppler estimation, we use co-chirp-
based processing as discussed in Section III.

B. Sparse Waveform Design by Partitioning

In this subsection, we summarize the identical partitioning
approaches developed in [20] for a one-dimensional (1-D) and
two-dimensional (2-D) consecutive sets of integers. The nested
partitioning scheme is exploited, which is shown to provide
subsets with more consecutive lags and lower redundancy
compared to the localized partitioning scheme.

The general rule for partitioning a 1-D integer set into two
nested subsets is that any consecutive integer set consisting of
an even number of M elements can be identically partitioned
into two nested subsets such that each nested subset contains
2 inner elements and N = M/2 − 2 outer elements. An
example is shown in Fig. 1(a) for M = 12, i.e., N = 4,
where the two colors indicate two partitioned subsets. Each
subset consists of 6 nested elements with 2 inner elements
and 4 outer elements, and yields consecutive lags between −9
and 9. The two subarrays share the same weight function of
the difference lags as shown in Fig. 1(b).

The elements of the first and the second nested subsets are
respectively given as

Q1 = {1, 2, 4 : 2 : 2N + 2}, (9)

Q2 = {3 : 2 : 2N + 1, 2N + 3, 2N + 4}. (10)

We define masking vectors bg ∈ {0, 1}M×1 for these two
subsets g ∈ {1, 2} as

bg(k) =

{
1, k ∈ Qg,

0, k /∈ Qg.
(11)

The nested partitioning scheme discussed above only con-
structs g = 2 subsets. To construct g = 2G subsets for
integer G ≥ 2, the super-nested partitioning scheme is adopted
[20]. We first extend the 1-D nested partitioning scheme into
a 2-D problem in which the above-mentioned 1-D nested
partitioning is applied to each of the two dimensions of a 2-
D consecutive integer set. Similar to the 1-D case, we define
M [1] = 2N [1] + 4 and M [2] = 2N [2] + 4 as the numbers
of elements in both dimensions, where N [1] and N [2] are the
numbers of outer groups of the nested structure along the two
dimensions. The corresponding masking vectors are denoted
as b

[1]
g1 ∈ {0, 1}M [1]×1 and b

[2]
g2 ∈ {0, 1}M [2]×1, respectively,

for g1, g2 ∈ {1, 2}. Then, the masking matrix for the 2-D
partition Bg1g2 ∈ {0, 1}M [1]×M [2]

can be obtained as

Bg1g2 = b[1]
g1

(
b[2]
g2

)T

. (12)



(a) Nested partition

(b) Weight function of difference lags of the nested subsets

Fig. 1: Two-subset nested partitioning of a 12-element consec-
utive integer set and the weight function of difference lags.

Note that, in this case, G = 2 and thus 2G = 4 identical
subsets are obtained from the 2-D integer set.

To derive the super-nested partitioning appoach, the 2-D
masking matrix B is vectorized to obtain the masking vector of
the 1-D super-nested partitioning scheme, rendering four 1-D
identical subsets. Depending on the direction of vectorization,
the mask vector can take one of the following two options:

b̃[a]
g1g2 = vec(Bg1g2) = b[1]

g1 ⊗ b[2]
g2 , (13)

b̃[b]
g1g2 = vec(BT

g1g2) = b[2]
g2 ⊗ b[1]

g1 . (14)

It is clear that b̃
[a]
g1g2 and b̃

[b]
g1g2 are identical when M [1] =

M [2]. On the other hand, when M [1] ̸= M [2], these two options
render different partitioning patterns.

Fig. 2(a) shows an example of four 2-D nested partitions
for the case of M [1] = 12 and M [2] = 16. The numbers of
outer groups in the two dimensions are respectively N [1] =
4 and N [2] = 6. Figs. 2(b) and 2(c) show the two super-
nested structures that are obtained by vectorizing the first 2-D
nested partition pattern, shown in Fig. 2(a), in different ways
respectively corresponding to b̃

[a]
11 and b̃

[b]
11. It is clear that the

super-nested partition pattern depicting in Fig. 2(b) renders a
higher number of (2N [1] + 4)(2N [2] + 1) + (2N [1] + 1) =
165 consecutive lags, compared to the one shown in Fig. 2(b)
which generates (2N [1] + 1)(2N [2] + 4) + (2N [2] + 1) = 158
consecutive lags. Therefore, the former is a preferred choice
and will be adopted in the sequel.

III. RANGE-DOPPLER ESTIMATION USING SUPER-NESTED
RADAR WAVEFORM

In this section, we elaborate on the range-Doppler estima-
tion of targets using pulsed radar waveforms that are sparse
along the slow time. The indexes of slow-time pulses over a
CPI is considered as a consecutive integer set that is partitioned
to multiple identical subsets following the super-nested parti-
tioning scheme. Note that such radar waveforms with sparsity
along the slow time cannot be effectively used by performing

(a) Masking matrices of four partitions from a 2-D integer set

(b) Super-nested partition masking vector b̃[a]
11 = vec(B11)

(c) Super-nested partition masking vector b̃[b]
11 = vec(BT

11)

Fig. 2: Two possible super-nested partitions from a 2-D nested
partition when M [1] = 12 and M [2] = 16.

direct FFT for unambiguous Doppler estimation due to the
presence of high sidelobes. Since super-nested partitions yield
consecutive difference lags, difference co-chirp-based range-
Doppler estimation for non-uniform PRI radars proposed in
[19] can be exploited for such radar waveforms.

Co-chirp-based processing exploits co-chirp lags instead of
the raw slow-time data for target Doppler estimation. By
exploiting fast-time data samples for the computation of a
second-order covariance matrices, we can obtain consecutive
slow-time lags from the sparse super-nested pulses.

Denote x̃(i) = [x(0, i), · · · , x(Nd − 1, i)]T as the slow-
time data vector corresponding to the ith fast-time sample for
i = 0, · · · , Nr−1, and x̃g1g2(i) = b̃

[a]
g1g2◦x̃(i) as that observed

at the radar exploiting the g1g2th sparse super-nested slow-
time subset with g1, g2 ∈ {1, 2}. We can express x̃g1g2(i) as

x̃g1g2(i) = b̃[a]
g1g2 ◦ [AΣs(i) + n(i)] , (15)

where A =
[
a(f1

v ),a(f
2
v ), · · · ,a(fP

v )
]

is the Doppler mani-
fold with a(fp

v ) = [1, eȷ2πf
p
vTpri , · · · , eȷ2πfp

v (Nd−1)Tpri ]T, Σ =

diag([α1, · · · , αP ]), s(i) = [eȷ2πf
1
b iTs , · · · , eȷ2πfP

b iTs ]T, and
n(i) is the additive noise in the ith fast-time sample.

The co-chirp processing is similar to the one addressed in
automotive radar applications [19] where frequency-modulated
continuous-wave (FM-CW) waveforms are used to detect
targets that are relatively close to the radar. For such con-



(a) Super-nested partition when M [1] = M [2] = 16

(b) Super-nested partition when M [1] = 32, M [2] = 8

(c) Alternate super-nested partition when M [1] = 32, M [2] = 8

Fig. 3: Super-nested partitioning of a 256-element integer set
for different combinations of M [1] and M [2].

tinuous waveforms, the co-chirp lags are computed using
all fast-time samples. On the other hand, for pulse radar
waveforms considered in the underlying problem, particularly
when the duty cycle is low, we modify the computation of
the autocorrelation function such that it is computed based
only on the fast-time data for the range cells where targets are
detected in target range estimation. In so doing, we reduce
the computational complexity while reducing the effect of
noise as target-free fast-time samples are excluded. It is noted
that, unlike [19] which requires range-Doppler association
of the targets because the entire fast-time data are used for
sample covariance computation and Doppler estimation, such
association is not needed in the proposed approach because
Doppler estimation is separately performed for each range cell.

Denote Nk as the fast-time samples that are associated with
range cell k, the sample covariance matrix in the slow-time
domain corresponding only to targets located at this range cell
is estimated as

R =
1

|Nk|
∑
i∈Nk

x̃g1g2(i)x̃
H
g1g2(i), (16)

where |Nk| ≪ Nr denotes the cardinality of Nk repre-
senting the number of fast-time samples corresponding to
the kth range cell. As we discussed in Section II, such a
covariance matrix provides consecutive slow-time lags be-
tween −(2N [1] + 4)(2N [2] + 1) − (2N [1] + 1) and (2N [1] +
4)(2N [2] + 1) + (2N [1] + 1), which can be used to estimate
Doppler frequencies through an FFT for the range cell being
considered.

IV. SIMULATION RESULTS

We consider a pulsed radar with LFM waveforms with car-
rier frequency fc = 500 MHz and bandwidth B = 150 MHz.
The rendered maximum unambiguous range and velocities are
Rmax = 150 km and vmax = 150 m/s, respectively. The
PRI and the pulse width of the waveform are assumed to
be Tpri = 1 ms and Tpw = 30 µs with a duty cycle of
δ = 3%. The number of fast-time samples in a slow-time
slot is Nr = 220, and one CPI contains Nd = 256 slow-time
pulses.

Fig. 4: Range spectrum from FFT along fast time.

We analyze two configurations to partition the slow-time
slots. The first configuration assumes identical M [1] = M [2] =
16, i.e., N [1] = N [2] = 6, whereas in the second configu-
ration, they take different values of (M [1],M [2]) = (32, 8)
or (N [1], N [2]) = (14, 2). Since the 2-D partition obtained
from the first configuration is symmetric, only one super-
nested pattern can be obtained, as shown in Fig. 3(a). On the
other hand, for the second configuration, since the 2-D nested
partition is asymmetric, it is possible to obtain two super-
nested partitions, respectively depicted in Figs. 3(b) and 3(c),
with the former providing more consecutive lags. We compare
both super-nested partitions depicted in Figs. 3(a) and 3(b) to
design the sparse slow-time waveforms. The first super-nested
subset with g1 = g2 = 1 is considered.

We consider three targets in the scene. Two targets are
located at a range of 100 km with radial velocities of 100
m/s and 105 m/s, respectively, and another target is located at
range 99.6 km with radial velocity 90 m/s. The input signal-
to-noise ratio (SNR) evaluated at the beat signal is assumed
to be −30 dB for all targets.

Fig. 4 shows the range estimates of the three targets by
applying an FFT on the fast-time samples. The result show
two peaks in the range where the 99.6 km range contains one
target whereas two targets are included in range 100 km. The
range-Doppler spectrum obtained by directly applying a 2D
FFT on the sparse radar data is shown in Fig. 5(a). It produces
high sidelobes along the Doppler direction due to the sparse
slow-time pulses, making the identification challenging. On the
other hand, the Doppler spectrum obtained from applying the
FFT to the co-chirp lags corresponding to the 99.6 km and 100
km ranges produces clearly resolved estimates of the target
velocities in both range cells. Figs. 5(b) and 5(c) show the
Doppler estimates for the two super-nested patterns depicted in
Figs. 3(a) and 3(b) with similar lags, and the results obtained
from all consecutive slow-time pulses are also included for
comparison. While the case of full slow-time pulses shows a
slightly lower noise floor, these configurations result in similar
performance, thus demonstrating the efficiency of sparse radar
waveform design using the proposed partitioning methods.



(a) 2D FFT on sparse radar data (b) Doppler estimate of target at 99.6 km (c) Doppler estimate of targets at 100 km

Fig. 5: Applying FFT on interpolated Doppler covariance matrix resolves target velocities without ambiguity.

V. CONCLUSION

In this paper, we applied the concept of partitioning a con-
secutive integer set to design multiple non-overlapping subsets
of sparse slow-time pulses. Such partitioning allows for the
total available CPI to be shared by multiple radar systems to
simultaneously perform independent sensing without mutual
interference. The super-nested partitioning was employed for
sparse waveform design, and a modified difference co-chirp-
based range-Doppler estimation technique was applied to
successfully recover the Doppler information of the targets
from the slow-time data corresponding to sparse radar pulses.
Compared to the existing difference co-chirp-based approach
utilizing the entire fast-time data, the proposed approach pro-
vides a computationally more effective solution with reduced
noise effect and avoids the range-Doppler association issue.
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