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Abstract—In this paper, we consider the direction-of-arrival
(DOA) estimation problem using a non-integer antenna array,
and our objective is to examine the effect of sensor placement
on the number of array degrees-of-freedom (DOFs) in the
presence of a mixture of strong and weak signals. Two scenarios
corresponding to off-grid sensor placement are considered: (1)
when a single sensor of a uniform linear array (ULA) is in an off-
grid position and (2) when the entire ULA is compressed. The
smallest signal-subspace eigenvalue corresponding to the weak
signals is compared with the rank-revealing QR factorization-
based threshold that separates the signal subspace from the
noise subspace, providing insights into the numerical rank of the
data covariance matrix and serving as a measure of the DOFs
of the array. Furthermore, the effect of signal strength on the
eigenvalues of the data covariance matrix is studied. The effect of
off-grid sensor placement and the variation of the signal strengths
on the array DOFs is demonstrated with simulation results.

Keywords: Degrees-of-freedom, non-integer arrays, weak
signals, eigenvalue interlacing property rank analysis, QR
factorization.

I. INTRODUCTION

Direction finding using sensor arrays is a fundamental
problem in array signal processing with many engineering
applications, such as radar, sonar, wireless communications,
and radio astronomy [1–3]. Conventional uniform linear arrays
(ULAs) with a half-wavelength inter-element spacing are de-
signed to spatially sample the signals at the Nyquist sampling
rate. The number of degrees-of-freedom (DOFs) of an N -
element ULA is limited to N − 1, making them ineffective in
terms of the number of signals that can be resolved for a given
number of antennas. To achieve increased sensing capability,
sparse linear array structures are developed to provide O(N2)
DOFs [4–13].

Most of the sparse array structures studied in the literature
are thinned from a ULA with sensors placed on a half-
wavelength grid. An array is referred to as an integer array
when all sensor positions are integer multiples of the half-
wavelength, whereas arrays that violate this condition, i.e.,
some sensors are placed off the half-wavelength grid, are
referred to as non-integer arrays [14–16]. The application of
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non-integer arrays to interference suppression and direction-
of-arrival (DOA) estimation was considered in [17, 18]. The
Toeplitz property of the covariance matrices for ULAs is not
shared by non-integer arrays and an interpolation technique
was proposed in [17]. It is found in [18] that optimized non-
integer linear arrays provide improved interference cancel-
lation performance. Furthermore, optimized design of non-
redundant sparse non-integer linear arrays was studied in [19].

Recently, non-integer arrays are exploited to develop ra-
tional arrays in [16, 20], where their performance as well
as the conditions for unique identifiability are analyzed. The
design of multi-frequency rational sparse arrays, leveraging the
extension of the concept of rational sparse arrays with reduced
frequency separation, is explored in [21]. The use of rational
frequencies provides flexibility in designing multi-frequency
and frequency-switching sparse arrays and the resulting virtual
rational coprime arrays, as highlighted in previous works [22–
25]. However, it becomes crucial to consider spatial correlation
and sidelobe issues. In light of this, the study in [26] examines
the conditions for unique identifiability and unambiguous
source detection. It is worth noting that, although non-integer
arrays have been explored for a variety of purposes, there
has been limited research into their identifiability. While there
are reported results on the impact of sensor placement devi-
ations from a half-wavelength grid on the achievable number
of DOFs [27], the full understanding of how the off-grid
positioning of sensors affects the achievable DOFs remains
incomplete.

In this paper, we investigate such a problem with an empha-
sis of the presence of mixed (strong and weak) signals as often
encountered in radar applications. We provide an analysis of
the eigenvalues of the array signal covariance matrix in the
presence of weak signals in comparison to the eigenvalues of
the covariance matrix when all signals have equal power. The
rank-revealing properties of the QR factorization is exploited
to define a threshold for the separation between the smallest
eigenvalue corresponding to the signal subspace (SS) and
the largest eigenvalue corresponding to the noise subspace
(NS). The identifiability analysis results are verified using the
MUSIC spectrum for different scenarios.

Notations: We use bold lower-case (upper-case) characters
to represent vectors (matrices). Specifically, IN denotes the
N × N identity matrix, and 0 represents a vector or matrix
filled with zeros of an appropriate dimension. The symbols



(·)∗, (·)T, and (·)H denote complex conjugation, transpose,
and Hermitian operations, respectively. diag(·) constructs a
diagonal matrix, and Tr(·) represents the trace operator. E(·)
denotes the statistical expectation. Additionally, ȷ =

√
−1

denotes the unit imaginary number. ||B||2 denotes the spectral
norm of matrix B and equals the largest singular value of B.
Finally, CM×N denotes the M ×N complex space.

II. SIGNAL MODEL

Consider L mutually uncorrelated narrowband signals im-
pinging on an N -element ULA from far field with distinct
angles θ = [θ1, · · · , θL]T, where L < N is assumed. The
baseband signal vector observed at the array is given as

x(t) =

L∑
l=1

a(θl)sl(t) + n(t) = As(t) + n(t), (1)

where

a(θ) = [e−ȷp1π sin(θ), e−ȷp2π sin(θ), . . . , e−ȷpNπ sin(θ)]T (2)

is the steering vector of the array corresponding to angle θ, and
A = [a(θ1),a(θ2), . . . ,a(θL)] ∈ CN×L denotes the manifold
matrix of the array. pn = n − 1 represents the position of
the nth sensor scaled to the unit inter-element spacing of
half-wavelength, sl(t) denotes the waveform of the lth signal,
and the waveforms of the L signals is stacked as a vector
s(t) = [s1(t), · · · , sL(t)]T. In addition, n(t) ∼ CN (0, σ2

nIN )
represents the zero-mean additive circularly complex white
Gaussian noise vector. The covariance matrix of the received
data vector x(t) is expressed as

Rx = E[x(t)xH(t)] = ARsA
H + σ2

nIN , (3)

where Rs = E[s(t)sH(t)] = diag
([
σ2
1 , σ

2
2 , . . . , σ

2
L

])
is the

source covariance matrix.

In practice, the perfect statistics of the covariance matrix
are unknown. Instead, we use the sample covariance matrix,
which is estimated using K available snapshots as

R̂x =
1

K

K∑
t=1

x(t)xH(t). (4)

Performing an eigen-decomposition of the sample covariance
matrix leads to

R̂x =

L∑
p=1

λ̂pûpû
H
p +

N∑
q=L+1

λ̂qûqû
H
q , (5)

where λ̂p and ûp, p = 1, . . . , L, respectively denote the
eigenvalues and the corresponding eigenvectors in the SS,
whereas λ̂q and ûq , q = L + 1, . . . , N , are the eigenvalues
and the corresponding eigenvectors in the NS.

When the number of available data snapshots approaches
infinity, the NS eigenvalues asymptotically approach the noise
power σ2

n. In practice, however, the number of snapshots is
limited and the estimated NS eigenvalues are related as λ̂1 ≥
λ̂2 ≥ · · · ≥ λ̂L > λ̂L+1 ≥ · · · ≥ λ̂N ≈ σ2

n.

To ascertain the dimension of the signal subspace, we aim
to establish a suitable threshold λ̂thr that separates the smallest
SS eigenvalue λ̂L and the largest NS eigenvalue λ̂L+1 such
that λ̂L > λ̂thr > λ̂L+1. This task is not necessarily easy,
particularly when the statistics of the received data cannot
be accurately estimated and some signals are weak [28].
Furthermore, when one or more sensors are placed along the
off-grid positions, the smallest SS eigenvalue will become even
closer to the largest NS eigenvalue, making it more challenging
to define such a boundary to separate the SS and the NS.

In this paper, we adopt a strategy to define such a threshold
by exploiting the rank-revealing properties of the QR factoriza-
tion [29, 30]. The threshold λ̂thr that separates the SS and the
NS can be utilized to determine the numerical rank of the data
covariance matrix R̂x. The numerical rank of the covariance
matrix is defined as [27]:

Definition: For a tolerance O(ϵ) > 0, the numerical rank of
R̂x ∈ CN×N is the smallest integer r ≤ N such that λr >
σ2
n +O(ϵ).

The notion of numerical rank, as explored in [31, 32],
combined with the rank-revealing properties of the QR fac-
torization, can be applied to investigate the identifiability of
the antenna array in the underlying problem. Consider the
case where R̂x has a numerical rank of r, and there exists
a permutation matrix Π ∈ {0, 1}N×N such that the QR
factorization of R̂xΠ is given as

R̂xΠ = QR, (6)

where Q ∈ CN×N is a unitary matrix, and

R =

[
R11 R12

0 R22

]
∈ CN×N (7)

is an upper triangular matrix with R11 ∈ CL×L and R22 ∈
C(N−L)×(N−L). In this case, if

λmin(R11) > ||R22||2, (8)

then Eqn. (6) is said to be a rank-revealing QR factorization
of R̂x [32]. As the array covariance matrix maintains full rank
in the presence of noise, there exists a permutation matrix Π
such that the diagonal entries of the upper triangular matrix R
are arranged in a decreasing order. Given that the eigenvalues
of an upper triangular matrix are the same as its diagonal
entries [33], condition (8) is satisfied for any array covariance
matrix R̂x, ensuring the existence of its rank-revealing QR
factorization.

Utilizing the interlacing property of eigenvalues [34, 35],
it can be demonstrated that λ̂r(R̂x) = λ̂L ≥ λmin(R11) and
||R22||2 ≥ λ̂r+1(R̂x) = λ̂L+1 consistently hold. Therefore,
we have

λ̂L ≥ λmin(R11) > ||R22||2 ≥ λ̂L+1 ≈ σ2
n +O(ϵ). (9)

From this result, we observe that the spectral norm of R22 can
serve as an appropriate threshold value, λ̂thr, that facilitates the



separation between the SS and NS eigenvalues, thus allowing
for the determination of the numerical rank of R̂x.

III. COVARIANCE MATRIX AND EIGENVALUE ANALYSES

We now consider a scenario in which some of the signals
are weaker than the others. For such a scenario, we assume Ls

strong signals and Lw weak signals such that the total number
of signals is L = Ls + Lw. Let Rx denote the covariance
matrices of the received data without weak signals (i.e., all L
signals have equal signal power σ2

s ) and Rwx that with weak
signals (i.e., Lw out of the L signals have a weaker power
σ2
w ≤ σ2

s ). Their difference is denoted as ∆R, i.e.,

Rx = Rwx +∆R. (10)

Because the trace of a covariance matrix is the summation of
all the signal and noise powers, we have

Tr(Rx) = NLσ2
s +Nσ2

n, (11)

and
Tr(Rwx) = NLsσ

2
s +NLwσ

2
w +Nσ2

n, (12)

where σ2
s and σ2

w are respectively the powers of the strong and
weak signals. Therefore, the difference between these traces is
Tr(Rx)−Tr(Rwx) = NLw∆σ, where ∆σ = σ2

s−σ2
w denotes

the power difference between the strong and weak signals.

The Weyl’s theorem provides insights into the relationship
between the eigenvalues of matrices Rx and Rwx.

Weyl’s theorem: [36] Let A and B be two n× n Hermitian
matrices. The eigenvalues of A+B are related to those of A
and B as

λj(A+B) ≤ λi(A) + λj−i+1(B) for i ≤ j, (13)

and

λj(A+B) ≥ λi(A) + λj−i+n(B) for i ≥ j. (14)

For the underlying problem, we can replace A by Rwx and
B by ∆R, where λLw+1(∆R) = · · · = λN (∆R) = 0. In
the special case of a single weak signal (Lw = 1), we can
obtain the following interlacing relationship from (10), (13),
and (14):

λi+1(Rx) ≤ λi(Rwx) ≤ λi(Rx) (15)

for 1 ≤ i ≤ N − 1, which implies

λ1(Rx) ≥ λ1(Rwx) ≥ λ2(Rx) ≥ λ2(Rwx)

≥ · · · ≥ λN (Rx) ≥ λN (Rwx).
(16)

IV. EFFECTS OF SENSOR LOCATIONS AND SIGNAL POWER
ON SMALLEST SS EIGENVALUES

In this section, we examine the smallest SS eigenvalue
of the covariance matrix for a non-integer array compared
to its integer array counterpart and the effect of the weak
signal power on the smallest SS eigenvalue. Two scenarios
are considered to construct non-integer arrays as follows: (a)

shifting one of the sensors in an integer array from its original
position, say pl, to a non-integer position p̃l between pl−1

and pl+1, and (b) compressing the inter-element spacing of
an integer array by a factor of α ≤ 1, rendering a ULA
with its inter-element spacing generally smaller than half-
wavelength. In both scenarios, we analyze the variation of
the SS eigenvalues of the array covariance matrix with and
without the presence of weak signals, with an emphasis on
the numerical evaluation of the ratio between the largest and
the smallest SS eigenvalues.

In the numerical evaluations, we consider an integer ULA
with N = 10 sensors and L = 9 signals uniformly
distributed in [−60◦, 60◦]. When considering the presence
of weak signals, Ls = 6 strong and Lw = 3 weak
signals are assumed. The six strong signals impinge from
−60◦,−45◦,−30◦,−15◦, 0◦, and 15◦, whereas the three weak
signals arrive from 30◦, 45◦, and 60◦. The input signal-to-
noise ratio (SNR) of the strong signals is set to 5 dB and that
for the weak signals is −5 dB. In addition, 1,000 snapshots
are used.

We first examine the ratio between the largest and the
smallest SS eigenvalues of the covariance matrix when the fifth
ULA sensor, originally placed at p5 = 4 in the integer array,
moves towards one of its two neighboring sensors, respectively
located at p4 = 3 and p6 = 5. It is observed in Fig. 1(a) that, as
the fifth sensor moves its position to p̃5 away from its original
position p5 in either direction, the magnitude of the eigenvalue
ratio increases, implying that reduction of the smallest SS
eigenvalue. Eventually, as the fifth sensor moves very close to
one of the adjacent sensor positions at p4 = 3 and p6 = 5, the
smallest SS eigenvalue becomes very small, rendering a high
value of the eigenvalue ratio. As a result, the contribution of
the fifth sensor to the array DOFs tends to vanish. On the other
hand, compared to the equal signal power case, the eigenvalue
ratio in the presence of weak signals becomes higher because
the smallest SS eigenvalue is smaller in this case.

In Fig. 1(b), it is observed that the eigenvalue ratio monoton-
ically increases as the compression ratio α becomes smaller.
That is, the smallest SS eigenvalue decreases as α takes a
smaller value. Similar to the case depicted in Fig. 1(a), the
eigenvalue ratio takes a higher value when weak signals are
present.

Fig. 1(c) depicts the smallest SS eigenvalue λ̂L with respect
to the power of the weak signal as the location of the fifth
sensor p̃5 varies between 3.1 and 3.5. The value of λ̂L varies
monotonically with the sensor position as well as the power of
the weak signal. On the other hand, for the different scenarios
considered in this plot, the threshold obtained from the QR-
factorization is nearly constant. As a result, the condition that
the DOF contributed by the fifth sensor vanishes, i.e., the
magnitude of λ̂L goes below the threshold, is determined by
both factors, namely, the position of the fifth sensor and the
power of the weak signals. It is clear that the contribution of
the fifth sensor is more pronounced when the power of the
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Fig. 1: Variation of the smallest SS eigenvalue with varying sensor location, compression factor, and signal power.
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Fig. 2: Eigenvalues and MUSIC spectra when the sensor position p̃5 is shifted.
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Fig. 3: Eigenvalues and MUSIC spectra when the inter-element spacing of the ULA is compressed.

weak signal is higher and when the sensor position is closer
to the original integer position.

V. DOA ESTIMATION PERFORMANCE

To support our findings discussed in the previous sections,
we evaluate the DOA estimation performance obtained from
the MUSIC algorithm for the aforementioned two scenarios,
namely, when the array sensors are shifted and when the inter-
element spacing of the ULA is compressed. The effect of the
presence of weak signals on the QR factorization threshold and
the smallest SS eigenvalues is demonstrated and compared to
the case when all signals have the same power. We consider a
ULA consisting of N = 10 sensors with L = 9 uncorrelated

signals uniformly distributed in [−60◦, 60◦]. The same signal
parameters as those described in Section IV are used.

A. Moving a Sensor to an Off-Grid Position

For the first scenario, we consider that the fifth sensor,
originally located at p5 = 4, is shifted to a fractional location
located between p5 = 3 and p5 = 5. Fig. 2(a) shows the
estimated smallest SS eigenvalue λ̂L and the QR factorization
threshold λ̂thr = ||R22||2 with respect to the location of
the fifth sensor, p̃5. It is observed that, in the presence of
weak signals, the magnitude of λ̂L is much smaller than that
obtained form the scenario where all signals are of equal
power. We also note that, for the unequal power scenario,



when p̃5 < 3.39 or p̃5 > 4.62, λ̂L falls below the threshold,
i.e., λ̂L < λ̂thr. Accordingly, the numerical rank of R̂xw,
which represents the number of identifiable signals of the
array, drops from 9 to 8. On the other hand, when all signals
are assumed to have equal power, the magnitude of λ̂L takes a
much higher value. Correspondingly, the possible range of the
off-grid sensor location without losing a DOF is much broader,
ranging from p̃5 = 3.19 to p̃5 = 4.80. As a result, the DOF
contributed by the moving sensor vanishes more easily in the
presence of weak signals.

To confirm the validity of the claimed identifiability condi-
tions, we show the MUSIC spectra of three independent trials
in Figs. 2(b)–2(d). In Fig. 2(b), it is observed that, in the
presence of weak signals with p̃5 = 4.5, which is within the
detectable threshold range between 3.39 and 4.62, all L = 9
signals are correctly detected. On the other hand, when we
choose p̃5 = 4.7, which is outside of the detectable range,
the MUSIC spectra depicted in Fig. 2(c) show that some of
the weak signals are not correctly detected. In contrast, when
all the signals are assumed to be of the same strong power,
the value of p̃5 = 4.7 falls in the detectable threshold range
between 3.19 and 4.80. In this case, it is observed in Fig. 2(d)
that the array successfully resolves all signals.

B. Compressing the Inter-Element Spacing of the Entire ULA

Fig. 3(a) shows the estimated smallest SS eigenvalue λ̂L

and the QR factorization threshold λ̂thr with respect to the
compression factor α for both scenarios respectively with
equal and unequal signal powers. It is observed that, for the
equal power case, the smallest SS eigenvalue λ̂L is above the
threshold λthr when α > 0.77. On the other hand, when the
three signals have a weak power, we require α = 0.91 to keep
λ̂L to be above the threshold λ̂thr. Such results are consistent
with the observations made in Fig. 1(b) that the array is more
sensitive to the sensor location in the presence of weak signals.

Fig. 3(b) shows the MUSIC spectra of the array in the
presence of weak signals, where the compression factor is
α = 0.95. In this case, all the L = 9 signals are detected. As
the compression factor is reduced to α = 0.83, as shown in
Fig. 3(c), the array fails to correctly identify the weak signals.
In contrast, when all signals have equal power, α = 0.83
still falls in the detectable region and, as a result, the MUSIC
spectra shown in Fig. 3(d) indicate that all 9 signals are
successfully resolved.

VI. CONCLUSION

In this paper, we investigated the signal identifiability of
an array in the presence of mixed strong and weak signals
when the sensor positions deviate from those located on a
half-wavelength grid. Two scenarios are considered, namely,
(1) when one sensor moves between its neighboring sensor
positions and (2) when the array remains uniformly spaced
but the inter-element spacing is compressed. We observed
the conditions for these resulting non-integer array positions

to maintain the number of original DOFs by examining the
smallest SS eigenvalue in connection to changes in sensor po-
sitions and signal power. The rank-revealing QR factorization
was applied to this analysis, and the signal identifiability was
presented in terms of the numerical rank of the covariance
matrix.
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