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Abstract—This paper presents a comprehensive analysis of
two-channel modulo analog-to-digital converters (ADCs) systems,
focusing on the sensitivity of ADC thresholds. By exploiting
analytic number theory, we first investigate the relationship
among ADC threshold precision, maximum signal dynamic
range, and error tolerance. Our analysis reveals that even
slight deviations in ADC thresholds can substantially impact
the maximum reconstructed signal dynamic range and error
tolerance. To address these sensitivity issues, we propose a novel
approach that strategically sacrifices signal dynamic range to
stabilise error tolerance in the presence of slight ADC threshold
variations. We also introduce a low-complexity reconstruction
algorithm that exploits this trade-off, thereby enhancing system
robustness. Simulation results validate the theoretical framework
and confirm the efficiency of our proposed algorithm.

Index Terms—Analog-to-digital converters (ADCs), modulo
samplers, Chinese remainder theorem (CRT), analytic number
theory.

I. INTRODUCTION

Conventional analog-to-digital converters (ADCs) saturate
when the input signal exceeds the ADC’s threshold ∆

2 , limiting
the output to the range
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]
, where ∆ > 0 is the ADC’s

peak-to-peak range. Modulo ADCs address this limitation by
introducing a folding operation [1]–[11]. For an input x ∈ R,
the modulo (or folding) operation is defined as [12]–[14]:
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= x− ⌊x⌋ , (1)

where ⌊·⌋ denotes the floor function. However, in a single-
channel modulo-ADC system, the requirement for high sam-
pling rates results in increased data volume, storage demands,
and computational costs [1].

In response to these challenges, multi-channel modulo-ADC
systems have been proposed in [15]–[17]. Such systems utilise
an L-channel framework with progressively increasing ADC
ranges ∆1 < ∆2 < · · · < ∆L ≤ ∆max defined by:

∆l = ϵτl, 1 ≤ l ≤ L, (2)

where L ≥ 2, ∆max is the maximum ADC peak-to-peak
range, ϵ is a positive floating-point number, and τ1, · · · , τL
are pairwise co-prime integers. Each channel is sampled at
the Nyquist rate fNYQ, resulting in a total sampling rate of
fT = LfNYQ. In the noiseless case, perfect reconstruction
is feasible even with L = 2 [15]. Hereafter, we focus on
a two-channel modulo ADC sampling system due to its low
implementation cost.

Given a band-limited input signal g(t), the k-th sample
(where k ∈ Z) is defined as gk = g(k/fNYQ). The k-th
modulo sample of the l-th channel, denoted as r̃k,l, is

r̃k,l = ⟨gk⟩∆l
+ ek,l, (3)

for l = 1, 2, where ek,l represents the noise introduced during
the sampling process. The recovery algorithm for the multi-
channel modulo ADC system, based on the robust Chinese
remainder theorem (RCRT) [18]–[20], ensures fast and reliable
signal reconstruction. Stable reconstruction is guaranteed if
the maximum remainder error ∥e∥∞ = maxk,l |ek,l| from the
modulo samplers stays within the error bound δ, defined as

∥e∥∞ < δ = ϵ/4. (4)

The dynamic range of signals that can be accurately recon-
structed using the RCRT algorithm spans from [−P, P ], where
the peak recoverable signal magnitude P is determined by

P =
ϵτ1τ2
2

. (5)

In [21], [22], it was demonstrated that, with a ratio ∆2/∆1

being an irrational number, the signal dynamic range can
be infinite, theoretically enabling unlimited sampling. The
application of two-channel modulo ADCs for sampling signals
with a finite rate of innovation has also been explored [21]–
[23]. Furthermore, recent research has investigated the sub-
Nyquist sampling of complex exponentials using two-channel
modulo ADCs constructed from Gaussian integers [24].

Despite the aforementioned advancements, the implications
of ADC threshold deviations have not been addressed in
existing studies. For instance, while a threshold may be
intended at 1.4V , various factors such as ADC resolution,
reference voltage drift, temperature-induced errors, and noise
interference could inadvertently adjust it to 1.41V [25]–[29].
Such deviations can critically influence the signal dynamic
range and error tolerance of the reconstruction algorithms, yet
this crucial issue remains unexplored.

Addressing the aforementioned issues, this paper conducts
a comprehensive investigation into ADC threshold deviations,
incorporating both theoretical analysis and the development of
a robust reconstruction algorithm. Key contributions include:

• An examination of how the precision of ADC thresholds
affects the system’s maximum recoverable magnitude and
error tolerance.



• The development of the threshold sensitivity stabilisation
algorithm (TSSA), which effectively manages threshold
deviations by strategically reducing the signal dynamic
range to enhance error tolerance.

The paper is organized as follows: Section II explores the
effect of ADC threshold precision on system performance.
Section III introduces a robust reconstruction algorithm to
stabilise the performance. Section IV provides simulation
results validating the proposed algorithm. Section V concludes
with a summary and future work.

Notations: The greatest common divisor and least common
multiple of integers a and b are denoted by gcd(a, b) and
lcm(a, b) = |a · b|/gcd(a, b), respectively. The probability of
event A is given by P{A}. For an irrational number η, βm(η)
denotes the operation of truncating η to m decimal places. The
asymptotic upper bound of a function is indicated by O(·).
P represents the maximum signal magnitude under RCRT,
with δ as the corresponding error bound. P̄ and δ̄ denote the
signal magnitude and error bound under the proposed TSSA,
respectively. The floor and rounding functions are denoted by
⌊·⌋ and ⌈·⌋, while sgn(·) represents the sign function.

II. THEORETICAL BOUNDS: ADC THRESHOLD PRECISION
VS. SYSTEM PERFORMANCE

This section uses analytic number theory to study how ADC
threshold precision affects the peak signal magnitude and error
tolerance in two-channel modulo ADCs.

To this end, let us consider a deterministic maximum ADC
range, ∆max, written in scientific notation as ∆max = Γ×10α,
where 1 ≤ Γ < 10 achieves precision to the m-th decimal
place, i.e., Γ =

∑m
i=0 Γi× 10−i, with Γi representing the i-th

decimal digit and α an integer exponent. Alternatively, it may
be represented by

∆max = Γmax × 10α−m, (6)

where Γmax = 10m × Γ is a positive integer. For instance,
if ∆max = 12 and m = 4, the initial scientific notation is
∆max = 1.2000 × 10, with Γ = 1.2000 and α = 1. We then
revise this to ∆max = 12000 × 10−3 where Γmax = 12000.
Subsequently, the actual ADC ranges ∆1 and ∆2 are modeled
as random variables described by

∆l = Al × 10α−m, l = 1, 2, (7)

where Al are random positive integers selected uniformly
and independently from the set {1, 2, · · · ,Γmax}. Theorem 1
below analyzes the relationship between error bound δ, peak
magnitude P , and the number of decimal places m.

Theorem 1. Consider a two-channel modulo ADC sampling
system with the maximum ADC range as defined in (6). Let
the actual ADC ranges ∆l, l = 1, 2, be given as in (7). Then:

(a) The error bound δ satisfies:

P
{
10α−m

4
≤ δ ≤ 10α−m

}
> 86.2%+O

(
log(Γmax)

Γmax

)
.

Fig. 1. Error tolerance (δ) and peak signal magnitude (P ) and for ∆2 = 2
and ∆1 = βm(

√
3), with number of decimal places m varying from 1 to 10.

(b) The peak signal magnitude P satisfies

P
{
Γ2
max × 10α−m

4
< P < Γ2

max × 10α−m

}
> 73% +O

(
log(Γmax)

Γmax

)
.

Proof. From Eqs. (2), (4) and (7), δ is given by

δ =
10α−m × gcd(A1, A2)

4
. (8)

For two random integers A1 and A2 uniformly distributed in
{1, 2, · · · ,Γmax}, the probability that gcd(A1, A2) = k can
be expressed as [30], [31]

P{gcd(A1, A2) = k} = 6

π2

1

k2
+O

(
log (Γmax)

Γmax

)
. (9)

It can be easily calculated that
∑4

k=1
6
π2

1
k2 = 86.2%, thus

Part (a) of the Theorem holds.
For the peak signal magnitude P , Eq. (5) implies

P =
10α−m × lcm(A1, A2)

2
. (10)

As A1 < A2 ≤ Γmax, it is clear that lcm(A1, A2) ≤ Γ2
max.

According to [32], the probability of lcm(A1, A2) > tΓ2
max is

expressed as

P{lcm(A1, A2) > tΓ2
max}

=
6

π2

⌊1/t⌋∑
j=1

1− jt(1− log(jt))

j2
+O

(
log(Γmax)

Γmax

)
,

(11)

where t is a scaling factor. Substituting t = 1/4 into (11)
completes the proof. ■

When Γmax ≫ 1, the correction term O(log(Γmax)/Γmax)
is usually very small and can be ignored. Part (a) of Theorem 1
indicates that, with high probability, the error bound δ is on the
order of 10α−m. This suggests that δ diminishes exponentially
with m. Similarly, given that Γmax is approximately on the
order of 102m, the peak signal magnitude P is fundamentally
on the order of 10m+α, indicating its exponential growth with
m. Example 1 below further explains this phenomenon.



Example 1. Consider a modulo ADC where ∆2 = 2 and
∆1 = βm(

√
3), with βm(

√
3) representing the value of

√
3

retained to m decimal places. At m = 1, as ∆1 = β1(
√
3) =

1.7 = 17 × 0.1 and ∆2 = 20 × 0.1, indicating τ1 = 17,
τ2 = 20, and ϵ = 0.1. From Eqs. (4) and (5), we can derive
that δ = 0.1/4 = 2.5× 10−2 and P = 20× 17× 0.1/2 = 17.
Increasing to m = 2, ∆1 adjusts to 1.73, using a similar
calculation producing δ = 2.5× 10−3 and P = 173. Figure 1
demonstrates the variation of δ and P as m increases from 1
to 10, confirming that both metrics exhibit trends consistent
with Theorem 1. Notably, even marginal adjustments in ADC
dynamic range can significantly influence both the peak signal
magnitude and the error tolerance.

III. ROBUST RECONSTRUCTION ALGORITHM FOR
STABILIZING ERROR TOLERANCE

This section presents a robust reconstruction algorithm
that mitigates ADC threshold sensitivity by sacrificing signal
dynamic range, similar to the concepts described in [33], [34].
Here, we assume that the actual values of ∆1 and ∆2 can be
obtained through ADC calibration. In the noiseless case, the
signal sample gk can be expressed as

gk = nk,l∆l + ⟨gk⟩∆l
, l = 1, 2,

where nk,l are referred to as folding integers. Robust recon-
struction refers to the accurate estimation of these folding
integers from noisy modulo samples r̃k,l as defined in (3).

To explain the idea, we consider an example with thresholds
∆1 = 1.7 and ∆2 = 2. The corresponding peak signal
magnitude is P = 17 and the error bound is δ = 0.025.
Figure 2 illustrates the remainders r1 = ⟨x⟩1.7 and r2 = ⟨x⟩2
for −17 ≤ x ≤ 17 on a 2D graph. The intersection r1-r2 on
the horizontal axis identifies distinct pairs of folding integers
n1 = (x−r1)/1.7 and n2 = (x−r2)/2 [34]. The full dynamic
range is marked by a combination of blue dashed lines and red
solid lines covering range [−17, 17]. When an error occurs, as
shown by the ”Error Point” in Figure 2, it deviates from these
diagonal lines. A robust reconstruction algorithm is required
to accurately map this error point to the appropriate line. By
constraining the signal dynamic range to [−5, 5], as indicated
by the solid red diagonal lines, the separation between the lines
increases to d2 = 0.3 from d1 = 4δ = 0.1, thereby enhancing
error tolerance.

Theorem 2. Consider a two-channel modulo ADC system
where the thresholds satisfy ∆1 < ∆2 < 2∆1. Then, the
following results hold:

(a) For signal amplitudes within [−P̄ , P̄ ], where

P̄ = max

{
∆2

(⌊
∆2

2σ

⌋
− 0.5

)
,∆1

(⌊
∆1

2σ

⌋
+ 0.5

)}
with σ = ∆2−∆1, the corresponding error bound is δ̄ =
σ/4. This bound is achievable through the application of
the TSSA detailed in Algorithm 1.

(b) If ∆2/2 < ∆1 < 2∆2/3, then P̄ = ∆2/2.

Fig. 2. Remainders are represented with r1 = ⟨x⟩1.7 and r2 = ⟨x⟩2, where
blue dashed and red solid diagonal lines collectively span the entire range of
x ∈ [−17, 17]. The solid red diagonal lines exclusively cover the narrower
range of x ∈ [−5, 5].

(c) For thresholds defined by ∆1 = qϵ and ∆2 = (q + 1)ϵ
with q ≥ 2 being a positive integer, we find P̄ = P =
q(q + 1)ϵ/2 and δ̄ = δ = ϵ/4.

Proof. Due to lack of space, we present only an outline of
the main proof steps. In Part (a), the derivations for P̄ and
δ̄ employ methods akin to those in Theorem 1 from [33] and
Proposition 3 from [34]. Our proposed TSSA is a refinement of
Algorithm 1 in [34]. The main distinctions are twofold: Firstly,
prior studies generate a modulo remainder within [0,∆),
whereas Eq. (1) yields a range of [−∆/2,∆/2). Secondly,
we introduce the condition ∆2 < 2∆1 to effectively utilise
the ADC’s dynamic range, thereby enhancing the recoverable
signal range. For Part (b), verification is straightforward by
observing that ⌊∆1/(2σ)⌋ = 0 when ∆2/2 < ∆1 < 2∆2/3.
Part (c) is substantiated by separate analyses for cases when
q = 2q0 and q = 2q0 + 1, where q0 is a positive integer. ■

Part (a) of Theorem 2 demonstrates that P̄ and δ̄ are
determined by ∆1 and ∆2, and their difference σ. This
arrangement assures stability in signal reconstruction despite
minor threshold fluctuations, as we will show in Section IV.
Part (b) implies that, when ∆2/2 < ∆1 < 2∆2/3, the output
from the second ADC channel faithfully reproduces the input
signal (r̃k,2 = g̃k), rendering the output from the first channel
(r̃k,1) unnecessary. This setup implies that the TSSA operates
efficiently only if ∆1 > 2∆2/3; therefore, ∆1 should not
be too low to maintain system efficacy. Part (c) discusses a
specific configuration of ∆l for l = 1, 2, where the TSSA
achieves a dynamic range equivalent to that of the RCRT



Algorithm 1 Threshold sensitivity stabilisation algorithm
1: Input: r̃k,1, r̃k,2,∆1,∆2

2: Output: Recovered estimate g̃k
3: qk ← r̃k,1 − r̃k,2 and σ ← ∆2 −∆1

4: ñk ←
⌊
∆1
2σ

⌋
5: ▷ Calculate the folding integer ñk,2

if |qk| ≤ σ(ñk + 0.5) then

ñk,2 ←
⌈qk
σ

⌋
else

ñk,2 ← −sgn(qk) ·
⌈
∆1 − |qk|

σ

⌋
end

6: ▷ Calculate the folding integer ñk,1

ñk,1 ←
⌈
ñk,2∆2 + r̃k,2 − r̃k,1

∆1

⌋
7: g̃k ← 1

2

∑2
l=1 (ñk,l∆l + r̃k,l)

algorithm. As noted in [17], this arrangement of ∆l yields
an optimal error bound δ for given ∆max and P .

IV. SIMULATION RESULTS

This section presents simulation results to validate Theo-
rem 2 and the proposed TSSA. The performance is compared
to the RCRT algorithm [18].

We first fix ∆2 = 8 × 0.2 = 0.16 and vary ∆1 around
0.14, as shown in Table I. It can be observed that, when
∆1 = 7×0.2 = 0.14, TSSA produces the same signal dynamic
range and error bound as RCRT, consistent with Part (c) of
Theorem 2. When ∆1 slightly increases from 0.14 to 0.141,
the RCRT algorithm exhibits a significant expansion in dy-
namic range, from [−0.56, 0.56] to [−11.28, 11.28]. However,
this increase in dynamic range is accompanied by a notable
reduction in error tolerance, which decreases from 5 × 10−3

to 2.5×10−4. Similar trends are observed for other settings of
∆1 being 0.147, 0.133, and 0.1395, respectively. In contrast,
the proposed TSSA algorithm shows much greater stability
under similar conditions, with P̄ and δ̄ remaining within the
same order of magnitude.

Figure 3 presents numerical simulations comparing the per-
formance of the proposed TSSA and RCRT under quantisation
noise. We evaluated three sets of modulo ADC peak-to-peak
ranges: (i) ∆1 = 0.14, ∆2 = 0.16; (ii) ∆1 = 0.141,
∆2 = 0.16; and (iii) ∆1 = 0.139, ∆2 = 0.161. Each sample
was uniformly quantised across a range between 2 and 12 bits.
Since both TSSA and RCRT use point-by-point recovery, we
conducted simulations by randomly selecting gk within the
interval [−0.56, 0.56]. The experiment was repeated 104 times
to ensure statistical reliability. Performance was evaluated by
calculating the mean absolute error (MAE), E(|ĝk − gk|),
across all trials. It is observed that RCRT produces high
MAE values for cases (ii) and (iii). These results illustrate
RCRT’s sensitivity to threshold variations, requiring more bits

TABLE I
COMPARISON OF SIGNAL RECOVERABLE RANGE AND ERROR TOLERANCE

BOUND WITH DEVIATIONS IN ∆1 AND FIXED ∆2 = 0.16

∆1 Algorithm Signal Recoverable Range Error Bound

0.14
RCRT [18] [-0.56, 0.56] 5× 10−3

TSSA [-0.56, 0.56] 5× 10−3

0.141
RCRT [18] [-11.28, 11.28] 2.5× 10−4

TSSA [-0.56, 0.56] 4.8× 10−3

0.147
RCRT [18] [-11.76, 11.76] 2.5× 10−4

TSSA [-0.88, 0.88] 3.3× 10−3

0.133
RCRT [18] [-10.64, 10.64] 2.5× 10−4

TSSA [-0.33, 0.33] 6.8× 10−3

0.1394
RCRT [18] [−55.76, 55.76] 5× 10−5

TSSA [−0.48, 0.48] 5.2× 10−3

Fig. 3. Mean Absolute Error (MAE) comparison of the proposed TSSA and
RCRT [18] under quantisation noise (2 to 12 bits/sample) across three sets of
modulo ADC thresholds. Data is based on 104 trials with input samples gk
uniformly distributed in [−0.56, 0.56].

to maintain acceptable MAE, while TSSA shows remarkable
stability, maintaining error tolerance comparable to optimal
conditions, i.e., ∆1 = 0.14 and ∆2 = 0.16. These findings
underscore TSSA’s robustness against threshold deviations.
Additionally, unlike the RCRT, our proposed TSSA does not
require the computation of modulo inverses, offering a low-
cost advantage.

V. CONCLUSION

This paper analyzes the significant impact of minor thresh-
old variations on the performance of two-channel modulo
ADC systems. While such variations can greatly increase the
dynamic range, they also significantly reduce error tolerance.
To address this issue, we propose a low-complexity algorithm
that maintains stable error tolerance by adjusting the signal’s
dynamic range. The algorithm was tested under conditions
of quantisation noise, and its robustness was demonstrated
through both theoretical analysis and simulations. In the future,
we plan to enhance the algorithm’s capability to handle a
broader dynamic range and evaluate its performance in real
hardware implementations.
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