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Abstract—Target geo-location is an important task in over-
the-horizon radar. A useful approach is based on the Doppler
signatures of the micro-multipath signals which reveal target
motion and enable target state estimation. Target Doppler signa-
tures, however, are sensitive to irregular target motions, thereby
complicating the Doppler signature analyses. In this paper, we
consider the Doppler signatures of micro-multipath signals for
a target that moves with a constant altitude but its azimuth
velocity and altitude are perturbed. We analyze the effect of
such velocity and altitude variations in the resulting Doppler
signatures. The Doppler frequency difference is estimated using
the self-stationarized signals.

Keywords: Doppler analysis, radar signal processing, over-the-
horizon radar, target localization, short-time Fourier transform.

I. INTRODUCTION

Sky-wave over-the-horizon radar (OTHR) performs long-
range surveillance beyond the limit of the earth horizon
and thus provides valuable early-warning information [1–5].
Because the operation of OTHR systems highly depends on the
ionospheric conditions which involve complicated propagation
models and dynamically vary, accurate target geo-location is a
challenging problem [6–9]. A promising approach is through
the exploitation of time-frequency analysis of the time-varying
Doppler signatures of the micro-multipath signals which has
resulted in estimation and tracking methods for target ve-
locities and altitude [10–16]. For a maneuvering target, the
Doppler signatures of the micro-multipath signals reveals the
azimuth (range-direction) and elevation motions of the target.
More specifically, the nominal Doppler frequency reflects
the target azimuth velocity, whereas the Doppler frequency
difference between the different Doppler signature components
is primarily associated with the target elevation velocity. As
such, resolved time-frequency analysis of the micro-Doppler
signatures enables effective estimation and tracking of target
elevation velocity and altitude.

Such approaches have recently been applied to targets
maintaining a constant altitude and moving with a constant
velocity. In this case, the micro-Doppler frequencies exhibit
parallel linear frequency modulated (LFM, also known as
chirp) signatures with a small chirp rate that can effectively
be analyzed using the fractional Fourier transform [17–20].
When such a target experiences velocity perturbations due
to flight dynamics and the external atmospheric environment
[21–23], the micro-multipath Doppler signatures of the target
may deviate from the parallel LFM Doppler signal model.
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Such perturbations are associated with the aerodynamics which
differ with target type and size, and are characterized by the
unique dynamic parameters of each target. Therefore, while
such perturbations complicate the Doppler signature analysis
and estimation, careful examination of such perturbations has
also revealed additional information about the targets for
enhanced target recognition and classification.

Recently, the effect of perturbed target azimuth velocity
and target altitude was considered separately in [24] and
[25]. Target altitude perturbation mainly affects the Doppler
difference between the micro-Doppler signatures. Under mild
conditions, the fractional Fourier transform can still be applied
to analyze the Doppler signatures, but performance degrades
as the perturbation becomes severe. On the other hand, az-
imuth velocity variations cause the Doppler signatures of all
micro-multipath components to be similarly affected. In this
case, performing self-stationarization [26] removes the effect
of azimuth velocity perturbation and converts the Doppler
signatures into constant frequency components which can be
conveniently analyzed using the Fourier transform or sparsity-
based spectrum analysis methods.

In this paper, we consider the Doppler signatures of micro-
multipath signals for a flying target that experiences pertur-
bation in both the azimuth velocity and the target altitude.
Exploiting the existing results reported in [24] and [25], we
perform self-stationarization to remove the effect of azimuth
velocity perturbation. The short-time Fourier transform is
then applied to analyze the stationarized Doppler signals and
estimate the Doppler frequency difference between the micro-
multipath signals. It is noted that, unlike [24], which does
analyze the time-variation of the micro-multipath Doppler
frequencies due to target altitude variation, such time variation
is examined in this paper through the consideration of the
spectrogram.

II. SIGNAL MODEL

We consider an OTHR system operated in a pseudo-
monostatic mode, and where a target of interest flies with a
constant azimuth velocity and at a fixed altitude. However,
the actual target azimuth velocity and altitude are perturbed.
The problem is considered in a simplified flat-earth model [11]
as shown in Fig. 1, where H is the height of the ionosphere
layer which is assumed to be constant and a coarse estimate is
available from ionosonde monitoring, and h is an unknown
target altitude to be estimated. Note in this figure that the
targets and propagation paths showing below the ionosphere
layer are physically present, whereas those above the iono-
sphere layer are their images due to ionosphere and ground
reflections and are included in the figure for convenience of



Fig. 1: Flat-earth local multipath propagation model of OTHR.

slant-range calculation.
The OTHR signals reflected by the target and observed

at the radar receivers follow multiple round-trip paths due to
their reflections from the ionosphere and the earth surface [10,
11]. As illustrated in Fig. 1, the specular earth surface and
ionosphere reflections result in two different propagation paths
for each of the transmit and receive OTHR signals. The one-
way target range Rt is time-varying with velocity vt, i.e.,

Rt = R0 +

∫ t

0

vtdt. (1)

The one-way slant ranges l(1)t and l
(2)
t of Path I and Path II

are respectively obtained as [11]
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where the approximations are obtained as first-order Taylor
series expansion under the condition that Rt ≫ H ≫ h.

The combination of the two distinct paths for signal
transmission and reception results in three distinct round-trip
paths. For the first round-trip path, both transmit and receive
signals propagate along Path I, denoted as [l1, l1]. Similarly,
the second round-trip path [l2, l2] follows Path II for both
ways. The third round-trip path uses different forward and
return paths, i.e., [l1, l2] and [l2, l1]. The slant ranges of the
three round-trip paths are respectively expressed as
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and their corresponding Doppler signatures are given as
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λ dt
, i = 1, 2, 3, (4)

where fc is the carrier frequency of the OTHR signal, c is the
velocity of the electromagnetic wave, and λ = c/fc denotes
the signal wavelength.

III. TARGET DOPPLER CHARACTERISTICS

In this section, we first show the micro-multipath Doppler
frequencies of a target in the baseline case, i.e., it flies with a
constant velocity and maintains a fixed altitude. The effects of
azimuth velocity and altitude perturbations are then described.

A. Doppler Signature in the Baseline Case
We consider the case that the target flies at a constant

velocity Ṙ = v0, and its altitude is fixed as h. In this case,
using the results given in Eq. (2), the derivatives of the one-
way slant ranges are expressed as
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The Doppler frequencies of the three round-trip paths become
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is termed as the nominal Doppler frequency, and

∆νt = −d(l
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≈ 4Hh

λR2
t
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is referred to as the Doppler frequency difference between the
micro-Doppler components. For constant values of Ṙ and h,
the first two terms at the right-hand side of Eq. (7) contribute
to a dominant but constant Doppler frequency which is pro-
portional to the target azimuth velocity Ṙ, and the right-hand
side of Eq. (8) contributes to a Doppler frequency difference
which is proportional to both Ṙ and the target altitude h. The
last term of the right-hand side of Eq. (7) renders the nominal
Doppler component as a slowly time-varying LFM with the
chirp rate determined by Ṙ.

When considering ∆νt given in Eq. (8) and because the
variation of Rt is very small, i.e., |Ṙt| ≪ R0, it can be appro-
ximated as a constant, i.e., Rt ≈ R0. Thus, we have

∆νt ≈
4Hh

λR2
t

Ṙ ≈ 4Hh

λR2
0

Ṙ := ∆ν. (9)

Therefore, the three Doppler signatures are equi-distant LFM
components separated by a constant Doppler frequency differ-
ence ∆ν. The Doppler signatures of the first and second round-
trip paths are symmetric and wrap around that of the third
round-trip path, which coincides with the nominal Doppler
frequency ν̄t.

B. Target with Time-Varying Constant Acceleration
When the constant azimuth velocity of a target is perturbed,

the instantaneous Doppler signature will deviate from the
parallel LFM model. Consider a general model in which the
instantaneous target velocity is described as

Ṙt = v0 +

∫ t

0

atdt := v0 +∆Ṙt, (10)

where at is the instantaneous acceleration. In this case, the
nominal Doppler frequency becomes
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Typical aircraft velocity fluctuations are much smaller than
the aircraft velocity [23], that is, |∆Ṙt| ≪ |v0|. Therefore,
when |at| ≥ 4H2v20/R

3
0 holds, the chirp rate of the nominal

Doppler frequency ν̄t, that is, dν̄t/dt, is dominated by −2at/λ.
As a result, the Doppler signatures depend on the perturbation
patterns and will likely deviate from the LFM model described
in Eq. (9).

On the other hand, the Doppler difference becomes

∆νt ≈
4Hh

λR2
0

Ṙt =
4Hh

λR2
0

(v0 +∆Ṙt) ≈
4Hh

λR2
0
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The last approximation is rendered from |∆Ṙt| ≪ |v0| as
discussed above. It is clear that, when the target altitude h
is perturbed, the Doppler frequency difference ∆νt will vary
proportionally. The impact of azimuth velocity perturbation on
the Doppler frequency difference is insignificant.

These observations demonstrate that, when the target alti-
tude is concerned, estimating the Doppler difference is much
simpler than directly estimating the three Doppler signatures.
The self-stationarization technique, which was introduced in
[26], can be used to estimate the Doppler difference without
taking into account the variation of the nominal Doppler fre-
quency. Applying self-stationarization to the parallel Doppler
signatures of the micro-multipath signals results in sinusoidal
outputs which can be conveniently analyzed for the estimation
of the difference Doppler frequency. The target altitude can be
obtained from (12) using a coarse estimate of the target range
and velocity.

IV. DOPPLER SIGNATURE STATIONARIZATION AND
ANALYSIS

We describe the received signal in the following general
form [26, 27]:

xt = A(1) exp(jϕ
(1)
t ) +A(2) exp(jϕ

(2)
t ) +A(3) exp(jϕ

(3)
t ),

(13)
where A(i) and ϕ

(i)
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instantaneous phase of the ith path for i = 1, 2, and 3. The
instantaneous phases can be expressed as
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where ξ(1) = 1, ξ(2) = −1, and ξ(3) = 0.
For clarity, we denote θt = −2π
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0
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to the nominal Doppler frequency and Doppler frequency
difference. Then, Eq. (14) can be written as
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Signal self-stationarization is achieved by multiplying xt with
its conjugation, x∗t , resulting in
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+A(1)(A(2))∗ exp(−j2ψt) + (A(1))∗A(2) exp(j2ψt).
(16)

TABLE I: Key Parameters

Parameter Notation Value
Initial range R0 2,500 km
Ionosphere height H 350 km
Target altitude h 20 km
Target initial velocity v0 −500 m/sec
Carrier frequency fc 16 MHz
Pulse repetition frequency fs 110 Hz
Signal-to-noise ratio SNR −5 dB
Coherent processing interval T 80 s

It is clear from the above expression that the resulting
product |xt|2 does not depend on θt. It contains a DC compo-
nent as well as ±ψt and ±2ψt terms. As a result, the effect
in the nominal Doppler frequency variation due to the target
azimuth velocity perturbation vanishes, thereby enabling robust
estimation of the Doppler difference.

To provide improved visualization and estimation of the
Doppler frequency difference, two post-processing steps are
carried out. First, we remove the dominant DC component,
which does not carry useful information related to the target
Doppler signatures, through a simple subtraction of the signal
average component. Second, we fuse the information contained
in the harmonic non-zero frequency signatures to enhance the
desired component of ∆ν. Denote X(f) as the spectrum of
|xt|2, we compute the following quantity:

Y (f) = |X(f)X(f/2)|. (17)

Because the spectrum is symmetric, only the positive fre-
quency needs to be considered. It is also noted that the nominal
Doppler frequency removal through self-stationarization works
for different azimuth velocity variation patterns [25].

V. SIMULATION RESULTS

Consider a target flying at a constant altitude, and the
other key radar parameters are listed in Table I. Note that the
input signal-to-noise ratio (SNR) includes the array gain if
the OTHR is operated using multiple antennas or a multiple-
input multiple-output (MIMO) radar system. To show the
effectiveness of the proposed method, we consider a scenario
in which the target simultaneously experiences a sinusoidal
height variation and a sinusoidal horizontal velocity variation.
The maximum deviation of the altitude perturbation is 7 m
and the period is 40 s, whereas the maximum deviation of the
horizontal velocity is 5 m/s and the period is 80 s.

Fig. 2(a) shows the Doppler signatures of the three micro-
multipath components which are almost parallel and vary
sinusoidally because of the azimuth velocity perturbation. The
effect of the target altitude perturbation is insignificant to
be observed in this plot. In Fig. 2(b), we plot the Doppler
frequency difference, ∆νt. The variation due to the target
altitude perturbation can now clearly be seen. For reference,
when the target does not suffer from altitude perturbation, the
Doppler difference takes an approximately constant value of
0.108 Hz, and the approximate value obtained from Eq. (9)
is 0.120 Hz. The difference is due to the fact that only the
first-order Taylor series terms are considered in Eq. (9).

Fig. 3(a) shows the spectrogram of the Doppler frequencies
of the micro-multipath signals corresponding to Fig. 2(a). A



(a) Doppler frequencies of the micro-multipath signals

(b) Doppler frequency difference between the
micro-multipath signals

Fig. 2: Doppler signatures of the three micro-multipath signals.

Hamming window of 2,047 samples (18.6 s) is used, and
the number of frequency bins corresponding to the entire fre-
quency span between −55 Hz and 55 Hz is 213 = 8, 192. The
spectrogram clearly shows the overall time-varying Doppler
signatures which reflect the azimuth velocity perturbation.
On the other hand, because of the time variation due to
azimuth velocity perturbation and the small Doppler frequency
difference, the individual Doppler signature of each multi-
multipath component cannot be separably observed.

Fig. 3(b) shows the spectrogram of the micro-multipath
signal after self-stationarization and DC removal. Only the
positive frequency components are shown. A longer Hamming
window of 4,095 samples (37.2 s) is used, and 214 = 16, 384
frequency bins span the entire frequency range between −55
Hz and 55 Hz, rendering the frequency resolution to be 0.0067
Hz. Note that, because the Doppler difference is known to
take a small value, we only need to compute the spectrogram
corresponding to the frequency band of interest for reduced
computation complexity. Fig. 3(c) shows the estimated Doppler
frequency difference obtained from the spectrogram. While the
peak Doppler frequency difference is slightly compromised
due to the windowing effect in computing the spectrogram, the
Doppler frequency difference is closely estimated, particularly
for the center portion of the time span. The discrepancies in the
beginning and ending time periods are due to the zero-padding
effect and can be improved by using sliding windows.

For reference, Fig. 3(d) shows the spectrum of the sta-

tionarized signal using the Welch’s method with a Hamming
window size of 1,364 samples (12.4 s). Such a result ignores
the time-variation of the Doppler frequency difference and
only provides the overall spectrum. The average Doppler
frequency difference is estimated from the peak position as
0.107 Hz, which is very close to the true value of 0.108 Hz
that corresponds to the case without altitude perturbation.

VI. CONCLUSION

In this paper, we have analyzed the Doppler frequency
characteristics of target signals in OTHR when both target
azimuth velocity and altitude are perturbed. Noticing that
the azimuth velocity variation changes the Doppler signatures
of all micro-multipath components in a similar manner, the
nominal Doppler frequency signature is analyzed using the
spectrogram of the micro-multipath signals. Further, we apply
the self-stationarization approach to remove the effect of
azimuth velocity perturbation in the the Doppler signatures
so that the Doppler frequency difference, which depends on
the target altitude and varies with time over a much smaller
range, can be estimated. It is noted that the Doppler frequency
difference analysis in the proposed technique is insensitive to
different patterns of the target azimuth velocity variation.
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