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Abstract—Massive multiple-input multiple-output (MIMO) is
a key enabling technology for next-generation wireless com-
munications and future radar systems. The high number of
antennas in a massive MIMO system makes it difficult to process
array signals with separate radio frequency chains. We have
previously developed a compressive measurement technique that
substantially reduces the required number of front-end circuits
and the overall processing complexity. By utilizing the a priori
distribution of signal directions, the compressive measurement
matrix is optimized by maximizing the mutual information
between the compressive measurement output and the signal
directions-of-arrival (DOAs). In practice, however, the prior
distribution of the signal DOAs may not be available, thereby
limiting the applications of this technique. In this paper, we
develop an iterative learning scheme that uses the estimated DOA
spectrum as the prior for the next iteration. By removing the
hurdle of requiring the prior information of signal arrivals, the
proposed technique makes optimized compressive measurement
feasible for broader applications in practice.
Keywords: Massive MIMO, compressive measurement, DOA
estimation, mutual information, iterative learning.

I. INTRODUCTION

With the rapid development of wireless communications,
particularly millimeter wave communication systems, massive
multiple-input multiple-output (MIMO) equipped with a high
number of antennas has become a key enabling technology
for 5G communications and beyond [1–6]. On the other hand,
while large-size arrays are commonly used in radar in and out
of the MIMO radar context [7], the success of massive MIMO
in wireless communications has also inspired massive MIMO
radar [8, 9]. Massive MIMO technology is also exploited
in the development of large intelligent surface (LIS)-based
communications and sensing [11, 12].

Despite the excellent processing performance of massive
MIMO systems, one of the significant problems that massive
MIMO communication and radar systems commonly face
is the high complexity that increases with the number of
antennas. In particular, processing each antenna with a separate
radio frequency (RF) chain is often impractical. One of the
effective approaches is to reduce the high dimension of the
array measurements into a lower dimension by performing
analog-domain compressive sampling so that a much fewer
RF front-end circuits and analog-to-digital converters can be
used. While such compressive sampling can be performed
using different ways, commonly used random sensing matrices
[13–15] suffer from significant information loss [16].

In [17, 18], we have proposed a novel hybrid analog-
digital processing strategy that mitigates such information loss
while effectively reducing the signal dimensions. By utilizing
a coarse a priori probability distribution of the directions-of-
arrival (DOAs) of the signals, this technique optimizes the
compressive measurement matrix through the maximization
of the mutual information between the compressive measure-
ment output and the signal DOAs. Once the compressive
measurement matrix is optimized, we can estimate the signal
DOAs and power using a spatial spectrum estimator, such as
the minimum variance distortionless response (MVDR), and
the results enable robust beamforming for interference-free
signal extraction [18, 19]. In [20], this approach is extended
to difference coarray-based DOA estimation exploiting sparse
arrays.

In practice, however, a coarse prior distribution of the
signal DOAs may not always be available, thereby limiting
the application of this technology. In this paper, we develop
an iterative learning approach that uses the estimated DOA
spectrum as the prior for the next iteration. In so doing, the
proposed technique removes the main hurdle of requiring the
prior information of the signal arrivals, thereby making the
optimized compressive measurement much more feasible in
practice.

Related works are recently reported in the literature in which
DOA estimation is considered as an initial alignment stage
for massive MIMO channel estimation. In [21], a Bayesian
learning-based adaptive beamforming strategy is developed to
select the beamforming vectors from the hierarchical codebook
based on the posterior DOA distribution. In [22], a deep neural
network-based approach is exploited to design a sequence of
adaptive sensing vectors. Both approaches consider the single-
user single-path scenario with only a single RF chain involved.
In the signal model considered in this work, on the other
hand, the number of antennas N and the dimension of the
compressed measurement vector M(≪ N) can take arbitrary
values, and no codebook is needed.

Notations: Lower- and upper-case bold characters are used
to describe vectors and matrices, respectively. In particular,
IN stands for the N × N identity matrix, and 0 is a vector
with a proper dimension. (·)T and (·)H respectively denote the
transpose and conjugate transpose (Hermitian) of a matrix or
vector. |A| represents the determinant of matrix A, and Ex(·)
denotes the statistical expectation with respect to x.



II. SIGNAL MODEL

Consider an N -element massive MIMO receiver in which
D far-field uncorrelated sources impinge from directions θ =
[θ1, θ2, · · · , θD]

T. The received baseband signal vector of the
array at the discrete time t can be modeled as

x(t) =

D∑
d=1

a(θd)sd(t) + n(t) = A(θ)s(t) + n(t), (1)

where A(θ) = [a(θ1),a(θ2), · · · ,a(θD)] ∈ CN×D denotes
the array manifold matrix with the dth column representing the
dth source’s steering vector a(θd) ∈ CN . Note that no specific
array configuration is assumed in this model. In addition,
s(t) = [s1(t), s2(t), · · · , sD(t)]

T ∈ CD denotes the signal
waveform vector, and n(t) ∼ CN (0, σ2

nIN ) denotes the zero-
mean complex additive white Gaussian noise vector.

Denote Φ = [ϕ1,ϕ2, · · · ,ϕM ]T ∈ CM×N with M ≪ N
as the compressive measurement matrix, as shown in Fig. 1.
We introduce a row-orthonormal constraint on Φ, i.e., ΦΦH =
IM so that the noise power does not change after applying the
compressive measurement and the mutual information does not
fluctuate as the result that the compressive measurement matrix
Φ scales up or down. When Φ is applied to the massive MIMO
receiver, the received signal vector x(t) ∈ CN is compressed
into an M -dimensional measurement vector y(t), expressed
as

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t). (2)

Hence, ΦA(θ) ∈ CM×D represents a sketch of the massive
MIMO array manifold with a significantly reduced dimension.
The objective of the proposed work is to jointly optimize
the compressive measurement matrix Φ and estimate the
signal DOAs without any prior information of the signal
angular distribution. Toward this end, an iterative learning
approach is proposed. In this approach, a random compressive
measurement matrix is used in the first iteration, and the
estimated spatial spectrum obtained in each iteration is used
as the prior information of the sigal angular distribution in
the subsequent iteration of the iterative optimization of the
compressive measurement matrix.

III. PROBABILISTIC OPTIMIZATION OF COMPRESSIVE
MEASUREMENT MATRIX

In this section, we briefly summarize the optimization
scheme of the compressive measurement matrix using a prob-
abilistic model based on [17, 18].

A. Probabilistic signal model

We treat the signal DOA θ as a random variable that
occupies a region Θ with a probability density function (PDF),
denoted as f(θ). Unlike in [17, 18] which assume f(θ) to
be known a priori, we consider in this paper that no prior
information about f(θ) is available but will be estimated.

We first discretize the PDF f(θ) into K angular bins with an
equal width of ∆θ̄, where the nominal DOA of the kth angular

Fig. 1. Block diagram of compressive measurement sampling scheme. Solid
lines denote analog signal flows and dashed lines denote digital signal flows.

bin is denoted as θ̄k. The discretized probability mass function
(PMF) of each angular bin is denoted as pk = f(θ̄k)∆θ̄ with∑

k∈K pk = 1, where K = {1, 2, · · · ,K}.
The signal arrival s(t) in an angular bin is modeled as a

zero-mean complex Gaussian random variable with variance
σ2
s , i.e., s(t) ∼ CN (0, σ2

s). Considering the kth angular bin
with nominal DOA θ̄k, the compressed measurement vector is
given as

y(t)|θ=θ̄k = Φ
(
a(θ̄k)s(t) + n(t)

)
. (3)

With the law of total probability, the PDF of the compressed
measurement vector y(t) can be expressed as

f(y)=Eθ{f(y|θ)} =
∫
θ∈Θ

f(y|θ)f(θ) dθ ≈
∑
k∈K

pkf(y|θ̄k),

(4)
where the corresponding conditional PDF f(y|θ̄k) is given as

f(y|θ̄k) =
1

πM
∣∣∣Cyy|θ̄k

∣∣∣e−yHC−1

yy|θ̄k
y
, (5)

with
Cyy|θ̄k = Φ

(
σ2
sa(θ̄k)a

H(θ̄k) + σ2
nIN

)
ΦH (6)

denoting the covariance matrix of y(t)|θ=θ̄k . In this case, the
PDF of the compressed measurement vector y(t) is a weighted
sum of K Gaussian distributions, thereby forming a Gaussian
mixture distribution.

B. Compressive sensing matrix optimization

We optimize the compressive measurement matrix Φ
through the maximization of the mutual information between
the compressed signal vector y(t) and the DOA of the signal
arrivals [23], and the gradient-based strategy [24] is used. The
mutual information I(y; θ) between y(t) and θ is given as

I(y; θ) = h(y)− h(y|θ), (7)

where h(y) = −Ey

{
log[f(y)]

}
denotes the differential en-

tropy of y and h(y|θ) = −Ey,θ

{
log[f(y|θ)]

}
is the con-

ditional differential entropy of y given signal DOA θ. The
corresponding gradient of the mutual information I(y; θ) with
respect to the compressive measurement matrix Φ becomes

∇ΦI(y; θ) = ∇Φh(y)−∇Φh(y|θ), (8)



where ∇Φ{ · } denotes the gradient operator with respective
to Φ.

Using the discretized PMF approximation described in
Section III-A, the expression of ∇ΦI(y; θ) can be analytically
derived as [17, 18]:

∇ΦI(y; θ)

≈

∑
k∈K

pk

∣∣∣∣Cyy|θ̄k
σ2
n

∣∣∣∣−1[Cyy|θ̄k
σ2
n

]−1

Φ
(
γa(θ̄k)a

H(θ̄k)+IN
)

∑
k∈K

pk

∣∣∣∣Cyy|θ̄k
σ2
n

∣∣∣∣−1

−
∑
k∈K

pk

[Cyy|θ̄k
σ2
n

]−1

Φ
(
γa(θ̄k)a

H(θ̄k) + IN
)
, (9)

where γ = σ2
s/σ

2
n denotes the input signal-to-noise ratio

(SNR) of the signal.
Using the above information gradient ∇ΦI(y; θ), we can

iteratively optimize the compressive measurement matrix using
the following expression:

Φ← Φ+ α∇ΦI(y; θ), (10)

where α > 0 is a step size. This procedure is iterated and the
rows of Φ are orthonormalized in each iteration.

IV. PROPOSED ITERATIVE LEARNING SCHEME

Because of the analogy and certain shared properties be-
tween a normalized power spectrum density (PSD) and a PDF,
a normalized PSD is often exploited in lieu of a PDF in signal
processing [25]. In this work, we treat the normalized spatial
power spectrum estimate as the posterior angular distribution
of the signals and feed it as the prior information for the
subsequent iteration. Other learning methods, such as those
based on Bayesian learning [21] and deep learning [22], can
also be used for this purpose but generally with much higher
complexity.

When T samples are available, the sample covariance matrix
of the compressed measurement vector y(t) is expressed
as R̂yy = 1

T

∑T
t=1 y(t)y

H(t). Then, an MVDR estimator
computes the spatial power spectrum using the following
expression:

P (i)(θ) =
aH(θ)(Φ(i))HΦ(i)a(θ)

aH(θ)(Φ(i))H
(

R̂
(i)

yy

)−1

Φ(i)a(θ)

, (11)

where superscript (i) is added to indicate the ith iteration.
Based on this result, we set the prior distribution in the
subsequently iteration as

p̂
(i+1)
k =

P (i)(θk)∑
j∈K P (i)(θj)

. (12)

When there is no prior information about the signal arrivals
in the initial conditions, we use a random compressive mea-
surement matrix consisting of Gaussian random variables in
the first iteration where each row is orthonormal.

To summarize, the proposed iterative learning scheme con-
tains two loops. In the inner loop, the compressive measure-
ment matrix Φ is optimized using (9) and (10), whereas the
outer loop learns p̂k based on (11) and (12).

V. SIMULATION RESULTS

Two simulation examples are presented to verify the effec-
tiveness of the proposed approach. In the first example, a
uniform linear array (ULA) with half-wavelength interelement
spacing is used, whereas the second example exploits a sparse
linear array in which the sensors are randomly placed on a
half-wavelength grid.

We first consider a massive MIMO system with N =
50 omni-directional antennas separated by half-wavelength.
7 far-field uncorrelated sources impinge from directions
[−6◦,−4◦,−2◦, 0◦, 2◦, 4◦, 6◦]. All sources have the same
input SNR of 10 dB and the number of snapshots is T = 100.
The dimension of the compressed measurement vector y(t) is
M = 10, rendering the compression ratio to be N/M = 5.
We uniformly discretize the PDF of DOA with a width of
∆θ̄=0.1◦ over all azimuth directions 0 ≤ θ ≤ 180◦, resulting
in K=1, 801 components in the Gaussian mixture model. The
step size used in the inner optimization is set as α= 0.001.
The maximum number of iterations used in the inner loop is
100.

The MVDR spatial spectra obtained from the proposed
iterative learning approach in first three iterations are shown in
Fig. 2. In the first iteration, a random compressive measure-
ment matrix is used. As shown in Fig. 2(a), because of the
information loss as the result of using an unoptimized com-
pressive measurement matrix, the estimated spatial spectrum
does not resolve all the sources. The yielding result, however,
can be used as a coarse distribution of the signal arrivals
that can aid the optimization of the compressive measurement
matrix in the subsequent outer iterations. It is clear in Figs.
2(b) and 2(c) that the estimated spatial spectrum converges
very fast and the proposed approach correctly estimates the
DOAs of all 7 sources in both the second and third iterations.
The results imply that the compressive measurement matrix
Φ is effectively optimized through iterative learning. The
comparison between Figs. 2(a) and 2(c) clearly demonstrates
the effectiveness of the optimized compressive measurement
matrix.

For reference, we also show the results of two cases when
no compressive measurement is made. In the first case, as
shown in Fig. 3(a), we use 10 antennas that are connected to
10 RF chains. Because of the small number of antennas, the
7 sources are not resolved in this case. In the second case, we
consider 50 antennas that are connected to 50 RF chains. As
shown in Fig. 3(b), this case achieves the best performance and
it shows clean sidelobe region values. However, as it requires
full number of RF chains, its complexity is significantly higher.

In the second example, we randomly place the N =
50 omni-directional antennas on a half-wavelength grid be-
tween 0 and 100 wavelengths. We consider 7 far-field un-



(a) First iteration

(b) Second iteration

(c) Third iteration

Fig. 2. Estimated spatial spectrum through iterative compressive measurement
matrix optimization for the ULA case.

correlated sources which are closely located at directions
[−3◦,−2◦,−1◦, 0◦, 1◦, 2◦, 3◦]. The other settings remain the
same as the first example, e.g., the dimension of the com-
pressed measurement vector y(t) is M = 10 and the input
SNR of all sources is 10 dB.

Because of the large array aperture, all 7 sources can be
resolved in the first iteration in Fig. 4(a), despite of the the
closer angular separation between the sources. However, as
a result of the sparse array configuration, we observe high
sidelobes that spread across all spatial directions [26, 27].
By applying the proposed approach, as shown in Figs. 4(b)
and 4(c), the floor is effectively reduced and more consistent
spatial spectrum estimation is achieved, thereby demonstrat-
ing improved compressive measurement through the iterative
learning process.

(a) Using 10 antennas and 10 RF chains

(b) Using 50 antennas and 50 RF chains

Fig. 3. Estimated spatial spectrum without performing compressive measure-
ment.

VI. CONCLUSION

In this paper, we developed an iterative learning scheme for
effective reduction of the array dimensionality in a massive
MIMO system. The proposed scheme jointly optimizes the
compressive measurement matrix and estimates the signal
DOAs, thus achieving effective dimension reduction for low-
complexity data acquisition and processing with minimum per-
formance loss in the absence of prior information of the signal
arrival distributions. The optimized compressive measurement
matrix achieves comparable estimation accuracy with the full
array case, and outperforms compressive measurements using
random matrices.
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