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Abstract—In this paper, we consider sparse array-based
direction-of-arrival (DOA) estimation using multiple frequencies
that are associated with coprime rational numbers. By exploiting
rational frequencies instead of integer ones as used in the
existing literature, the proposed method provides a flexible design
of multi-frequency sparse arrays with a reduced frequency
separation. We demonstrate that the use of coprime rational
frequencies ensures unambiguous DOA estimation, despite that
the interelement spacing of the array in each frequency is higher
than half-wavelength. We further consider practical selection
of the rational frequencies guided by the spatial correlation
coefficient.
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I. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important appli-
cation of array signal processing which determines the spatial
spectrum of impinging electromagnetic waves [1, 2]. An N -
element uniform linear array (ULA) offers N − 1 degrees-of-
freedom (DOFs) and conventional DOA estimation methods,
such as MUSIC and ESPRIT, can be used to resolve up to
N−1 sources or targets. Conversely, sparse placement of array
sensors can achieve a higher number of DOFs, allowing the
resolution of more targets with the same number of sensors
[3, 4]. Typically, an increased number of DOFs is accom-
plished by leveraging the extended difference coarray, which
uses lag differences between physical sensors to determine the
virtual sensor positions. The development of the nested array
[5] and the coprime array [6] has ignited the wave of studying
systematical sparse array design and processing in the past
decade.

By utilizing frequency diversity, multi-frequency array de-
signs provide a useful approach for implementing sparse arrays
in a more effective manner. Because the array manifold is
associated with the signal carrier frequency, a virtual coprime
array is created using a single ULA with two frequencies [7].
When these two frequencies have a coprime relationship, the
signals observed at the ULA using the two frequencies are
similar to those observed at a coprime array consisting of two
physical uniform linear subarrays. As such, applying frequency
diversity to sparse arrays allows for greater flexibility in array
design with significantly reduced complexity. The extension
to multiple coprime frequencies, along with an analysis of the

achievable number of DOFs, is provided in [8–10]. In [11],
a technique is developed to rapidly estimate DOAs using a
multi-frequency sparse ULA when the number of sources is
less than that of physical sensors. Additionally, the Cramer-
Rao lower bound of the dual-frequency coprime array is
analyzed in [12, 13].

In [14–16], a general framework of multi-frequency sparse
array design is developed for signal DOA estimation with
a significantly higher number of DOFs. This is achieved by
designing the multi-frequency sparse arrays to have zero lag
redundancy in the rendered difference coarray. A modified sen-
sor interpolation technique is developed to accurately estimate
the signal correlation matrix so that the effect of holes in the
difference coarray is mitigated [16].

While the array designs provided in [14–16] are effective
in terms of the achieved number of DOFs, array design
based on the zero-lag redundancy requirement makes it highly
restrictive. For example, such designs may require a high
frequency separation which is not always feasible in practice.
The recent development of the rational array design [17, 18]
provides a new direction of sparse array design. In this paper,
we apply the concept of rational sparse arrays to multi-
frequency-based sparse array design, resulting in generalized
multi-frequency rational sparse arrays. Such generalization
provides a flexible design of multi-frequency sparse arrays
with a reduced frequency separation. We demonstrate that
the use of rational frequencies ensures unambiguous DOA
estimation, despite that the inter-element spacing in each fre-
quency is higher than half-wavelength. Guided by the spatial
correlation coefficient, we further consider practical selection
of the rational frequencies.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. (.)T and (.)H respectively represent
the transpose and conjugate transpose of a matrix or a vector.
(a, b) or gcd(a, b) denotes the greatest common divisor (GCD)
of two integers a and b, so (a, b) = 1 means that the integers
are coprime. lcm(a, b) denotes the least common multiple
(LCM) of integers a and b.

II. MULTI-FREQUENCY RATIONAL SPARSE ARRAYS

We consider a DOA estimation problem by simultane-
ously emitting I continuous wave signals with frequencies



of fi, i = 1, 2, · · · , I , from a single transmit antenna or
a phased array. Extension to multiple transmitter cases is
straightforward based on the multiple-input multiple-output
(MIMO) radar concept [19]. Assume an N -sensor ULA with
interelement spacing d, i.e., the locations of the N physical
sensors are

z0 = [0, d, 2d, · · · , (N − 1)d]T. (1)

When the carrier frequency is fi and the corresponding
wavelength is λi = c/fi with c denoting the propagation speed
of the electromagnetic wave, we express d as the multiple of
half-wavelength as d = Miλi/2. In [14–16], we assumed that
Mi are integers so that all physical sensors are located on the
half-wavelength grid. In this paper, we generalize the concept
to rational arrays [17, 18] so that Mi are rational values such
that Mi = Pi/Qi with Pi and Qi being integers. As such,
the scenarios considered in [14–16] become a special case of
the rational array by setting Qi to take integer values for all
i = 1, · · · , I .

For K far-field targets whose respective DOAs are
θ1, · · · , θK , the return signal vector associated with the ith
frequency component is expressed as:

x̃i(t) = ej2πfit
K∑

k=1

ρ
(i)
k (t)ai(θk) + ñi(t), (2)

where ρ
(i)
k (t) is the reflection coefficient which is in general

frequency-dependent because both phase delay and target
reflectivity vary with frequency. In addition,

ai(θk)=
[
1, e

−j 2πd
λi

sin(θk), · · · , e−j
2π(N−1)d

λi
sin(θk)

]T
(3)

is the steering vector corresponding to θk. In addition, ñi(t) ∼
CN (0, σ

(i)
n IN ) denotes the additive white Gaussian noise.

After demodulating the signal vector using carrier frequency
fi, we obtain the baseband signal vector as

xi(t) =

K∑
k=1

ρik(t)ai(θk) + ni(t) = Aisi(t) + ni(t), (4)

where Ai = [ai(θ1), ...,ai(θK)] and si(t) = [ρ
(i)
1 , ..., ρ

(i)
K ]T.

To simplify the notation, we denote ωk = π sin(θk). Using
Mi = 2d/λi, we have

ai(θk)=
[
1, e−jMiωk , · · · , e−j(N−1)Miωk

]T
. (5)

For the ith frequency, the sensors positions, normalized with
half-wavelength in each frequency, is expressed as

z̃i =
2z0

λi
= [0,Mi, · · · , (N − 1)Mi]

T, (6)

and the combined virtual sensor locations contributed by all
the I frequencies becomes

z̃ = [z̃T
1 , z̃

T
2 , · · · , z̃T

I ]
T. (7)

Fig. 1: Spatial correlation coefficients for an 8-element ULA.

III. IDENTIFIABILITY ANALYSIS

A. Spatial Correlation Coefficient

For simplicity and without loss generality, we consider the
case of I = 2 frequencies. Furthermore, we only consider the
case that ρ(i)k (t) does not vary with frequency. This is referred
to as the proportional spectra scenario in [20]. In this case,
s1(t) = s2(t)

∆
= s(t), and stacking x1(t) and x2(t) renders

x(t) =

[
x1(t)
x2(t)

]
=

[
A1s1(t)
A2s2(t)

]
+ n(t)

=

[
A1

A2

]
s(t) + n(t) = As(t) + n(t),

(8)

where A = [AT
1 AT

2 ]
T, and the corresponding steering vector

is
a(θk) = [aT

1 (θk) aT
2 (θk)]

T. (9)

To perform DOA estimation unambiguously, we need to
have a(θk) ̸= a(θl) for any θk ̸= θl. Because a(θk)
consists of two parts, namely, a1(θk) and a2(θk), respectively
corresponding to the two frequencies, the unambiguous DOA
estimation condition is equivalent to a1(θk) ̸= a1(θl) or
a2(θk) ̸= a2(θl).

Further, the unambiguous DOA estimation condition
a(θk) ̸= a(θl) can be equivalently considered that the spatial
correlation coefficient between θk and θl, defined as [21]

βk,l =
1

2N

∣∣aH(θk)a(θl)
∣∣

=
1

2N

∣∣aH
1 (θk)a1(θl) + aH

2 (θk)a2(θl)
∣∣ , (10)

is less than unity for all k ̸= l. In other words, a necessary
condition for ambiguity to occur is when the spatial correlation
coefficient of both subarrays is unity, i.e., |aH

i (θk)ai(θl)|/N =
1 for some k ̸= l for both i = 1, 2.

This important property was emphasized in the design of
coprime array [6]. As an example, we show in Fig. 1 for
an 8-element ULA that, while the subarrays with M1 = 5
and M2 = 4 show grating peaks with unit spatial correlation
coefficients (β(1)

k,l = 1 or β
(2)
k,l = 1), the spatial correlation

coefficient β of the array consisting of both frequencies does
not have an ambiguity issue.



B. Identifiability Analysis

Denote ∆ω = ωl − ωk with l ̸= k. The spatial correlation
coefficient of a subarray corresponding to frequency fi, i.e.,

1

N
aH
i (θk)ai(θl) =

1

N

N−1∑
n=0

ejMi∆ωn, (11)

becomes unity only when Mi∆ω = 2πU , where U ̸= 0 is
an integer. As θ varies within the range of θ ∈ [−π/2, π/2),
ω ∈ [−π, π) and ∆ω ∈ (−2π, 2π). In a conventional ULA
satisfying the Nyquist sampling condition, i.e., Mi ≤ 1, the
above ambiguity condition cannot be satisfied, thus guarantee-
ing unambiguous DOA estimation.

When Mi = Pi/Qi > 1, the ambiguity condition for the
subarray corresponding to the ith frequency becomes ∆ω =
2πU/Mi = 2πUQi/Pi. In this case, ambiguity occurs if only
one frequency is used. However, in the case of two frequencies,
unambiguous DOA estimation can still be achieved.

The spatial correlation coefficient can be expressed as

βk,l =
1

2N

∣∣∣∣∣
N−1∑
n=0

(
ejM1∆ωn + ejM2∆ωn

)∣∣∣∣∣ . (12)

When U1Q1/P1 ̸= U2Q2/P2 for any integers U1 and U2,
DOA estimation is unambiguous because this violates the
ambiguous DOA estimation condition even if one of the two
subarrays has a unit subarray spatial correlation coefficient.

Define the GCD of two positive rational numbers M1 =
P1/Q1 and M2 = P2/Q2 as [17, 18]

gcd(M1,M2) =
gcd(P1, P2)

lcm(Q1, Q2)
. (13)

Positive rational numbers M1 and M2 are said to be coprime
when gcd(M1,M2) < 1. With these definitions, unambiguous
DOA estimation is achieved when M1 and M2 are coprime.

IV. SIMULATION RESULTS

A. Spatial Correlation Coefficient

Because P1, Q1, P2, and Q2 can be flexibly chosen, the
required stated above leaves a large region for the selection of
rational values M1 and M2 that guarantee unambiguous DOA
estimation. However, it is important to properly choose M1

and M2 so that the maximum value of the spatial correlation
coefficient βk,l, which is abbreviated as β in the sequel, is
kept low throughout the sidelobe regions.

In Fig. 2(a), we show the spatial correlation coefficient of
the array where we fix M1 = 2, i.e., P1 = 2 and Q1 = 1,
and vary M2 between 0 and 8. Several important facts can be
observed here. First, the mainlobe is located at ∆ω = 0 and the
width narrows as M2 increases, i.e., the overall array aperture
increases. Second, because of the specific value of M1 = 2,
the first subarray corresponding to frequency f1 contributes a
value of 0.5 towards β when ∆ω takes values around −2π,
−π, π and 2π. When the second subarray corresponding to
frequency f2 contributes a value of 0.5 towards the same

(a) M1 = 2

(b) M1 = 5

Fig. 2: Spatial correlation coefficients versus M2 for an 8-
element ULA.

region, as observed at M2 = 2, 4, 6, and 8, β becomes 1 and
ambiguity occurs. It is interesting to notice that, as the value
of M2 increases, the intersected region becomes broader.

Fig. 2(b) shows similar results for the case of M1 = 5.
In this case, the first subarray corresponding to frequency f1
contributes a value of 0.5 towards β when ∆ω is a multiple
of 0.4π and β takes a value of unity at more (M1,M2) pairs.
The intersection region becomes broader for small values of
∆ω values as demonstrated for ∆ω = ±0.4π and M2 = 5.

From Fig. 2(b), we can observe that M2 can take a fractional
value around M1 = 5 to achieve a low spatial correlation
coefficient. Fig. 3 shows the results for M2 = 4.6. The
highest sidelobe level in this case is below 0.6, which is
considered insignificant in DOA estimation [21]. In this way,
the separation between the two frequencies is only 8.33%,
which is much smaller than 22.2% if M2 is constrained to
integers and takes the next smaller integer value of M2 = 4
(Note that we assume M2 > M1 to keep the same array
aperture as M2 varies). Such flexibility in choosing a smaller
frequency separation makes it much easier to apply the multi-
frequency sparse array concept in applications where the
available bandwidth is limited.

B. Difference Coarray Lags

We now compare the difference coarray lags obtained from
the rational array configuration with M1 = 5 and M2 = 4.6 =
23/5, and compare them with those obtained from an array
using an integer value of M1 = 5 and M2 = 4. As we
kept max(M1,M2) identical for both array configurations in



Fig. 3: Spatial correlation coefficient when M1 = 5 and M2 =
4.6 for an 8-element ULA.

(a) M1 = 5,M2 = 4.6

(b) M1 = 5,M2 = 4

Fig. 4: Difference coarray lags for an 8-element array.

this case, the aperture is the same. It is seen in Fig. 4 that
the rational array achieves more densely distributed lags with
smaller gaps. While the exact analysis of the DOFs for such
lags off the half-wavelength is not straightforward and will be
considered in our future work, in this specific case, the rational
array achieves a comparable set of lag occupancy in the grid
of half-wavelength spacing.

V. CONCLUSION

In this paper, we have proposed the use of multiple ratio-
nal frequencies for sparse array-based DOA estimation. By
generalizing the conventional multi-frequency sparse arrays,
which only use frequencies with an integer relationship, to
those with rational numbers, an apparent advantage of the
proposed approach is the flexible frequency selection, thereby
enabling its use when a wide separation is infeasible. We have
examined the unambiguous DOA estimation conditions, the
spatial correlation coefficient, and the difference coarray lags.
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