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Abstract—Direction-of-arrival (DOA) estimation for moving
targets presents a significant challenge in array signal process-
ing. Traditional DOA estimation and tracking methods often
encounter limitations due to the infeasibility of acquiring large
volumes of stationary data and performing subspace-based pro-
cessing over many snapshots, and lead to high computational
costs. Recently, deep learning techniques have been effectively
applied in DOA estimation, owing to their reduced complexity
during inference. In this paper, we propose the use of Mamba net-
work as a state-space model-based approach to estimate and track
DOAs that vary snapshot-by-snapshot. The proposed network is
interpretable and hardware-efficient, making it advantageous for
training and real-time inference.

keywords: Time-varying DOA estimation, state-space
model, deep learning, Mamba.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a fundamental
technique in array signal processing, used to determine the
spatial spectrum of incoming signals. It has diverse applica-
tions, including wireless communications, radar, autonomous
vehicles, sonar, radio astronomy, and biomedical imaging [1]–
[4]. Subspace-based methods, such as MUSIC [5] and ESPRIT
[6], are commonly used for DOA estimation due to their low
complexity and high accuracy. However, these methods are
primarily suited for scenarios where targets remain stationary
over an extended time period. For dynamic targets, where
DOAs vary on a snapshot-by-snapshot basis, they are difficult
to apply or the performance degrades significantly.

Many DOA estimation methods rely on subspace or eigen-
based information derived from the eigenvalue decomposition
of the covariance matrix or the singular value decomposition
of the data matrix. This dependency has prompted the develop-
ment of subspace-based tracking algorithms tailored for mov-
ing targets. One such algorithm is the projection approximation
subspace tracking (PAST), an adaptive approach designed for
efficient subspace estimation [7]. PAST uses recursive least
squares (RLS) to approximate the signal subspace. Enhance-
ments like PAST-ESPRIT [8] and the maximum correntropy
criterion PAST-ESPRIT [9] have been introduced for increased
robustness, particularly in noisy environments. However, these
enhancements come with higher computational demands due
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to the additional steps for noise compensation and subspace
updates.

In [10], a joint DOA estimation and source signal tracking,
utilizing a combination of Kalman Filtering and a regularized
QR-decomposition-based RLS (QRD-RLS) algorithm is pro-
posed. The method models source signals as autoregressive
(AR) processes, using the Kalman filter for dynamic tracking
and QRD-RLS for estimating DOAs and AR coefficients. The
effectiveness of this method depends on accurate AR modeling
of the source signals and requires a high number of snapshots
per coherent block for reliable DOA estimation.

The method proposed in [11] leverages a nested array struc-
ture alongside an innovative offset compensation technique
based on a first-order Taylor expansion. Initially, DOAs are
estimated using the discrete Fourier transform (DFT), followed
by tracking of DOA changes through offset compensation
between consecutive snapshots using a Taylor series approx-
imation. The nested array design, combined with this com-
pensation approach, improves tracking accuracy, particularly
in dynamic environments and low SNR conditions, where
traditional methods like PAST struggle. However, the approach
requires a substantial number of snapshots per coherent in-
terval for reliable estimation, leading to higher computational
complexity compared to PAST and its variants.

Recently, machine learning and deep learning techniques
have shown great potential in array signal processing, in-
cluding DOA estimation [12]–[15]. For example, in [16], a
U-Net-based fully convolutional neural network (FCNN) is
applied for DOA trajectory localization, transforming input
power spectra to high-resolution target maps for improved
accuracy in DOA tracking. Recurrent neural networks (RNNs)
and their variants, such as long short-term memory (LSTM)
[17] and gated recurrent units (GRU) [18], have also been
utilized for capturing temporal dependencies, making them
suitable for tracking DOA changes over time. The transformer
architecture [19], leveraging attention mechanisms, has been
widely adopted in sequence modeling tasks, often outperform-
ing RNN-based models. Both RNN variants and transformer
models are popularly being used in tracking tasks [20]–[22].

Despite their advantages, RNNs and transformers have
inherent limitations. RNNs cannot be parallelized due to their
sequential nature, posing challenges as sequence length grows.
While transformers offer parallelization, their inference com-
plexity increases quadratically with sequence length, unlike



the linear scaling of RNNs. Additionally, RNNs compress
information into hidden states, which transformers bypass by
directly leveraging the attention mechanism. Recently, state-
space modeling (SSM) [23] has gained attention for its training
and inference efficiency. SSMs can utilize parallelizable con-
volutional operations during training and function as recurrent
models during inference. However, traditional SSMs are lim-
ited by their linear time-invariant (LTI) nature, which can be
restrictive in complex, real-world scenarios. To address this,
a selectivity mechanism was introduced in Mamba networks
[24], enabling selective filtering of irrelevant information. This
allows the model to efficiently compress context into a robust
state, improving both its efficiency and robustness.

In this paper, we propose a Mamba network-based ap-
proach for tracking DOAs over time. Leveraging its efficient
state representation, the Mamba network captures and pre-
serves long-term temporal dependencies, which is crucial for
tracking DOAs in dynamic scenarios. Unlike conventional
approaches that assume coherent blocks or linear changes
within each block and are thus unsuitable for fast-moving
objects, the proposed approach can detect and track signal
DOAs using a single snapshot. Specifically, we consider a
scenario where the DOA changes at every snapshot, and the
Mamba network is trained on multiple snapshots to learn the
temporal relationships in the array data through latent states
spanning consecutive snapshots, thereby enabling estimation
of the true DOAs at each time step. Once trained, the network
can detect the initial DOA from the very first snapshot and
track subsequent DOA changes in every new snapshot. Its low
computational complexity, particularly during inference, makes
it well-suited for real-time applications. Additionally, Mamba’s
state-space structure enhances interpretability, as it aligns well
with physical system models.

Notations: We use lower-case (upper-case) bold characters
to describe vectors (matrices), whereas upper-case calligraphic
characters are used to describe tensors. In particular, (·)T and
(·)H respectively denote the transpose and conjugate transpose
of a matrix or vector. ȷ =

√
−1 denotes the unit imaginary

number. IM stands for the M×M identity matrix. In addition,
R(·) and I(·) denote the real part and imaginary part of a
complex number, respectively. Finally, ∥ · ∥2 defines the ℓ2
norm of a vector.

II. SIGNAL MODEL

A. Array Signal Model
Consider a D-element uniform linear array (ULA) re-

ceiving K uncorrelated, far-field narrowband target signals
with time-varying DOAs θt = [θ1,t, θ2,t, . . . , θK,t]

T at time
snapshot t. The D × 1 signal vector received at the antenna
array at time t is expressed as

x̃t =

K∑
k=1

sk,ta(θk,t) + nt = Atst + nt, (1)

where

a(θk,t) = [1, e−j 2π
λ d sin(θk,t), · · · , e−j 2π

λ (D−1)d sin(θk,t)]T (2)

is the D × 1 steering vector associated with the DOA θk,t, λ
is the wavelength of the incident wave, d = λ/2 is the inter-
element spacing, and

At = [a(θ1,t), · · · ,a(θK,t)] (3)

is the D × K array manifold matrix at time t. In addition,
st = [s1,t, · · · , sK,t]

T is the K × 1 signal waveform vector
and nt ∼ CN (0, σ2

nI) is the D × 1 additive white Gaussian
noise (AWGN) vector with noise power σ2

n, whose elements
are assumed to be independent and identically distributed, and
are uncorrelated with the target signals.

B. Data Pre-processing
The received signal vector x̃t is first pre-processed in

a certain order before being fed into the proposed Mamba
network. We generate M different training samples, each
with distinct initial DOA scenarios, and denote x̃

(m)
t as the

received signal vector for the mth training sample. Since many
functionalities of deep learning methods cannot efficiently
handle complex-valued inputs, we decompose the complex-
valued signal into real and imaginary components, resulting in
a 2D × 1 real-valued vector as

x
(m)
t = [RT(x̃

(m)
t ), IT(x̃t)]

T. (4)

Let B denote the batch size for training. We define X(b) =

[x
(b)
1 ,x

(b)
2 , · · · ,x(b)

T ]T ∈ RT×2D, where x(b) represents the
received signal from the bth sample of a particular batch,
with b = 1, 2, · · · , B. Then, a particular batch of data can
be represented as

X = [X(1),X(2), · · · ,X(B)]⊔1
∈ RB×T×2D, (5)

where [·]⊔i
denotes tensor concatenation along the ith dimen-

sion.

C. Problem Formulation
The objective is to sequentially estimate time-varying

DOAs θt for t = 1, . . . , T , where T is the total number of
snapshots. That is, given the available x̃t, we aim to determine

θ̂t = f(x̃t), (6)

where f(·) is a mapping function. In this paper, we implement
this mapping function using a Mamba network.

III. MAMBA-BASED DOA ESTIMATION METHODOLOGY

In this section, we describe the proposed Mamba network-
based method for time-varying DOA estimation in a sequential
manner.

A. State-Space Model
We first describe the state-space model (SSM) and selective

SSM, which are the core of the Mamba network, in the
continuous-time domain. To the notation with the discrete-time
model, the continuous-time is denoted as (t).

The DOA estimation problem defined in Eq. (6) can be
represented in the context of SSM as

h′
d(t) = Edh(t) + fdxd(t) (7a)

yd(t) = gdhd(t), (7b)

where xd(t) ∈ R is a scaler observation corresponding to
the dth dimension of x(t), hd(t) ∈ RN×1 is a latent state
representation. The matrix Ed ∈ RN×N represents the state
transition, the vector fd ∈ RN×1 corresponds to the input,
and g1×N

d is a row vector associated with the output for
the dth dimension. The sequence yd is the estimated output
corresponding to the dth dimension. 2D independent SSM are
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Fig. 1: Unrolling of the SSM.

applied to each dimension of the received signal to obtain the
output sequence y(t) ∈ R2D×1. The estimated DOAs θ̂ then
can be obtained by a linear projection of y(t).

The linear SSM as described in Eq. (7) may suffer from
the vanishing/exploding gradient problem as well as exhibits
poor performance. To address this issue and preserve long-
range dependencies, it is required to impose a certain structure
in matrix Ed. To do this, HiPPO theory of continuous-time
memorization [25] is exploited. This theory specifies a class of
certain matrices Ed that enables the states hd(t) to memorize
the history of the input x(t). The structure of this HiPPO
matrix can be defined as [23]

Edn,k
= −


(2n+ 1)

1
2 (2k + 1)

1
2 , if n > k,

n+ 1, if n = k,

0, if n < k.

(8)

The state space representation is generally inspired by con-
tinuous systems that map a function or sequence x(t) to
y(t) through the latent state h(t). Since the received signal
for the underlying DOA estimation problem is obtained in
discrete manner, the SSM is discretized using the zero-order
hold (ZOH) technique [26]. In this technique, the continuous
parameters Ed and F d are discretized and are defined as

Ēd = e∆Ed , (9a)

f̄d = (∆Ed)
−1(e∆EdI)∆fd, (9b)

where ∆ is a learnable parameter denoting the step size for
discretization, whereas Ēd and f̄d are the discrete version of
the parameters Ed and fd. As a result, the state equation can
be represented as a recurrence of previous states, expressed as

hd,t = Ēdhd,t−1 + f̄dxd,t, (10a)

yd,t = gdhd,t. (10b)

These set of equations can be computed by recurrent neural
network (RNN)-like structure as depicted in Fig. 1. From the
figure, it is evident that, at a particular time instant t, the hidden
latent state of the network depends on the new observation
xd,t as well as the previous state hd,t−1, which captures the
information of previous hidden states through the structured
matrix Ēd.

B. Selective State Space Model
The parameters of a basic SSM are LTI and lack context-

aware capabilities, as these parameters do not depend on
the input. To address this issue, a selection mechanism was
proposed in [24], which makes the parameters input-dependent
by incorporating the sequence length and batch size of the
input. This is achieved by learning different values of ∆, F ,
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Fig. 2: Mamba network.

G for each time instant t, and the shape of these tensors are
adjusted accordingly. For a dataset with batch size B and
total snapshots T , ∆ now has dimensions of B × T × 2D,
implying that, for each input example and dimension, there
is a unique discretization rate for each time instant t. Note
that we omit the subscript d from the tensors Ē , F̄ , and Ḡ,
as their shapes now incorporate all dimensions. Intuitively, a
larger ∆ places more emphasis on the current input, while a
smaller ∆ persists in the current state, effectively ignoring the
current input. Similarly, F̄ and Ḡ are made input-dependent
with dimensions B × T × 2D × N , enabling finer-grained
control over whether an input affects the state or whether the
state affects the output. This allows the model to modulate its
recurrent dynamics based on both content (input) and context
(hidden states).

In this model, parameters ∆,F ,G are learned through
linear layers of fully connected neural networks, defined as

sF = LinearN (x), (11a)
sG = LinearN (x), (11b)
s∆ = Broadcast2D (Linear1(x)) , (11c)
τ∆ = softplus, (11d)

where Lineard denotes a linear layer of neural network per-
forming parameterized projection to dimension d, Broadcast2D
indicates replicating the single dimensional output form
Linear1(x) across 2D dimension to match the shape of the
input dimension, and the softplus operation is defined as

τ∆(x) = log(1 + ex). (12)

The parameters F and G parameters are learned through sF
and sG operations, whereas ∆ is learned through the function
τ∆(s∆). In each epoch, the parameter ∆ is applied to E,F
and G to obtain their discrete versions, Ē, F̄ and Ḡ.

C. Mamba Network
The Mamba architecture is shown in Fig. 2, while Fig.

2(a) illustrates the structure of a single Mamba block. Note
that the Mamba network in Fig. 2 provides a more detailed
neural network depiction of the system shown in Fig. 1 at time
instant t, incorporating the selectivity mechanism. Initially,
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root mean square (RMS) layer normalization is applied within
the block to stabilize neural network training by normalizing
neuron dynamics within a layer [27]. Following this, a linear
layer projects the data into a high-dimensional space to capture
complex data relationships. A one-dimensional convolutional
layer is then employed to capture the local dependencies of the
input sequence. Subsequently, the selective SSM is applied to
maintain long-term dependencies in the input data.

The Mamba block also incorporates a residual connection,
which enhances the flow of information by allowing the origi-
nal data to bypass the main processing path. This feature helps
preserve essential information that might otherwise be lost or
significantly altered by the transformations within the main

branch [28]. The residual connection also results stable training
in deep neural networks. Finally, another linear projection is
used to return the data to its original dimension. The Sigmoid
Linear Unit (SiLU) activation function is applied within the
Mamba block. In Fig. 2(b), multiple Mamba blocks are stacked
together to form the complete network. Additionally, it is
necessary to project the output from the Mamba blocks to
match the dimension of θ.

The network is trained using minibatch processing. Let
X ∈ RB×T×2D represent a batch of data, and let θ(batch) ∈
RB×T×K and θ̂

(batch)
∈ RB×T×K denote the true and esti-

mated DOAs for the batch, respectively. The network is trained
with a mean-squared-error loss function, defined as

Loss =
1

BT

B∑
b=1

T∑
t=1

∥∥∥θ(batch)
b,t − θ̂

(batch)
b,t

∥∥∥2
2
, (13)

where θ
(batch)
b,t and θ̂

(batch)
b,t are the true and predicted DOAs for

the tth time snapshot and the bth example within a batch.

IV. SIMULATION RESULTS

We consider a ULA consisting of D = 10 receive antennas.
K = 2 narrow-band, uncorrelated target signals are assumed.
The training dataset is generated by sampling the initial DOAs
at t = 0 from a uniform distribution within the range of
[−60◦, 60◦]. After this, the initial DOAs are assumed to change
at a constant rate between [0.1◦, 0.5◦] per snapshot. The total
number of available snapshots is T = 100.

Based on these conditions, we generated 50,000 example
DOA scenarios along with their corresponding array received



signal vectors for t = 1 to t = 100, using a signal-to-noise ratio
(SNR) of 10 dB. Among them 80% data is used for training,
and the remaining 20% is used for validation purposes. We set
the batch size to B = 256, so each batch of real-valued input
data for the network has dimensions of 256×100×20, and the
corresponding target labels have dimensions of 256×100×2.
We used ADAM optimizer with a weight decay of 10−4 to
improve generalization and a learning rate scheduler with an
initial learning rate 0.001, decreasing it by a factor of 0.1 if
validation loss does not decrease within the next 15 epochs.
The hidden state size of the Mamba network is set to 128, and
training is performed over 1000 epochs. Fig. 3(a) shows the
reduction in training and validation loss over the epochs, with
both losses converging smoothly as epochs increase.

Figs. 3(b) and 3(c) illustrate the DOA estimation perfor-
mance for a test scenario. In this case, the initial DOAs are
54◦ and 14◦ at t = 0, with source 1 changing by 0.1◦

per snapshot and source 2 by 0.3◦ per snapshot. Fig. 3(b)
illustrates that the estimation of the initial DOA, indicating
the network’s effectiveness in estimating DOAs from a single
snapshot when trained. Fig. 3(d) depicts a more challenging
scenario, where the sources move towards each other, intersect,
and then move apart. The proposed model successfully tracks
this scenario, although a slight error is noticeable when the two
sources are close, due to the difficulty in distinguishing closely
located DOAs. We further evaluate the model’s performance
by computing the root-mean-squared error (RMSE) between
the true and estimated DOAs across all time samples for
N = 1500 test scenarios, defined as

RMSEk,t =

√√√√ 1

N

N∑
n=1

(
θk,t − θ̂k,t

)2

, (14)

where RMSEk,t defines the RMSE value for the kth source
at time t, θk,t and θ̂k,t are the true and predicted DOAs for
the kth source at time t. From Fig. 4, it is evident the RMSE
values across time remains between 0.4 to 0.6 degrees.

V. CONCLUSION

In this paper, we developed a Mamba neural network for
estimating DOAs that change with each time snapshot. The
selection mechanism within the Mamba network effectively
captures the temporal dependencies of the input sequence,
enabling efficient tracking. The proposed approach can de-
tect DOAs from single-snapshot data and subsequently track
changes in DOAs across successive snapshots. The effective-
ness of the proposed method is validated through simulation
results.
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