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Abstract—We propose a high-resolution imaging radar sys-
tem to enable high-fidelity four-dimensional (4D) sensing for
autonomous driving, i.e., range, Doppler, azimuth, and elevation,
through a joint sparsity design in frequency spectrum and array
configurations. To accommodate a high number of automotive
radars operating at the same frequency band while avoiding
mutual interference, random sparse step-frequency waveform
(RSSFW) is proposed to synthesize a large effective bandwidth
to achieve high range resolution profiles. To mitigate high range
sidelobes in RSSFW radars, optimal weights are designed to
minimize the peak sidelobe level such that targets with a relatively
small radar cross section are detectable without introducing high
probability of false alarm. We extend the RSSFW concept to
multi-input multi-output (MIMO) radar by applying phase codes
along slow time to synthesize a two-dimensional (2D) sparse array
with hundreds of virtual array elements to enable high-resolution
direction finding in both azimuth and elevation. The 2D sparse
array acts as a sub-Nyquist sampler of the corresponding uni-
form rectangular array (URA) with half-wavelength interelement
spacing, and the corresponding URA response is recovered by
completing a low-rank block Hankel matrix. Consequently, the
high sidelobes in the azimuth and elevation spectra are greatly
suppressed so that weak targets can be reliably detected. The
proposed imaging radar provides point clouds with a resolution
comparable to LiDAR but with a much lower cost. Numerical
simulations are conducted to demonstrate the performance of
the proposed 4D imaging radar system with joint sparsity in
frequency spectrum and antenna arrays.

Index Terms—Automotive radar, multi-input multi-output
(MIMO) radar, autonomous driving, random sparse step-
frequency waveform, interference mitigation, sparse array

I. INTRODUCTION

RADAR sensors have found widespread applications in
advanced driver assistance systems (ADAS), such as

adaptive cruise control and automatic emergency braking. Ac-
cording to a National Highway Traffic Safety Administration
(NHTSA) study, 37, 461 Americans died on the U.S. highways
in 2016 as a result of automobile accidents [3], of which
94% were due to human error [4]. Radar has emerged as
one of the key technologies in autonomous driving systems.
Some of today’s self-driving cars, such as Zoox, are equipped
with more than 10 radars, providing a 360◦ surround sens-
ing capability under all weather conditions [5]–[8]. Different
from ground-based or airborne surveillance radars, automotive
radars are strictly required to have a small size (multi-inch by
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multi-inch), short range (within multi-hundred meters), and
low power (multi-Watt), so they can be integrated behind
the vehicle bumper or windshield and operated in a highly
dynamic propagation environment with rich multipath [9].

An automotive radar must provide high resolution in four
dimensions (4D), i.e., range, Doppler, and azimuth and eleva-
tion angles, yet remain a low cost for feasible mass production.
High-resolution imaging radar is being developed to provide
point clouds of the surrounding environment [8], [10]–[12].
Via use of deep neural networks, such as PointNet [13] and
PointNet++ [14], point clouds generated by high-resolution
imaging radar can lead to adequate target identification.
Automotive radar must also provide multiuser interference
immunity to enable a high number of autonomous vehicles
to operate at the same time.

As is well known, the range, Doppler, and angular resolution
of an automotive radar are respectively determined by the
waveform bandwidth, the coherent processing interval (CPI),
and the antenna array aperture. To obtain high-resolution 4D
radar imaging for autonomous driving, therefore, automotive
radar needs to occupy a large bandwidth, a long CPI, and
a large antenna aperture in both horizontal and vertical di-
rections. The major challenges in achieving these goals are
the lack of spectrum in the presence of a high number of
automotive radars and the requirement of a high number
of antennas needed to achieve the desired array aperture
if a filled array is exploited. In this paper, we propose an
automotive radar system design exploiting sparsity in both
spectrum and antenna arrays without sacrificing the range and
angular resolutions.

A. Prior Art on Automotive Radar Waveform

State-of-the-art automotive radar systems exploit frequency-
modulated continuous-waveform (FMCW) signals at
millimeter-wave frequencies [6]–[8] to enable high-resolution
target range and velocity estimation, and can be implemented
at a much lower cost than light detection and ranging
(LiDAR). To achieve a high range resolution for autonomous
driving, the transmit signals are designed to occupy a large
bandwidth. For conventional automotive FMCW radars, the
frequency linearly sweeps over the entire bandwidth, thereby
making the signal susceptible to interference from other
automotive radars. Alternatively, step-frequency waveform
(SFW) radar transmits a sequence of pulses with linearly
increased carrier frequencies to synthesize a wide bandwidth
while keeping a low instantaneous bandwidth of each pulse
so low sampling rate analog-to-digital converters (ADCs) can
be used [15]. However, there is range-Doppler coupling in
the conventional SFW radars.
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The sparse step-frequency waveform (SSFW) radar trans-
mits several pulses within a large bandwidth, where some fre-
quencies are unused during a CPI [16], [17]. Target parameters
are estimated using compressive sensing (CS) methods [18].
An SSFW radar can avoid or reduce multiuser interference by
skipping the spectrum bands that are occupied by other radars.
However, use of SSFW radars will increase range sidelobes
and, as a result, targets with a small radar cross section (RCS),
such as pedestrian, may be obscured by high sidelobes of
stronger targets.

B. High-Resolution Imaging Radar for Autonomous Driving

For autonomous driving, information in both azimuth and
elevation is crucial. In particular, the height information of tar-
gets is required to enable drive-over and drive-under functions.
Two typical scenarios are shown in Fig. 1. It is safe to drive
over a metal beverage can on the road and to drive under a
steel pedestrian bridge over the road. Automotive radars with
limited capacity in measuring elevation angles will treat these
objects as stationary blockage targets.

To meet such requirement, the array is required to have
a large aperture in both azimuth and elevation. A cost-
effective and scalable solution is to coherently cascade mul-
tiple automotive radar transceivers. The idea of virtual sum
coarray has been extensively utilized in the multi-input multi-
output (MIMO) radar literature [19] to achieve MtMr virtual
elements using only Mt transmit and Mr receive physical
antennas. For example, cascaded radar chips rendering 12
transmit and 16 receive antennas are developed [20]–[22] to
synthesize 192 virtual array elements using the MIMO radar
technique, and several products are available with different
array configurations, such as forward-looking full-range radar
of ZF and ARS540 of Continental [23], [24].

One way to further reduce the cost without sacrificing
the angular resolution is via the use of sparse arrays [25]–
[27], synthesized with MIMO radar technology. Comparing
to a large-size uniformly filled array, MIMO radar exploiting
sparse arrays properly deploys a reduced number of transmit
and receive antennas to achieve the same array aperture but
the interelement spacing of the corresponding virtual array is
larger than half wavelength. In other words, a sparse array is
thinned from a uniformly filled array with the same aperture.

A closely related concept in sparse array exploitation is the
direction-of-arrival (DOA) estimation using difference coar-
rays. When a sufficient number of snapshots are available, the
difference coarray concept can be utilized either standalone
or combined with the sum coarray concept to construct a
coarray with significantly increased virtual sensors from a
sparse physical array. Well-known sparse array configurations
considered for difference coarray include the minimum redun-
dancy array (MRA) [28], nested array [29], coprime array
[30]–[32], and super nested array [33], [34]. The difference
coarray concept provides a scheme to estimate more targets
than the number of array elements. However, difference coar-
ray requires a high number of snapshots to achieve accurate
array covariance matrix estimation [35]. In a highly dynamic
automotive scenario, however, the positions of both radar-
mounted vehicle and objects may often change rapidly [8].

Figure 1: Automotive radars need to provide elevation resolu-
tion to enable drive-over and drive-under functions.

As a result, it is challenging to coherently process the targets
echo measurements over a number of CPIs. In the worst case,
only a single snapshot is available [36]. Therefore, it is often
infeasible to apply the difference coarray concept that requires
multiple snapshots in automotive radar. The array snapshot in
this paper is defined as the array response of all virtual array
elements corresponding to the same range-Doppler bin [8].

In both sum and difference coarrays, some sparse array
configurations will render consecutive coarrays, i.e., there are
no holes in the synthesized virtual array aperture. Examples
of such order-wise sparse array configurations include the
nested array used in both sum and difference coarray cases
[29], [37]. On the other hand, when the lags in certain
synthesized difference coarrays are not consecutive, such as
the difference coarray of a coprime array, filling the holes
to reconstruct a uniform linear array (ULA) with consecutive
lags is shown to be effective to improve DOA estimation
performance and apply certain DOA estimation methods, such
as MUSIC with spatial smoothing [38], [39], that require a
consecutive coarray configuration. Taking the advantage of the
Toeplitz and Hankel properties of the covariance matrix of
a ULA, several methods are developed to reconstruct sparse
array covariance matrix using structured CS and structured
matrix completion techniques [40]–[44].

In automotive radars, targets are typically first separated
in range and Doppler domains. As a result, the number of
targets that need to be resolved in the angular domain in the
same range-Doppler bin is small [8]. Therefore, in this paper,
instead of resolving more targets than the number of physical
array elements using the difference coarray concept, we rather
focus on obtaining a large virtual array aperture achieving high
angular resolution in both azimuth and elevation directions
with sum coarray-based sparse arrays exploiting only a single
snapshot. The sum coarray construction in an active sensing
scheme does not require the estimation of correlations and
thus can be implemented using a single snapshot, as long
as separable waveforms are used at the transmit end. This
is fundamentally different to the difference coarray concept
which requires a high number of snapshots to estimate the
covariance matrix. Structured matrix completion is used to
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fill the missing elements of covariance matrix to reduce the
sidelobe levels and enable gridless DOA estimation [44]–[47].

C. Our Contributions

In this paper, we develop a 4D automotive MIMO radar
sensing technique that provides point clouds at a much lower
cost than LiDAR with higher robustness to weather con-
ditions. Each transmit antenna transmits the same random
sparse step-frequency waveform (RSSFW) to synthesize a
large effective bandwidth for high-resolution range estimation,
while keeping a low sampling rate. Sparse spectrum utilization
also makes it insensitive to automotive radar interference.
The waveform orthogonality is achieved through Doppler-
division multiplexing (DDM). In the proposed MIMO radar
using RSSFW waveforms, the targets are first separated in the
range and Doppler domains, and a large virtual sparse array is
synthesized and completed to provide high resolution in both
azimuth and elevation.

The offerings of the proposed automotive radar system are
summarized as:
1) It achieves high-resolution imaging capability with per-
formance close to LiDAR systems but with a much lower
cost. High resolution in range, Doppler, azimuth, and elevation
is achieved via joint sparse spectrum and two-dimensional
(2D) sparse array design. The sampling rate of ADC is kept
low, and the hardware cost is reduced.
2) The RSSFW radar waveforms ensure low range sidelobe
levels for reliable weak target detection. Optimal weights
are designed to minimize the peak sidelobe level of the range
spectrum so that targets with small RCS can be reliably
detected without introducing high probability of false alarm.
3) The novel 2D sparse array interpolation technique
reduces sidelobes and enables gridless angle estimation.
We treat sparse arrays as a deterministic sub-Nyquist sampler
of corresponding uniform arrays. The missing elements or
holes in the sparse arrays are recovered by completing a
low-rank Hankel matrix, and the recoverability is examined
with respect to the Hankel matrix coherence and sparse array
topology. Consequently, the sidelobes of irregular sparse arrays
are suppressed so that the probability of false alarm in angle
estimation or possible angle ambiguity can be mitigated. Fur-
thermore, matrix completion enables gridless angle estimation
with improved SNR.
4) It mitigates multiuser radar interference. Since only a
small portion of the frequency spectrum is occupied, the pro-
posed RSSFW radar enables flexible coordination of spectrum
utilization among multiple automotive radars with low mutual
interference among automotive radars.

The rest of the paper is organized as follows. We intro-
duce the system model of RSSFW radar and present range
sidelobe optimization and waveform orthogonality in Section
II. High-resolution imaging radar with 2D sparse array and
novel array interpolation are developed in Section III, and the
recoverability of array completion is investigated in Section
IV. Simulation results are presented in Section V. Finally,
Section VI concludes the paper.

II. SPARSE STEP-FREQUENCY-BASED AUTOMOTIVE
MIMO RADAR

In this section, we address the problem of high-resolution
target range estimation using RSSFW signals with a small
number of carrier frequencies. We start with a simple single-
transmit single-receiver model, and then extend it to a MIMO
setting in Section II-C where the waveform orthogonality is
addressed with slow-time phase codes.

Consider a sequence of N pulses whose carrier frequencies
are a sparse subset chosen from P available frequencies,M =
{fn|fc + n∆f, n ∈ {0, 1, · · · , P − 1}}, that are equally dis-
tributed in [fc, fc +B]. The maximum unambiguous range
is Ru = c/(2∆f) whereas the range resolution is given by
∆R = c/(2P∆f) = Ru/P . The total time duration of a burst
cycle, T , consists of both transmit and receive modes. One CPI
consists of M burst cycles. The unit-energy waveform of the
n-th transmit pulse during the m-th burst cycle is expressed
as

s (m,n, t) =
1√
Tp

rect

(
t− nTp −mT

Tp

)
ej2πfn(t−nTp−mT),

(1)

where t is the fast time, Tp is the duration of each pulse, and

rect

(
t− τ
Tp

)
=

{
1, τ − TP ≤ t ≤ +τ,
0, otherwise.

(2)

Consider K point targets in the far field, and the k-th
target has range rk, radial velocity vk, and complex reflection
coefficient βk. The received signal of the n-th pulse at the
m-th slow time corresponding to the k-th target is

ỹk (m,n, t) = βks (m,n, t− 2rk (t)/c) , (3)

where rk (t) = rk (0) + vkt and c is the speed of light. After
demodulation, the n-th echo is obtained as

yk (m,n) = βke
−j 4π

c fn[rk(0)+(mT+nTp)vk]. (4)

The sampled received signal for the n-th pulse is the super-
position of the echoes from all K targets, i.e.,

y (m,n) =

K∑
k=1

yk (m,n)

=

K∑
k=1

βke
−j 4π

c fn[rk(0)+(mT+nTp)vk]

=

K∑
k=1

γke
−j 4π

c (fcmTvk+hn∆frk(0))

× e−j
4π
c (hn∆fnTpvk+hn∆fmTvk+fcnTpvk), (5)

where γk = βke
−j 4π

c fcrk(0).
We make the following assumptions:

A1) The unambiguous scope of high range resolution profiles
(HRRP) defined as c/(2∆f) should be larger than the
scope of a range bin cTp

/
2. This yields that ∆f < 1

/
Tp.

A2) The range migration is negligible during one CPI, i.e.,
vkMT < cTp

/
2.
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A3) Define ξm,n = 2
(
2n∆fTp +m∆fT + 2fcTp

)
vk
/
c.

Considering the vehicle speeds in a typical autonomous
driving scenario, it is reasonable to assume ξm,n � 1/P
for m = 0, · · · ,M − 1 and n = 0, · · · , P − 1.

A4) The Doppler shift is considered constant in one burst
cycle T because of the short duration of the burst pulses.

A. Range and Doppler Estimation in RSSFW Radar

Traditional step-frequency radar systems require N = P
pulses to achieve a range resolution of Ru/P . For the proposed
sparse step-frequency approach, we use N < P pulses and still
achieve the same range resolution of Ru/P .

Stack the samples of one CPI with M burst cycles as matrix
Y = [y1, · · · ,yM ] ∈ CP×M . Each column contains fast-time
samples ym = [y (m, 1) , · · · , y (m,P )]

T for m = 1, · · · ,M ,
where (·)T stands for transpose. For the unused frequency
carrier subset M̄ with

∣∣M̄∣∣ = P−N , the samples y (m, i) , i ∈
M̄, are zero. Applying IDFT to the m-th column and noting
that hn = n for n = 0, 1, ..., P − 1, we obtain

Fm (l) =
1

P

P−1∑
n=0

y (m,n) ej2π
l
P n

=
1

P

K∑
k=1

γke
−j 4π

c fcmTvke
jπ(P−1)

(
l
P −

2rk(0)

c ∆f−ξm,n
)

×
sin
(
π
(
l
P −

2rk(0)
c ∆f − ξm,n

)
P
)

sin
(
π
(
l
P −

2rk(0)
c ∆f − ξm,n

)) . (6)

Under assumption (A3), i.e., ξm,n � 1/P , Fm(l) achieves
its maximum magnitude when lk = 2rk (0)P∆f/c, and the
target range is calculated as rk (0) = clk/(2P∆f) = ∆Rlk.

For each range bin l, the velocity estimation is obtained
by applying discrete Fourier transform (DFT) to the obtained
range spectra Fm (l) for m = 0, 1, · · · ,M − 1, given as

Dl (k) =

M−1∑
m=0

Fm (l) e−j2π
k
Mm. (7)

P -point IDFT for range estimation and M -point DFT for
Doppler estimation provide 10log10 (PM) dB SNR enhance-
ment [8]. This SNR enhancement is considered as a processing
gain which significantly benefits the angle estimation.

B. Range Sidelobe Minimization via Optimal Weighting

As we discussed earlier, since the carrier frequencies are
uniformly divided and randomly chosen, the range spectrum
would have high sidelobes. As a result, targets with a small
RCS may be obscured by the range sidelobes of stronger
targets.

This problem can be effectively solved using CS methods,
possibly combined with the matrix completion methods dis-
cussed in Section III. CS-based approaches, however, requires
a high computational cost and is subject to off-grid issue [48].
In this subsection, we introduce a simpler alternative solution
using optimized weights.

Denote wn as the complex weight for each sparsely al-
located carrier frequency fn ∈ [fc, fc +B], and let w =

[w1, · · · , wP ]
T , where wn = 0 if fn /∈ [fc, fc +B]. The IDFT

of the weighted fast-time samples can be written as

Fm (l) =
1

P

P−1∑
n=0

wny (m,n) ej2π
l
P n. (8)

In the above equation, the received range data ym in
the m-th burst cycle is multiplied with sparse weights w
before Fourier transform is performed to get range spectrum.
According to the signal processing theory, in the frequency
domain, the obtained range spectrum will be the convolution
of frequency response of sparse weights w and frequency re-
sponse of the original range data ym. Therefore, the spectrum
of the sparse weights w is desired to have low sidelobe levels
over the entire sidelobe region so that the possible high range
sidelobes in the resulting convolution would be minimized.

To obtain the optimal weight vector, we discretize the entire
unambiguous range Ru into a fine grid of Q points, rq, q =
1, · · · , Q, separated by ∆R, and set rf = Ru/2 as the range
corresponding to mainlobe. The sidelobe area is then described
by set Q =

{
r1, · · · , rf −∆R, rf + ∆R, · · · , Ru

}
. Define a

range steering vector with respect to range rq as b(rq) =

[b1
(
rq
)
, · · · , bP (rq)]

T , where

bn
(
rq
)

=

{
e−j2π

2rq
c fn , if fn ∈M,

0, if fn /∈M.
(9)

The power spectrum of the ranges corresponding to sidelobe
in Q is constrained to be below a threshold η determined by
peak sidelobe level (PSL), i.e., η = 10Vmax/10, where Vmax

is the maximum allowed PSL in dB. The weight optimization
can be viewed as a range sidelobe minimization problem and
is formulated as

min
w,α

α

s.t.
∣∣∣wHb

(
rq
)∣∣∣ ≤ η + α, rq ∈ Q,

wHb
(
rf
)

= 1,

(10)

where (·)H denotes conjugate transpose. The above optimiza-
tion problem is convex and can be solved efficiently via CVX
toolbox [49].

C. Waveform Orthogonality for RSSFW

In one CPI, a total number of M burst pulse cycles are
transmitted. All transmit antennas simultaneously transmit the
RSSFW waveform at the same sparse carrier frequencies.
We adopt phase coding in slow time to achieve waveform
orthogonality via DDM. Each pulse has the same phase code in
one burst cycle, and the phase code varies with different burst
pulse cycles. The phase code for the m1-th transmit antenna
is given as xm1

(m) = ej2παm1
(m) for m1 = 1, · · · ,Mt

and m = 1, · · · ,M [50]. To separate the m1-th transmit
signal at a receiver, after range IDFT, a slow-time Doppler
demodulation is applied to all range bins corresponding to the
same pulse. The demodulated outputs of the M burst pulse
cycles are assembled into a vector, and its DFT yields the
Doppler outputs. The slow-time phase codes are designed such
that the waveform residual from other transmit antennas is
equally distributed over the whole Doppler spectrum.



SUN AND ZHANG: 4D AUTOMOTIVE RADAR SENSING FOR AUTONOMOUS VEHICLES 5

The benefit of using slow-time phase coding is that the
interference from other transmitters does not affect different
range bins. The range resolution is determined only by the
effective bandwidth of the synthesized RSSFW waveform.

III. HIGH-RESOLUTION IMAGING RADAR SYSTEMS WITH
SPARSE ARRAY DESIGN

Depending on the performance and cost requirement, au-
tomotive radar can use one or multiple transceivers to syn-
thesize a sparse linear array (SLA) for direction finding. The
utilization of sparse arrays not only reduces the hardware cost
but also reduce mutual coupling effects among antennas since
the interelement spacing in both transmit and receive arrays
is kept sufficient large. The array response at a particular
time instance consisting of data obtained at all the MtMr

virtual receivers and corresponding to the same range-Doppler
bin is defined as an array snapshot. To mitigate the high
sidelobes introduced by the sparse arrays, we utilize the matrix
completion technology to interpolate/extrapolate the holes in
the sparse arrays. Furthermore, matrix completion improves
the SNR of array response as there is no loss/holes in the
fully recovered arrays.

During one CPI of a typical automotive radar scenario, a
dense point cloud with a high volume of targets could be
detected in the range-Doppler spectrum [11]. The success of
applying matrix completion in irregular one-dimensional (1D)
or 2D sparse arrays relies on the following two facts:
F1) The number of targets in the same range-Doppler bin

that need angle estimation is small since the targets are
first separated in range-Doppler domain by exploiting the
RSSFW. In other words, the targets are sparsely present
in the angular domain and, as a result, the Hankel matrix
constructed using the array response is low rank.

F2) The SNR in the array snapshot is much higher than that
in the echo signal, since energy has been accumulated
in both range and Doppler domains via the IDFT and
DFT operations. The high SNR in the array snapshot
help reduce the matrix completion error and improve the
accuracy of angle estimation.

We will illustrate the array interpolation concept through
matrix completion in one-dimensional sparse arrays and then
extend it to two-dimensional sparse arrays.

A. One-Dimensional Sparse Array Design

Fig. 2 shows an example of the physical array configuration
of an automotive radar which is a cascaded of 2 MIMO
transceivers, where all transmit and receive antennas are clock
synchronized. Let λ denote the wavelength of the carrier
frequency. In this example, Mt = 6 transmit and Mr = 8
receive antennas are deployed on discretized grid points along
the azimuth direction with an interval of length equal to 50λ.
The interval is discretized uniformly with half-wavelength
spacing. The transmit antennas transmit RSSFW waveform
in a way that, at each receive antenna, the contribution of
each transmit antenna can be separated via DDM. Therefore,
with MIMO radar technology, a virtual SLA with 48 array
elements and aperture of 75λ is synthesized, as shown in

0 150
0

0.5

1

1.5

2
Physical Array

TX
RX

0 15050 100 
Horizontal [Half Wavelength]

0

0.5

1

1.5

2

50 100 
Horizontal [Half Wavelength] 

Virtual Array

Figure 2: Example of an automotive radar cascaded with two
transceivers. The virtual array has 48 elements.

Fig. 2. Compared to a ULA with half-wavelength interelement
spacing and the same aperture, a high number of elements at
certain locations are “missing” at the rednered virtual SLA
(denoted by zeros in the virtual array of Fig. 2). However, the
SLA approach uses only Mt + Mr = 14 physical antennas
with significantly reduced mutual coupling effects [8].

Suppose an array snapshot contains K targets with DOAs
θk, k = 1, · · · ,K. Without noise, the SLA response can be
expressed as

yS = ASs, (11)

where AS = [aS (θ1) , · · · ,aS (θK)] is the manifold matrix

with aS (θk) =
[
1, ej

2π
λ d1 sin(θk), · · · , ej

2π
λ dMtMr−1 sin(θk)

]T
,

and di is the distance between the i-th element of SLA and
the reference element. In addition, s = [β1, · · · , βK ]

T , where
βk denotes the amplitude associated with the k-th target.

Consider a virtual ULA that spans the entire array aperture
and is filled with antennas spaced by interelement spacing
d = λ/2. The total number of antennas in this virtual ULA is
Mo and the noiseless array response is expressed as

yo = Aos, (12)

where Ao = [ao (θ1) , · · · ,ao (θK)] is the array manifold

matrix with ao (θk) =
[
1, ejπ sin(θk), · · · , ejπ(Mo−1) sin(θk)

]T
.

Let N2 = bM0/2c and N1 = M0 − N2 ≥ N2. We can
formulate y ∈ CMo×1 into N2 overlapped subarrays of length
N1. Based on those subarrays, we formulate a Hankel matrix
Y ∈ CN1×N2 with its (i, j)-th element given as Yij = yi+j−1

for i = 1, · · · , N1 and j = 1, · · · , N2. The Hankel matrix Y
has a Vandermonde factorization [51], expressed as

Y = BΣBT , (13)

where B = [b (θ1) , · · · ,b (θK)] is the subarray manifold ma-

trix with b (θk) =
[
1, ej

2π
λ d sin(θk), · · · , ej

2π
λ (N−1)d sin(θk)

]T
,

and Σ = diag (β1, · · · , βK) is a diagonal matrix. Thus, the
rank of Hankel matrix Y is K if N2 ≥ K.

We can similarly construct a Hankel matrix X from the SLA
configuration. Unlike matrix Y constructed from a full ULA,
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however, matrix X has many missing entries and thus can be
viewed as a subsampled version of Y. Under certain condi-
tions, the missing elements can be fully recovered by solving
a relaxed nuclear norm optimization problem conditioned on
the observed entries [52]

min ‖X‖∗ s.t. PΩ (X) = PΩ (Y) (14)

where || · ||∗ denotes the nuclear norm of a matrix, and
PΩ (Y) is the sampling operator with Ω being the set of
indices of observed entries that is determined by the SLA.
In practice, the samples are corrupted by noise, i.e., [X]ij =
[Y]ij+[E]ij , (i, j) ∈ Ω, where [E]ij denotes the noise. In this
case, the matrix completion problem is formulated as

min ‖X‖∗ s.t. ‖PΩ (X−Y)‖F ≤ δ (15)

where ‖·‖F denotes the Frobenius norm of a matrix and δ is
a constant determined by the noise power.

Once the matrix Y is recovered, the full array response is
obtained by averaging its anti-diagonal entries. DOAs can be
estimated via standard array processing methods based on the
array response corresponding to the completed matrix Y.

B. Two-Dimensional Sparse Array Design

As we discussed earlier, to enable driver-over and driver-
under functions, automotive radar must measure target’s ele-
vation angles accurately. As a result, automotive radar needs
to provide point clouds with high angular resolution in both
azimuth and elevation directions. Fig. 3 shows a MIMO radar
with 12 transmit antennas and 16 receive antennas that are
obtained by cascading 4 automotive radar transceivers, and
the transmit and receive antennas are randomly deployed
in an area of [0, 100] (λ/2) × [0, 120] (λ/2) to synthesize a
MIMO 2D virtual sparse array of 196 elements. The 2D
physical array corresponds to a form factor of about 20× 24
cm when the carrier frequency is fc = 77 GHz. It should
be noted that a tradeoff between the angular resolution and
the radar form factor should be considered in practice so
that the radar can be incorporated behind vehicle bumper.
The dimension of the rendered 2D virtual sparse array is
Dy ×Dx = 183(λ/2)× 194(λ/2), which can be viewed as a
spatial sub-Nyquist sampling of a uniform rectangular arrays
(URA) of the same dimension with half-wavelength spacing
in both horizontal and vertical directions. The azimuth and
elevation angular resolutions are respectively expressed as [15]

∆θ = 2arcsin

(
1.4λ

πDx

)
≈ 0.53◦, (16)

∆φ = 2arcsin

(
1.4λ

πDy

)
≈ 0.56◦. (17)

The angular resolution of imaging radar in this example is
comparable to the Velodyne LiDAR HDL-32E whose hori-
zontal resolution is between 0.1◦ and 0.4◦ depending on the
rotation rate, and the vertical resolution is 1.33◦ [53].

Consider a general case of an M1 ×M2 URA with half-
wavelength spacing, shown in Fig. 4, where the URA is on the
x-y plane. Assume the k-th point target with azimuth angle θk
and elevation angle φk. Let χk denote the angle between the
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Figure 3: A MIMO radar with 12 transmit antennas and 16
receive antennas by cascading 4 automotive radar transceivers.
The transmit and receive antennas are randomly deployed in
an area of [0, 100] (λ/2)×[0, 120] (λ/2) to synthesize a MIMO
2D virtual array of 196 elements.

k-th target and the x axis, and ϕk denote the angle between
the k-th target and the y axis. Then, it holds that cos (χk) =
sin (φk) cos (θk) , cos (ϕk) = sin (φk) sin (θk) . Therefore,

θk = arctan

(
cos (ϕk)

cos (χk)

)
, (18)

φk = arcsin

(√
cos2 (χk) + cos2 (ϕk)

)
. (19)

Once the angles χk and ϕk are known, the azimuth angle
θk and elevation angle φk can be uniquely determined. To
simplify the signal modeling, we use angles χk and ϕk for
signal modeling in URA.

The (m1,m2)-th element of the URA array on the x-y plane
response with respect to K targets with angle to the x-axis χk
and angle to the y-axis ϕk, k = 1, ...,K, can be written as

xm1,m2
=

K∑
k=1

βke
jπ((m1−1) sin(χk)+(m2−1) sin(ϕk)) (20)

for 1 ≤ m1 ≤ M1 and 1 ≤ m2 ≤ M2. Let M =[
xm1,m2

]
0≤m1≤M1,0≤m2≤M2

be the data matrix with entries
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Figure 4: Geometry of URA.

as the URA array response defined in (20). We can construct
an N1 × (M1 −N1 + 1) block Hankel matrix as

YE =


Y0 Y1 · · · YM1−N1

Y1 Y2 · · · YM1−N1+1
...

...
. . .

...
YN1−1 YN1

· · · YM1−1

 , (21)

where

Ym =


xm,0 xm,1 · · · xm,M2−L
xm,1 xm,2 · · · xm,M2−L+1

...
...

. . .
...

xm,L−1 xm,L · · · xm,M2−1

 , (22)

is an L× (M2 − L+ 1) Hankel matrix. It can be verified that
the rank of matrix YE is K if N1 ≥ K and L ≥ K [54].

By choosing the locations of the transmit and receive
antennas, we aim to synthesize a sparse 2D array, which can be
viewed as spatial subsampling of the URA. The array response
of the URA can be obtained via completing the block Hankel
matrix YE based on the array response of sparse arrays. The
block Hankel matrix completion problem is formulated as

min ‖XE‖∗ s.t. PΩ (X) = PΩ (M) (23)

where Ω denotes the observation set consisting of the location
of 2D sparse virtual array elements, and XE is the block
Hankel matrix constructed from matrix X following equations
(21) and (22). In the noisy observation scenario, M is replaced
by Mo =

[
xom1,m2

]
0≤m1≤M1,0≤m2≤M2

with xom1,m2
=

xm1,m2
+nm1,m2

, where xom1,m2
denotes the observed signal

and E =
[
nm1,m2

]
0≤m1≤M1,0≤m2≤M2

is the noise term. We
assume the noise is bounded, i.e., ‖PΩ (E)‖F ≤ δ. The noisy
block Hankel matrix completion problem is formulated as

min ‖XE‖∗ s.t. ‖PΩ (X−Mo)‖F ≤ δ. (24)

The above optimization problem can be solved in CVX
toolbox [49]. In this paper, we adopt the singular value thresh-
olding (SVT) algorithm [55] to solve the matrix completion
problems, whose computation cost of updating the low-rank
matrix in each iteration is of order m with m being the
cardinality of the observation set Ω, i.e., m = |Ω|.

C. Angle Finding With Completed Full Arrays

Once the Hankel matrix or block Hankel matrix is com-
pleted, direction finding can be performed using the matrix
pencil method [54], [56]. Alternatively, the array response can
be obtained from the recovered matrices and direction finding
can be carried out using digital beamforming (DBF) [57] by
performing fast Fourier transform (FFT) on snapshots taken
across the array elements. DBF can be implemented efficiently
in an embedded digital signal processor with a single snap-
shot. However, DBF is not a high-resolution direction finding
method. Higher-resolution direction finding can be achieved
with subspace based methods, such as MUSIC [58] and
ESPRIT [59], and sparse sensing based methods [31], [60]–
[65]. The performance of subspace based direction finding
methods relies on accurate estimation of the array covariance
matrix with multiple snapshots, which is a challenging task
in highly non-stationary automotive radar scenarios. While
sparse sensing based methods have high computational cost,
they yield angle estimates based on a single snapshot, which
is important for snapshot-limited automotive radar.

IV. RECOVERABILITY OF ARRAY COMPLETION

The identifiability of full arrays via matrix completion from
a sparsely populated array is related to several factors, e.g., the
coherence properties of the constructed Hankel matrix and the
sparse array topology, i.e., the locations of spatial sub-Nyquist
sampling entries. In this section, we separately examine these
two factors to determine whether holes in a sparse array can
be completed via matrix completion.

A. Matrix Coherence and Recovery Performance
Let U and V be left and right subspaces of the singular

value decomposition of Hankel matrix Y ∈ CN×N , which
has rank K. The coherence of U (similarly for V) equals
[52]

µ (U) =
N

K
max

1≤i≤N
‖U(i, :)‖2 ∈

[
1,
N

K

]
. (25)

Matrix Y has coherence with parameters µ0 and µ1 if
B1) max (µ (U) , µ (V )) ≤ µ0 holds for some positive µ0.
B2) The maximum element of matrix

∑
1≤i≤K uiv

H
i is upper

bounded by µ1

√
K/N in absolute value for some positive

µ1.
The following theorem relates the coherence of Hankel

matrix Y to the the number of targets, the relative location
of targets, and N .

Theorem 1. (Coherence of Hankel Matrix Y): Consider
the Hankel matrix Y constructed from a uniform linear
array as presented in Eq. (13) and assume that the set of
target angles {θk}k∈N+

K
consists of almost surely distinct

members, with minimal spatial frequency separation x =
min

(i,j)∈N+
K×N

+
K ,i6=j

d
λ

(
sin θi − sin θj

)
satisfying |x| ≥ ξ 6= 0.

If K ≤
√

N
βN (ξ) where βN (ξ) = 1

N
sin

2
(πNξ)

sin
2
(πξ)

is the Fejér
kernel, the matrix Y satisfies the conditions (B1) and (B2)
with coherence parameters

µ0
∆
=

√
N√

N − (K − 1)
√
βN (ξ)

(26)
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and µ1 , µ0

√
K with probability 1.

Proof. See Appendix A.

The Fejér kernel βN (x) is a periodic function of x. For d =
λ/2, the spatial frequency separation satisfies |x| ∈ (0, 1/2]. If
0 < ξ < 1/N , it holds that βN (ξ) = O

(
1/
√
N
)

. Increasing
the number of subarray elements N will decrease µ0. It holds
that lim

N→∞
µ0 = 1, which is its smallest possible value.

Let m = |Ω| be the cardinality of the observation set Ω. It
was shown in [52] that, when entries of matrix Y are observed
uniformly at random, there are constants C and c such that if

m ≥ C max
(
µ2

1, µ
1/2
0 µ1, µ0N

1/4
)
ζKN logN (27)

holds for some ζ > 2, the minimizer to problem (14) is
unique and equals to Y with probability of 1 − cN−ζ .
Therefore, if matrix Y has a low coherence parameter, it
can be completed using a less number of observed entries.
In the noisy observation case, assuming the noise is zero-
mean with variance σ2, the noise term is defined as δ2 =(
m+

√
8m
)
σ2. Let Ŷ be the solution to the nuclear norm

minimization problem of (15). The error norm is bounded

by ‖Ŷ −Y‖F ≤ 4δ
√

(2N2 +m)N/m + 2δ with a high
probability [66].

It was shown in [67] that block Hankel matrix YE follows
the coherence properties with parameter µ1 if any two targets
are sufficiently separated. In the noisy observation case, if the
number of random measurements satisfies

m > c1µ1csKlog4 (M1M2) , (28)

where cs = max
{
M1M2

N1L
, M1M2

(M1−N1+1)(M2−L+1)

}
and c1

is a constant, the solution of problem (24), X̂E , satisfies
‖X̂E −XE‖F ≤ 5M3

1M
3
2 δ with probability that is larger than

1− (M1M2)
−2.

In our implementation, the location of transmit and receive
antennas are randomly selected inside a limited aperture that
is bounded by the automotive radar form factor. The locations
of antenna elements in the resulting virtual array are random
as well, thereby acting as a random sub-Nyquist sampler of
the corresponding ULA or URA. In the underlying problem,
therefore, when the input SNR is high and the number of
random sparse array elements satisfies the condition specified
in (27) or (28), the recovered Hankel or block Hankel matrix is
close to the true Hankel or block Hankel matrix corresponding
to ULA or URA array response, respectively.

B. Discussion on Sparse Array Topology and Identifiability

In this section we examine the sampling strategies, i.e., SLA
topologies that can guarantee unique completion of the low-
rank Hankel matrix Y.

Let us look at an example of two SLA configurations shown
in Fig. 5(a). Both SLAs have the same number of array
elements and the same aperture size of 3λ. The second SLA
is a ULA with interelement spacing d = λ. Assume that
a single target located at angle θ and let γ ∆

= ej2π
d
λ sin θ.

The normalized array snapshot of a ULA with aperture size

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2
SLA 1

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2
SLA 2

(a)

columns rows

(b)

columns rows

(c)

Figure 5: Examples of SLAs: (a) two SLAs and the corre-
sponding bipartite graphs (b) G1 and (c) G2.

of 3λ is y = [1, γ, γ2, γ3, γ4, γ5, γ6]T . The array snap-
shots of the two SLAs are y1 = [1, γ, ∗, γ3, ∗, ∗, γ6]T and
y2 = [1, ∗, γ2, ∗, γ4, ∗, γ6]T , respectively, where ∗ denotes
the missing elements. For the above two different SLAs, the
Hankel matrices with missing elements are

Y1 =


1 γ ∗ γ3

γ ∗ γ3 ∗
∗ γ3 ∗ ∗
γ3 ∗ ∗ γ6

 , Y2 =


1 ∗ γ2 ∗
∗ γ2 ∗ γ4

γ2 ∗ γ4 ∗
∗ γ4 ∗ γ6

 .
Matrix Y is rank one and can be reconstructed from Y1

uniquely. However, there would be infinite completions of Y
from Y2. In a ULA with element spacing d = λ, there is angle
ambiguity which cannot be mitigated via matrix completion.

Let G = (V,E) be a bipartite graph associated with the sam-
pling operator PΩ, where V = {1, 2, · · · , N}∪{1, 2, · · · , N}
and (i, j) ∈ E iff (i, j) ∈ Ω. Let G ∈ RN×N be the
biadjacency matrix of the bipartite graph G with Gij = 1
iff (i, j) ∈ Ω. Note that PΩ (Y) = Y �G, where � denotes
the Hadamard product. The two bipartite graphs, G1 and G2

associated with the two SLAs are shown in Figs. 5(b) and
5(c), respectively. It can be seen that G1 is connected, while
G2 is not. For a unique reconstruction of Y, the graph must
be connected [68].

Note the connectivity of the bipartite graph associated with
the sampling operator PΩ is a necessary condition for matrix
completion. Sufficient conditions of matrix completion involve
the matrix coherence properties and the spectral gap of the
graph G, which is defined as the difference σ1 (G)− σ2 (G)
between the largest singular value σ1 (G) and the second
largest singular value σ2 (G) of G [69]. If the spectral gap of
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Figure 6: The spectrum of the optimized weights.

matrix G is sufficiently large, the nuclear norm minimization
method defined in (14) exactly recovers the low-rank matrix
satisfying conditions B1) and B2). It can be verified that
G2 depicted in Fig. 5(c) is a 2-regular graph with vertex
connectivity σ1 (G) = σ2 (G) = 2. Thus the spectral gap
of G2 is zero and Y cannot be recovered from Y2.

Let G−1
K+1,K+1 denote the complete bipartite graph with

(K + 1)×(K + 1) vertices minus one edge. Graph G is called
a K-closed bipartite graph if G does not contain a vertex
set whose induced subgraph is isomorphic to G−1

K+1,K+1. In
general, a rank-K matrix can be uniquely completed only
if the bipartite graph G associated with the sampling is K-
closable [68]. It was shown in [69] that if Ω is generated from
a d-regular graph G with a sufficiently large spectra gap and
d ≥ 36C2µ2

0K
2, then the nuclear norm optimization of (14)

exactly recovers the low-rank matrix, where C is a constant.
It can be seen that, if the coherence of Y, i.e., µ0 defined in
Theorem 1, is low, the required number of observation samples
or array elements of the SLA is small.

The spectra gap condition provides a guidance for choosing
the location of sparse array elements. The sparse arrays can
be optimized such that the bipartite graph associated with
the sampling operator PΩ, i.e., the locations of virtual array
elements, has a large spectra gap. Detailed discussions are
beyond the scope of this paper and will be left for our future
work.

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to eval-
uate the performance of the proposed joint sparse spectrum
and sparse arrays approach for high fidelity 4D sensing for
automotive applications.

A. Range-Doppler Spectrum Under RSSFW

To demonstrate the performance of range and Doppler
estimation using the proposed RSSFW, for one burst cycle,
N = 300 pulses are transmitted on carriers that are uni-
formly at randomly chosen over [fc, fc +B]. The start carrier
frequency is fc = 77 GHz, and the effective bandwidth is
set to B = 200 MHz, corresponding to range resolution of
∆R = 0.75 m. The pulse duration is Tp = 25 ns and the step

(a)

(b)

Figure 7: Illustration of range and Doppler spectrum for two
targets with equal power located at range of 100 m with
velocity of −10 m/s. (a) spectra without weighting; (b) spectra
with weighting.

frequency is ∆f = 0.5 MHz. The maximum unambiguous
detectable range is Ru = 300 m. The burst cycle repetition
interval is T = 25 µs. The maximum unambiguous detectable
velocity is vmax = λ/(4T ) = 38.96 m/s. To measure the
target velocity, M = 300 burst cycles are carried out with
a dwell time of MT = 7.5 ms, rendering a velocity resolu-
tion of ∆v = λ/(2MT ) = 0.26 m/s. To achieve waveform
orthogonality among transmit antennas, a Chu sequence [70]
of length M = 307 was generated and then truncated into
length M = 300 for phase coding in slow time. The SNR
of the demodulated echo signals at receiver is set to 10 dB.
To suppress the high range sidelobes, the weights obtained by
solving the optimization problem (10) are multiplied to the
fast-time samples corresponding to sparse carrier frequencies.

We first consider two targets with equal RCS at the same
range of R = 100 m and with the same velocity of v = −10
m/s but different angles. To demonstrate waveform orthogonal-
ity of RSSFW through DDM, we consider a simple two trans-
mit antenna scenario. At each receive antenna, the received
echo signal is the superposition of the signals transmitted
from multiple transmit antennas reflected by the two targets.
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Figure 8: Comparison of the range spectrum of random sparse
step-frequency automotive radar with and without weighting
for two targets with equal power located at the same range of
R = 100 m.

The target range-Doppler spectrum is obtained by carrying out
IDFT on the burst pulse samples, followed by demodulation
and DFT operation along the slow time.

Fig. 6 shows the spectrum obtained from the optimized
weights for the radar parameters defined above. It can be seen
that the spectrum is upper bounded by −27.5 dB over the
entire sidelobe region.

Figs. 7(a) and 7(b) show the range-Doppler spectrum of
the two targets with and without weighting, respectively. It is
seen that there is a flat Doppler ridge over the whole Doppler
domain corresponding to the target range bin of R = 100 m.
This Doppler ridge is the waveform residual from the other
transmit antennas after demodulation in slow time. The range
spectrum corresponding to the Doppler bin of −10 m/s is
shown in Fig. 8. It can be seen in both Figs. 7 and 8 that,
without weighting, there are high sidelobes at certain locations
in the range spectrum due to the sparse spectrum utilization
in RSSFW, whereas the PSL over the entire unambiguous
detectable range is minimized after weighting.

Next, we consider two targets at different ranges of R1 =
100 m and R2 = 200 m but with the same velocity of −10m/s.
The two targets have different RCS such that in the echo
samples, the signal power of the target at range R2 is only
10% of that of the target at range R1. The range spectrum of
these two targets is shown in Fig. 9. It can be seen that the high
range sidelobes may easily mask the target with small RCS.
In other words, without introducing high probability of false
alarm, the weak target cannot be detected. On the contrary,
the weak target is reliably detected after the range PSL is
minimized with weighting.
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Figure 9: Comparison of range spectrum with and without
weighting. Two targets are located at different ranges of 100
m and 200 m with normalized power of 1 and 0.1, respectively.

B. One-Dimensional Sparse Array Completion

To achieve high azimuth angular resolution, multiple auto-
motive radar transceivers are cascaded together to synthesize
a large sparse array in azimuth. Here, we consider the same
physical array shown in Fig. 2, where Mt = 6 transmit and
Mr = 8 receive antennas are placed in an interleaved way
along the horizontal direction at

lTX = [1, 19, 37, 55, 79, 91]λ/2,

lRX = [12, 22, 25, 39, 58, 62, 70, 73]λ/2.

A virtual array with total 48 elements is synthesized. The
transmit and receive antennas as well as the virtual array are
plotted in Fig. 2.

Two targets are at the same range R = 100 m with velocity
of v = −10 m/s. Their respective azimuth angles are θ1 = 0◦

and θ2 = 20◦. The two targets are first separated in range-
Doppler with the RSSFW. The complex peak values in the
range-Doppler spectrum corresponding to every virtual sparse
array consists of an array snapshot for azimuth angle finding.

The virtual SLA shown in Fig. 2 acts as a determinis-
tic sampler of a rank-2 Hankel matrix Y ∈ CN×N with
N = 76, which is constructed based on the array response
of a ULA with 152 elements. The array response of the SLA
is normalized by its first element. Based on the observed
SLA response, the Hankel matrix Y is completed via the
singular value thresholding (SVT) algorithm [55]. Let Ŷ
denote the completed Hankel matrix. The full ULA response
can be reconstructed by taking the average of the anti-diagonal
elements of matrix Ŷ. The completed full array has an aperture
size of 76λ. Intuitively, in this simulation setting, matrix
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Figure 10: The spectrum of two targets with azimuth angles
of θ1 = 0◦ and θ2 = 20◦ degree under MIMO sparse array
and fully completed array.

completion contributes around 10 log 10 (152/48) ≈ 5 dB
SNR improvement for array processing.

In Fig. 10, we plot the angle spectrum for the two targets.
The two azimuth angle spectra are obtained by applying FFT
to the original SLA with the holes filled with zeros and to
the full array completed via matrix completion, respectively.
It is found that the FFT of the SLA generates two peaks
corresponding to the correct azimuth directions at a cost of
high sidelobes, and thus it is difficult to detect the two targets
in azimuth directions under the original SLA. On the contrary,
the completed full array shows two clear peaks corresponding
to correct azimuth locations in the angle spectrum, and the
sidelobes are greatly suppressed in the completed full array.

C. Two-Dimensional Sparse Array Completion

We consider the same 2D physical array shown in Fig. 3 for
joint high-resolution azimuth and elevation angle estimation,
by cascading 4 automotive radar transceivers. These 12 trans-
mit antennas and 16 receive antennas are randomly deployed
in an area of [0, 100(λ/2)]× [0, 120(λ/2)] to synthesize a 2D
MIMO virtual array of 196 elements. The cascaded automotive
radar form factor is around 20×24 cm. In Fig. 3, the dimension
of the 2D sparse array is Dy ×Dx = 183(λ/2) × 194(λ/2).
A total number of 35, 502 elements are required to construct
a URA of the same dimension with half-wavelength interele-
ment spacing. In other words, the virtual sparse array only
occupies 0.54% the total elements of the URA.

Two targets with the same range and Doppler bin are con-
sidered. Their angles to the x and y directions are (χ1, ϕ1) =(
−20◦, 5◦

)
, (χ2, ϕ2) =

(
20◦, 10◦

)
, respectively. The sparse

array snapshot is consisted of the complex peak values in the
range-Doppler spectrum corresponding to each sparse array
element. The input SNR of the array response is set to 20 dB,
which is reasonable in automotive radar because the fast-time
and slow-time coherent processing provides a high processing
gain, as stated in Section II-A. We then construct a block
Hankel matrix YE of dimension 9, 009 × 8, 928 using one
array snapshot of this 2D sparse array with 196 elements.
Only 0.78% of the Hankel matrix entires are non-zero. Based

Figure 11: The spectrum of two targets with azimuth and
elevation angles of (χ1, ϕ1) =

(
−20◦, 5◦

)
, (χ2, ϕ2) =(

20◦, 10◦
)

under the sparse array. The targets’ angles are
marked with crosses. There are high sidelobes in the spectrum
due to the existing of large number of holes in the sparse array.

Figure 12: The spectrum of two targets with azimuth and
elevation angles of (χ1, ϕ1) =

(
−20◦, 5◦

)
, (χ2, ϕ2) =(

20◦, 10◦
)

under the completed full URA. The targets’ angles
are marked with crosses.

on one snapshot of 2D sparse array, the block Hankel matrix
is completed via the SVT algorithm and the full URA is
then obtained. In this simulation setting, matrix completion
contributes around 10 log 10 (35, 502/196) ≈ 22.5 dB SNR
gain for array processing.

Figs. 11 and 12 plot the azimuth-elevation spectra of the
two targets under the 2D sparse array and the completed
full URA, respectively. It is found that both sparse array and
URA generate two peaks corresponding to the correct azimuth
and elevation angles of the targets. However, in the azimuth-
elevation spectrum of 2D sparse array, there are high sidelobes
over the entire azimuth and elevation FOVs. On the contrary,
the high sidelobes are mitigated in the completed URA.

VI. CONCLUSIONS

In this paper, we developed a new automotive radar system
utilizing a thinned frequency spectrum to synthesize a large
effective bandwidth for high range resolution profiles. The
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RSSFW MIMO radar is considered for 2D sparse arrays
with hundreds of virtual elements. Sensor interpolation was
exploited to recover missing elements in the sparse arrays
using matrix completion. Numerical simulation verified that
the proposed imaging radar yields high performance for joint
high-resolution azimuth and elevation angle estimation.

APPENDIX A
PROOF OF THEOREM 1

Proof. The Hankel matrix Y has a Vandermonde decompo-
sition structure, i.e., Y = BΣBT . The compact singular
value decomposition of Y is expressed as Y = UΛVH ,
where U ∈ CN×K and V ∈ CN×K such that UHU = IK
and VHV = IK , and Λ ∈ RK×K is a diagonal matrix
containing the singular values of Y. Following the same QR
decomposition of manifold matrix B utilized in [65], [71], we
can show that µ (U) and µ (V ) defined in (25) are related
only to the array manifold matrix B. The ULA configuration
has element spacing of d = λ/2. Assume that the target
angles in set {θk}k∈N+

K
are distinct with a minimal spatial

frequency separation x = min
(i,j)∈N+

K×N
+
K ,i6=j

d
λ

(
sin θi − sin θj

)
satisfying |x| ≥ ξ 6= 0. If K ≤ N√

βN (ξ)
holds, where

βN (ξ) = 1
N

sin
2
(πNξ)

sin
2
(πξ)

is the Fejér kernel, it was shown in
[65], [71] that

µ (U) = µ (V ) ≤
√
N√

N − (K − 1)
√
βN (ξ)

. (29)

Consequently, µ0
∆
=

√
N√

N−(K−1)
√
βN (ξ)

and µ1
∆
= µ0

√
K hold

true with probability 1.
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