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Abstract

Doppler frequency analysis is important in over-the-horizon radar (OTHR) in order to determine important target parameters
such as the target altitude. In this paper, we analyze the Doppler signatures of OTHR signals propagated through both ordinary
and extraordinary electromagnetic modes. As the signals following the two propagation modes undergo different group delays,
the Doppler frequencies of a target associated with these two modes differ from each other. The frequency analysis of the
resulting Doppler signatures becomes challenging when the Doppler components associated with these two modes are closely
separated or even partially overlapping. In this paper, we develop a low-complexity sparsity-based method to resolve the Doppler
signatures corresponding to the two propagation modes. It is based on a Lasso-based approach and the computational complexity
is effectively reduced by employing a frequency focusing transform. To demonstrated the effectiveness of the proposed approach,
simulation results are presented for challenging scenarios where the multipath Doppler signatures corresponding to the two
propagation modes are interlaced or very close to each other.

1 Introduction

Sky-wave over-the-horizon radar (OTHR) systems provide
effective early-warning surveillance capability as they enable
localization and tracking of targets that are far beyond the earth
horizon [1–5]. These objectives are achieved by transmitting
a high-frequency (HF) band signal which reaches long-range
targets after getting reflected from the ionosphere. OTHR tar-
get tracking, parameter estimation, and the suppression of
interference and clutter motivated significant efforts in signal
processing [6–11].

The operational frequencies of an OTHR depend on the
ionospheric conditions. In practice, only a narrow signal band-
width can be used, making accurate target parameter estima-
tion, especially target altitude estimation, very challenging.
Moreover, time-varying ionosphereic conditions add further
uncertainties and make target altitude estimation more chal-
lenging. Existing target altitude estimation approaches can be
broadly classified into three main categories: (a) tracking of
target positions, including target altitude [7, 8, 10, 12–14]; (b)
joint estimation of target and ionosphere parameters by exploit-
ing their statistical models [11, 15]; and (c) time-frequency
signal analysis of the Doppler signatures corresponding to the
local multipath signals [16–26]. The proposed work considered
in this paper is based on the last approach.

Due to the earth’s magnetic field, the ionosphere is bire-
fringent at radio frequencies. This results in two canonical
propagation modes corresponding to the polarization of the
radio waves, respectively regarded as the ordinary (O) and

extraordinary (X) modes [27–29]. Measurements from verti-
cal and oblique ionospheric sounders, which track the state of
ionosphere, reveal that the signals propagating through the two
polarization modes exhibit different group delays. It implies
that the signals from the two modes are reflected from differ-
ent vertical heights of the ionosphere. Due to different group
delays or virtual ionosphere heights for the O- and X-mode sig-
nals, their corresponding Doppler signatures and slant ranges
also differ. Existing methods developed for single-mode prop-
agation, therefore, fail to work when the separation between
the Doppler frequencies of the O/X-mode signals is closely
separated.

In [30], the separation of O/X-mode signals with close or
interlaced Doppler signatures was considered using the frac-
tional Fourier transform. The target is assumed to move at a
constant altitude with a constant horizontal velocity. By fur-
ther extending this approach in the context of sparsity-based
reconstruction, it was shown in [31] that Lasso [32] and group
Lasso-based [33] strategies can be employed to provide high-
resolution estimates of the mixed O/X-mode Doppler frequen-
cies as well as their separation in the spectral domain. However,
due to the large size of the search space of frequencies and the
subsequent dictionary matrices employed in Lasso, the result-
ing algorithm requires high computational complexity. In this
paper, we address this issue by employing a frequency focus-
ing transform which enables computationally efficient Doppler
frequency estimation. Compared to the existing techniques, the
proposed strategy not only reduces the search space of the fre-
quency estimation but also reduces the size of the data matrix
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Fig. 1. Flat-earth local multipath propagation model of OTHR.

to be processed by the sparsity-based technique. Simulation
results confirm the effectiveness of the proposed strategy.

Notations: Lower-case (upper-case) bold characters are used
to denote vectors (matrices). (.)T denotes the transpose oper-
ator of a matrix or vector. Moreover, || · ||1 and || · ||2 respec-
tively denote the l1- and l2-norms of a vector.

2 Doppler Signature Analysis

A simplified flat-earth model of OTHR is illustrated in Fig. 1
where H denotes the ionosphere height, h is the target altitude,
and R(t) is the time-varying ground range of the target with
respect to OTHR. As shown in the figure, a portion of the trans-
mit signal is reflected by the target and travels back towards
the radar to enable target detection, localization, and tracking.
In addition to the direct path reflected only by the ionosphere
layer (path I), the signals may also be reflected by the earth sur-
face, yielding a local multipath propagation component (path
II) [7]. This results in the following three distinct round-trip
propagation paths: (a) transmitted and received along path I;
(b) transmitted and received along path II; and (c) transmit-
ted along path I and received along path II, and vice versa. The
slant range equations for OTHR can be readily developed using
the equivalent local multipath model shown in Fig. 2 where
the propagation paths above the ionosphere are the mirrored
versions of the ones below the ionosphere layer.

The OTHR signals following the O and X propagation
modes undergo different group delays, effectively yielding
reflections from different virtual heights in the ionosphere.

Fig. 2 Equivalent local multipath propagation model for the O-
mode wave.

These virtual heights usually differ from each other depend-
ing on the operating frequency of the OTHR and the incidence
angle of the transmitted signals [27–29]. Without loss of gen-
erality, we assume that the virtual ionosphere height of the
X-mode wave is lower than that of the O-mode wave. In this
context, we modify the single-layer multipath signal model into
a two-layer model as shown in Fig. 3. Here, H denotes the vir-
tual ionosphere height of the O-mode wave whereas H −∆H
represents that of the X-mode wave with ∆H ≪ H . The sig-
nals following each of the two propagation modes will have
their corresponding three distinct multipath Doppler compo-
nents because of the three round-trip paths available for each
mode. Denote the Doppler frequencies of the received O- and
X-mode signals as fo,i and fx,i, respectively, where i = 1, 2, 3
denotes the path index. Following [19, 30, 31], the Doppler
frequencies of the two-mode signals can be expressed as:

fo,1 = f̄o +∆fo, fo,2 = f̄o −∆fo, fo,3 = f̄o,

fx,1 = f̄x +∆fx, fx,2 = f̄x −∆fx, fx,3 = f̄x,
(1)

where f̄o and f̄x respectively denote the average Doppler com-
ponent for O- and X-mode signals. Moreover, ∆fo and ∆fx
correspond to the intra-mode difference Doppler components
for signals following the O- and X-mode propagation, respec-
tively. Note that the three Doppler components of each mode
are equidistant and symmetric in the spectral domain [30, 31].

From [19, 30, 31], we know that

f̄o ≈ −2fc
c

Ṙ+
4fcH

2Ṙ

cR2
, ∆fo ≈ −4fcHhṘ

cR2
, (2)

where fc is the carrier frequency, R is the target ground
range, Ṙ = dR/dt denotes the target velocity, and c is the
speed of electromagnetic waves. It is clear that all the Doppler
frequencies are proportional to Ṙ.

Since the only difference between the O- and X-mode sig-
nals is the virtual ionosphere heights, we can formulate the
Doppler components corresponding to the X-mode by substi-
tuting H by H −∆H in Eq. (2), given by

f̄x ≈ −2fc
c

Ṙ+
4fc(H −∆H)2Ṙ

cR2

= f̄o −
4fcṘ

cR2
(2H∆H −∆H2),

∆fx ≈ −4fc(H −∆H)hṘ

cR2
= ∆fo + 4

fchṘ

cR2
∆H.

(3)

The resulting noise-free form of the overall mixed O/X-mode
signal y(t) at the OTHR receiver is expressed as

y(t)=

3∑
i=1

(
Ao,ie

j(2π
∫t
0
fo,idt+ϕo,i)+Ax,ie

j(2π
∫t
0
fx,idt+ϕx,i)

)
,

(4)
for 0 ≤ t ≤ T , where Ao,i and Ax,i respectively denote the sig-
nal magnitudes for the signals following the O- and X-modes,
ϕo,i and ϕx,i are the corresponding initial phases of the two
modes, and T is the coherent processing interval (CPI). Note
that fo,i and fx,i are time-varying.
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Fig. 3 Flat-earth local multipath propagation model of OTHR
for mixed O/X-mode propagation.

Considering a typical scenario with h ≪ R and ∆H ≪ R,
we observe the following relationship:

f̄x ≈ f̄o − fδ, ∆fx ≈ ∆fo, (5)

where fδ ≈ (4fcṘ/(cR2))(2H∆H −∆H2) is an unknown
inter-mode Doppler difference illustrating the spectral separa-
tion between the average Doppler components of the signals
associated with the two propagation modes.

From Eqs. (1)–(5), we observe that the inter-mode Doppler
difference fδ is shared by all the local multipath pairs of the
corresponding O/X-mode signals, i.e.,

fδ = fo,i − fx,i, i = 1, 2, 3. (6)

This implies that the corresponding Doppler components of the
O- and X-mode signals are displaced in the spectral domain by
a common shift fδ. Therefore, Eq. (4) can be rewritten in the
following form:

y(t) =

3∑
i=1

(
Ao,ie

j(2π
∫t
0
fo,idt+ϕo,i)

+ Ax,ie
j(2π

∫t
0
(fo,i+fδ)dt+ϕx,i)

)
.

(7)

If the inter-mode Doppler difference fδ is large (fδ ≫ 3∆fo),
the resulting Doppler signatures of the two modes are widely
separated in the spectral domain, making the Doppler signa-
tures corresponding to the two modes easy to separate. On the
other hand, when fδ is much smaller compared to ∆fo (i.e.,
fδ ≪ ∆fo), the O- and X-mode Doppler components are unre-
solvable in the spectral domain, resulting in a beating effect
[30]. In this paper, we focus our consideration to the other
case where the Doppler frequency profiles of the two prop-
agation modes are resolvable but are close to each other or
interlaced in the spectral domain. Such situations usually arise
when fδ ≤ 3∆fo. In this case, the Doppler difference between
the closest components in the two modes is smaller than ∆fo.

3 Doppler Signature Separation

In this section, we investigate the Doppler frequency separation
by employing sparse signal processing. For this purpose, we
exploit the Lasso algorithm [32] and, subsequently, reduce its
complexity by employing a frequency focusing transform.

3.1 Sparsity-based Doppler Signature Separation

From [30], we know that all six Doppler components have
the same chirp rate. Therefore, we can estimate the chirp-rate
γ by employing a chirp transform [34] or fractional Fourier
transform [35, 36]. Denoting γ̂ as the estimated chirp-rate, the
de-chirped form of the received OTHR signal is given as:

ȳ(t) = y(t)e−j2πγ̂t2/2

≈
3∑

i=1

(
Ao,ie

j(2πfs
o,it+ϕo,i) +Ax,ie

j(2πfs
x,it+ϕx,i)

)
,

(8)

where f s
o,i and f s

x,i denote the start frequencies respectively for
the two modes after de-chirping.

In order to estimate the Doppler frequencies, we construct
an N × 1 data vector ȳ as:

ȳ = [ȳ(t), ȳ(t− 1), · · · , ȳ(t−N)]T. (9)

The sparse frequency estimation over the fine grid F consisting
of R frequencies can be achieved using the Lasso algorithm as
[32]:

r̂ = arg min
r

||ȳ − Fr||22 + ζ||r||1, (10)

where F is the N ×R inverse Fourier transform dictionary
matrix with each of its columns corresponding to a frequency in
F , r is the R× 1 sparse column vector, and ζ > 0 is a regular-
ization parameter. The positions of the non-zero elements of the
obtained solution r̂ correspond to the estimated Doppler fre-
quencies in the search grid, which are present in the de-chirped
signal vector ȳ.

3.2 Low-Complexity Implementation via Frequency Focusing

Recognizing that the Doppler frequencies occupy only a nar-
row spectrum bandwidth, we can reduce this computational
complexity by decomposing the Lasso optimization (10) and
enabling subband processing. This is realized by employing
multiple frequency focusing transforms which enable concur-
rent processing of the received data on different processing
chains dedicated for distinct subbands. The proposed strat-
egy can also be exploited if the frequency band of interest is
known a priori through, for example, coarse chirp parameter
estimation in the previous stage. The proposed strategy not only
reduces the search space of Lasso but also reduces the size of
data vector ȳ, resulting in a superior computational efficiency.

Let us construct a B ×N frequency focusing matrix B (with
B ≪ N ) whose B rows collectively cover a distinct subband of
interest. The b-th row of B is given by:

[B]b =
1

N

[
ej(

N−1
2 )b 2π

N , ej(
N−3

2 )b 2π
N , · · · , e−j(N−1

2 )b 2π
N

]
,

(11)
which corresponds to a frequency sector centered at bfs/N .
The function of frequency focusing matrix B is analogous
to the beamspace processing matrix [38] used in beamspace
direction-of-arrival estimation problems which enables the data
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processing to be carried out only for a specific spatial sec-
tor of interest, thus significantly reducing the computational
complexity.

The frequency focused data vector and the corresponding
dictionary matrix take the following form:

ỹ = Bȳ, F̃ = BF. (12)

The new data vector ỹ and the dictionary matrix F̃ have dimen-
sions B × 1 and B ×R, respectively. Note the dimensions of
ỹ and F̃ are much smaller than ȳ and F, respectively.

The resulting optimization for frequency estimation using
the frequency focused Lasso algorithm becomes

r̂ = argmin
r

||ỹ − F̃r||22 + ζ||r||1

= argmin
r

||B(ȳ − Fr)||22 + ζ||r||1.
(13)

The computational complexity of Lasso exploiting the least
angle regression (LARS) algorithm [37] for an N × 1 data vec-
tor ȳ and an R× 1 sparse vector r is given by O(R3 +NR2).
In comparison, the corresponding computational complexity
of the frequency focused Lasso is reduced to O(R3 +BR2).
Considering that NR ≫ R3 ≫ BR2 typically holds, the fre-
quency focused scheme provides significant improvement of
the computational efficiency.

4 Simulation Results

In this section, we present simulation results that resolve the
Doppler frequency components generated from the mixed O/X-
mode signals. The key parameters are listed in Table I. We
compare the performance between Lasso [32] and the proposed
frequency focused Lasso approach. The search space for both
algorithms is considered to be from 40 Hz to 42 Hz with a
grid resolution of 0.005 Hz, resulting in R = 400 rows for
the sparse vector r. We use B = 80 rows [B]b, which corre-
spond to uniformly spaced spectrum entries, in matrix B used
to focus at the desired 2 Hz subband of interest. The simu-
lations are performed on a computer equipped with Intel(R)
Core(TM) i7-9750H (2.60 GHz) processor with 16 GB RAM.
We used MATLAB R2021a (64-bit) and CVX toolbox (version
2.2, build 1148) [39].

Table 1 Simulation Parameters
Parameter Notation Value
Initial range R(0) 2,500 km
O-mode ionosphere height H 350 km
X-mode ionosphere height H −∆H 335 km or 320 km
Target altitude h 20 km
Target horizontal velocity Ṙ 400 m/s
Carrier frequency fc 16 MHz
Pulse repetition frequency fs 100 Hz
Coherent integration time T 80 s
Signal-to-noise ratio (SNR) η 0 dB

Two cases are considered below. In the first case, ∆H takes a
small value, rendering interlaced multipath Doppler signatures.
The second case considers an increased value of ∆H .

Case I (∆H = 15 km): The Doppler frequency profile for
the mixed O/X-mode signals after de-chirping is illustrated in
Fig. 4(a). It is observed that the six Doppler components are
interlaced. For this case, the frequency estimation results using
Lasso and proposed focused Lasso approaches along with their
computational time are given in Figs. 4(b) and 4(c), respec-
tively. It is evident that both algorithms are able to resolve all
the Doppler signatures successfully. However, Lasso required
more than 100 times of the computational time compared to the
proposed frequency focused Lasso scheme.

Due to the fact that Doppler frequency components resulting
from an individual propagation mode are equally spaced, the
three components corresponding to each mode can be easily
separated by inspecting the resolved Doppler signatures in this
case.

Case II (∆H = 30 km): In this simulation, we consider a
challenging case where all the six components resulting from
the mixed O/X-mode signals are equally spaced. For this case,
the actual Doppler signatures due to the mixed O/X-mode sig-
nals are illustrated in Fig. 5(a) whereas the frequency resolution
results using Lasso and the proposed focused Lasso approach
are presented in Figs. 5(b) and 5(c), respectively, along with
their respective computation times. It can be noted that both
algorithms provide similar frequency estimation results. How-
ever, the proposed frequency focused Lasso provides the esti-
mation results in 0.78 sec compared to the conventional Lasso
algorithm which requires 96.16 sec.
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Fig. 4. Doppler frequency estimation for interlaced Doppler signatures (∆H = 15 km, N = 8, 000, R = 400, B = 80).

4



Frequency (Hz)

N
o
rm

a
liz

e
d
 S

p
e
c
tr

u
m

 (
d
B

) Computation time = 96.16 sec

Frequency (Hz)

N
o
rm

a
liz

e
d
 S

p
e
c
tr

u
m

 (
d
B

) Computation time = 0.78 sec

Actual Doppler signatures Lasso [30] Frequency focused Lasso (proposed)

Fig. 5. Doppler frequency estimation for proximal Doppler signatures (∆H = 30 km, N = 8, 000, R = 400, B = 80).

For this specific case, because all components are equally
spaced, there are two possible combinations of Doppler fre-
quencies of O/X-mode signals which can generate such a
result, namely, interleaved and side by side cases. In this case,
additional information of the target and propagation status can
be exploited from previous operations to identify the Doppler
components corresponding to the two propagation modes.

5 Conclusion

In this paper, we investigated the Doppler frequency anal-
ysis for mixed O/X-mode OTHR signals when the virtual
ionospheric heights for both modes exhibit a moderate height
difference. It was observed that the frequency separation is
challenging when the target Doppler frequencies of the two
modes are interlaced or closely separated. In order to improve
the efficiently in processing the Doppler signatures, a novel
sparsity-aware frequency estimation strategy is proposed which
exploits a frequency focusing transform to significantly reduce
the computational complexity. Simulation results verified the
effectiveness of the proposed strategy.
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