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Abstract—Hybrid analog-digital beamforming is an effective
approach for practical implementations of a massive multiple-
input multiple-output (MIMO) system by reducing the number
of radio frequency (RF) chains. Fully connected hybrid beam-
forming (F-HBF), where each RF chain is connected to each
antenna, can lower hardware complexity, power consumption,
and cost compared to digital beamforming. Subarray-based
hybrid beamforming (S-HBF), where a specific group of RF
chains is allocated to a particular subarray, can further reduce
hardware requirements. The antenna array is divided into
subarrays using effective partitioning so that the optimization
of analog beamforming can be shared across multiple subarrays,
substantially reducing computational complexity.

Keywords: Hybrid beamforming, fully connected hybrid beam-
forming, subarray-based hybrid beamforming, massive MIMO, sub-
array partitioning, mutual information.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is regarded as one
of the emerging technologies in the next-generation wireless commu-
nication systems by enhancing energy efficiency, system capacity, and
quality of service [1–5]. Particularly, in millimeter wave (mmWave)
communications, massive MIMO systems can be exploited to form
highly directional beams to address the high propagation attenuation
problem of mmWave channels [6–9]. Deploying a massive MIMO
system, however, poses challenges in terms of hardware implemen-
tation, cost, power consumption, and algorithm design. Full digital
beamforming requires one dedicated radio frequency (RF) chain per
antenna. Each RF chain generally consists of hardware components
including signal mixers, analog-to-digital converters (ADCs), and
power amplifiers. The requirement of a high number of RF compo-
nents prohibitively increases hardware cost, power consumption, and
the computational complexity of the beamforming algorithm, thus
making the system infeasible.

To address such challenges, hybrid analog-digital beamforming
techniques [10–18] are popularly employed as a cost-effective so-
lution. Hybrid beamforming significantly reduces the number of RF
chains by dividing the entire beamforming process into two parts,
namely, high-dimensional analog beamforming and low-dimensional
baseband digital beamforming, where the former is implemented
using phase shifters. The implementation of hybrid beamforming
can vary based on how the RF chains are connected to the antenna
elements [15, 19, 20]. In a traditional full hybrid beamforming (F-
HBF) system, the analog beamformer connects all antennas with
all RF chains. To further reduce the complexity, several hybrid
beamforming structures with flexible mapping strategies have been
developed to balance hardware complexity and spectral efficiency.
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One of the effective strategies is subarray-based hybrid beamforming
(S-HBF) in which the antennas in a subarray are only connected
to the corresponding subset of RF chains [20]. Different subarray
partitioning approaches, such as the localized, interleaved, and nested
partitioning [19, 21], can be used. In this paper, localized partitioning
is considered.

Optimizing the analog beamformer in a hybrid beamforming
scheme is a challenging task. While many existing methods assume
the availability of full-dimensional analog signals, signal direction of
arrivals (DOAs), and/or channel state information when optimizing
the analog beamformer, such information is generally unavailable in
practice as we only have access to the digital version of the analog
beamformer output. Therefore, the analog beamforming matrix must
be optimized blindly without the knowledge of the full-dimensional
analog signals. To achieve this, an information-theoretic approach
is developed in [10, 16], where the analog beamformer, also re-
ferred to as the compressive measurement matrix, is optimized by
maximizing the mutual information (MI) of the analog beamformer
output and signal DOAs. In the absence of prior knowledge about
the distribution of the DOAs, [22] develops an iterative approach
that initially considers a uniform prior of DOAs and then updates
this prior iteratively by estimating the normalized spatial spectrum.
In [17, 18, 23, 24], deep neural networks are utilized to optimize the
compressive measurement matrix. [25] maximizes the MI criterion
by further taking array imperfections into account. However, all of
these methods only considers the F-HBF structure.

By exploiting identical subarray partitioning, we optimize the
analog beamformer in one of the subarrays and use this knowledge
to derive the full beamforming matrix. The optimization of analog
beamformer in each subarray is modified from an information-
theoretic iterative approach developed in [16, 22] in which the analog
beamformer is optimized by maximizing the MI between the analog
beamformer output and the signal DOAs. Without assuming prior
knowledge of the signal arrivals, it starts with a uniform prior, and
the normalized power spectrum density estimate at an iteration is then
utilized as the prior DOA distribution for the next iteration.

Notations: We use bold lower-case letters to represent vectors
and bold upper-case letters to represent matrices. Specifically, I
denotes the identity matrix of the appropriate dimension. The symbols
(·)T and (·)H respectively represent the transpose and Hermitian
operations of a matrix or vector. In addition, vec(·) vectorizes a
matrix and Diag(·) forms a matrix by placing a vector in its diagonal
elements. ∥ · ∥F defines the Frobenius norm, while | · | represents
the element-wise absolute value of a matrix. The symbols ⊗ and ⊙
denote the Kronecker product and Khatri-Rao product, respectively.

II. SIGNAL MODEL

Consider Q uncorrelated sources impinging on a massive MIMO
system consisting of N antennas arranged in uniform linear fashion
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Fig. 1: Fully connected hybrid beamforming structure.

from directions θ = [θ1, θ2, · · · , θQ]T. The analog RF signal
received by the antenna array at time t can be expressed as

xRF(t) =

Q∑
q=1

a(θq)sq(t)e
jωct + nRF(t)

= A(θ)s(t)ejωct + nRF(t),

(1)

where A(θ) = [a(θ1),a(θ2), · · · ,a(θQ)]T ∈ CN×Q represents
the array manifold matrix with a(θq) = [1, e−j 2π

λ
d sin θq , · · · ,

e−j 2π
λ

(N−1)d sin θq ]T denoting the steering of the qth user, and s(t) =
[s1(t), s2(t), · · · , sQ(t)]T ∈ CQ denotes the signal waveform vector
with ωc representing the angular frequency of the carrier. In addition,
nRF(t) ∼ CN (0, σ2

nI) represents the zero mean additive white
Gaussian noise (AWGN) vector with noise power σ2

n.
For full digital beamforming (DBF), each antenna is connected to

its own RF chain, transforming the received RF signal into a digital
baseband signal. However, in a massive MIMO system with a large
number of antennas, allocating separate RF chains is impractical due
to hardware costs, power consumption, and computational complex-
ity. Hybrid beamforming offers a solution that achieves comparable
performance with a reduced number of RF chains.

Fig. 1 illustrates the block diagram of a fully connected hybrid
beamforming structure. In this structure, a reduced number of M RF
chains, where M ≪ N , is used. The RF signal at the mth RF chain,
yRF
m (t), is obtained by analog multiplication of the input RF signal

xRF(t) and the analog beamforming vector ϕm ∈ CN×1 as

yRF
m (t) =

N∑
n=1

ϕm,nx
RF
n (t), (2)

where ϕm,n is the nth element of ϕm, denoting the analog beam-
forming coefficient for the nth antenna and the mth RF chain. The
analog multiplier can be implemented using phase shifters in practice.
In this case, each analog multiplier requires N phase shifters and,
therefore, a total of MN phase shifters are required for implementing
the F-HBF architecture. Denoting x(t) as the baseband signal of
xRF(t), the baseband digital signal from M RF chains can be
expressed as

y(t) = Φx(t) = ΦA(θ)s(t) + n(t), (3)

where Φ = [ϕ1, · · · ,ϕM ]T ∈ CM×N is the analog beamforming
matrix.

Although the number of RF chains is reduced from the original
array, the number of phase shifters may remain large for a large
size array, requiring a high computational complexity to optimize.
To address these issues, S-HBF can be exploited, as depicted in Fig.
2. In this configuration, the entire N -antenna array is partitioned into
L non-overlapping subarrays in an identical manner. Each subarray
contains Ñ = N/L antennas and M̃ = M/L RF chains, where both
Ñ and M̃ are assumed to be integers. For a particular subarray, the

B
as

eb
an

d 
Pr

oc
es

si
ng

𝝓!

𝝓"#

Subarray 1

Analog 
multiplier RF chain 1

𝑥!$% 𝑡 𝑦!$% 𝑡 𝑦! 𝑡

Analog 
multiplier RF chain 𝑀&

𝑥&#
$% 𝑡

𝑦"#
$% 𝑡 𝑦"# 𝑡

Analog beamforming
matrix 𝚽&DAC

Subarray 𝐿

Analog 
multiplier

RF chain
𝑀& 𝐿 − 1 + 1

𝑥&# '(! )!
$% 𝑡 𝑦"# '(! )!

$% 𝑡 𝑦"# '(! )! 𝑡

Analog 
multiplier RF chain 𝑀&𝐿

𝑥&#'
$% 𝑡

𝑦"#'
$% 𝑡 𝑦"#' 𝑡𝝓!

𝝓"#

Fig. 2: Subarray-based hybrid beamforming structure.

M̃ RF chains are connected only to the Ñ antennas belonging to that
subarray. Therefore, ÑM̃L = NM/L phase shifters are required to
implement this architecture, resulting in a reduction by a factor of
L compared to the F-HBF case. Due to the reduction in the number
of phase shifters, power consumption is also reduced. It is noted
that, because of the identical subarray partitioning, we only need to
optimize the analog beamforming matrix for a single subarray Φ̃l ∈
CM̃×Ñ , and the result can be replicated to all subarrays. This results
in a dimensional reduction by a factor of L2 in the optimization of
the analog beamforming matrix.

III. ANALOG BEAMFORMING MATRIX OPTIMIZATION

A. Analog beamforming matrix Optimizing for uniform prior

We first describe the optimization procedure of the analog beam-
forming matrix Φ̃l for the lth subarray using an information-theoretic
approach as developed in [16, 22]. In this approach, the DOA θ is
considered as a random variable with a uniform prior distribution.

The probability density function (pdf) of the analog beamformer
output of the lth subarray can be expressed as

f(yl) =

∫
θ∈Θ

f(yl|θ)f(θ)dθ, (4)

where f(θ) is the pdf of θ and Θ is the angular region of observation.
We discretize the observation region Θ into K angular bins with

width of ∆θ̄. As such, the pdf f(θ) is approximated by probability
mass function (pmf), given as pk ≈ f(θ̄k)∆θ̄ for the kth angular
bin, k = 1, 2, · · · ,K. In this case, f(yl) can be approximated as
f(yl) ≈

∑K
k=1 pkf(yl|θ̄k), where f(yl|θ̄k) is the conditional pdf

of yl given DOA θ̄k. The analog beamformer output yl for a signal
impinging in the lth subarray from kth angular bin with nominal
DOA θ̄k can be expressed as

yl|θ=θ̄k
= Φ̃l

[
ãl(θ̄k)s(t) + n(t)

]
(5)

with ãl(θ̄k) being the steering vector corresponding to the lth
subarray and the conditional pdf

f(yl|θ̄k) =
1

πM̃ |C̃yy|θ̄k |
e
−yH

l C̃
−1
yy|θ̄k

yl , (6)

where

C̃yy|θ̄k =Φ̃l

(
σ2
s ãl(θ̄k)ã

H
l (θ̄k) + σ2

nI
)
Φ̃

H
l =Φ̃lẼl,kΦ̃

H
l (7)

is the covariance matrix of the analog beamformer output for the lth
subarray given a specific DOA θ̄k, and

Ẽl,k = σ2
s ãl(θ̄k)ã

H
l (θ̄k) + σ2

nI. (8)



The analog beamforming matrix Φ̃l is optimized by maximizing
the MI between the analog beamformer output yl and the signal DOA
θ, i.e., I(yl; θ), in a gradient ascent manner, expressed as

Φ̃l ← Φ̃l + γ∇Φ̃l
I(yl; θ), (9)

where γ > 0 is the step size and ∇Φ̃l
is the gradient of the MI with

respect to Φ̃l. The MI can be expressed as

I(yl; θ) = −
∫

f(yl) log f(yl)dyl

+

∫ ∫
f(yl, θ) log f(yl, θ)dyldθ.

(10)

Using the approximated pmf, the gradient of the MI with respect to
the analog beamforming matrix is obtained as [16]

∇Φ̃l
I(yl; θ) ≈

K∑
k=1

pk
D−1

k
|Dk|

Φ̃lẼl,k

K∑
k=1

pk |Dk|−1

−
K∑

k=1

pkD
−1
k Φ̃lẼl,k, (11)

where Dk = σ−2
n Φ̃lẼl,kΦ̃

H
l . Note that approximate equality is used

to indicate that the pmf pk is used in lieu of the true pdf.
We then introduced a row orthonormal constraint, i.e., Φ̃lΦ̃

H
l = I ,

to ensure that scaling up Φ̃l does not increase the MI. Each element
of Φ̃l is normalized to have a constant magnitude for convenient
implementation using phase shifters. Due to the identical subarray
partitioning, we can use the same Φ̃l optimzied for a subarray to all
other subarrays. As a result, the full analog beamforming matrix Φ
for the S-HBF settings becomes

Φ = IL ⊗ Φ̃1. (12)

Substituting it to Eq. (3) results in the analog beamformer output of
the entire array.

B. Iterative update of the DOA prior distribution

Since the pmf of DOAs p is unknown, initially it is considered as
uniform distribution to optimize Φ̃l based on Eqs. (9) and (11), and
then obtain Φ using Eq. (12). The spatial spectrum of the user signals
is then estimated by using the minimum variance distortionless
response (MVDR) algorithm as

P (i)(θ) =
1

Ñ

aH(Φ(i))HΦ(i)a(θ)

aH(Φ(i))H(R̂
(i)

yy)−1Φ(i)a(θ)
, (13)

where P (i)(θ) denotes the estimated spatial spectrum and R̂
(i)

yy is the
sample covariance matrix of the analog beamformer output y(i)(t),
with the superscript (i) indicating the ith iteration. The normalized
spatial spectrum is considered as the updated prior of the DOAs,
expressed as

p
(i+1)
k (θ) =

P (i)(θk)∑K
k=1 P

(i)(θk)
, (14)

which is used in the subsequent iteration for the optimization of Φ.
The procedures for optimizing Φ are summarized in Algorithm 1.

IV. DIGITAL BEAMFORMING

After performing analog beamforming, digital beamforming is ap-
plied on the analog beamformer output to enhance the output signal-
to-interference-plus-noise ratio (SINR). The MVDR beamforming
weight vector for qth user is given as

wq =
R̂

−1

i+n,qΦa(θ̂q)

aH(θ̂q)Φ
HR̂

−1

i+n,qΦa(θ̂q)
, (15)

Algorithm 1: Algorithm for optimizing Φ

Input : N , M , JSO , JSI , ∆θ̄, γ
Output: Φ

1 Initialize Φ̃1 randomly.
2 Initialize the pmf of θ, pk, as a uniform distribution
3 /* Outer loop */
4 for jso ← 1 to JSO do
5 /* Inner loop */
6 for jsi ← 1 to JSI do
7 Calculate the gradient of I(yl; θ) using Eq. (11)
8 Update Φ̃1 using (9) and make it constant modulus
9 end for

10 Obtain Φ using (12)
11 Perform analog beamforming as y(t) = Φx(t)
12 Estimating MVDR spectrum using (13)
13 Update the pmf pk as normalized MVDR spectrum using

(14)
14 end for
15 return Φ

where θ̂q is the estimated DOA of the qth signal,

R̂i+n,q =

Q∑
i=1,i ̸=q

P (θ̂i)Φa(θ̂i)a
H(θ̂i)Φ

H + σ̂2
nI (16)

is the interference-plus-noise covariance matrix for the analog beam-
former output signal [16, 26], where P (θ̂i) is the estimated power,
a(θ̂i) is the estimated steering vector of the ith signal, and σ̂2

n is
the estimated noise power, which is considered as the minimum
eigenvalue of R̂yy . Therefore, the estimation of the interference-
plus-noise covariance matrix relies on the estimation of the signal
DOAs and the corresponding signal power.

The signal DOAs can be estimated by finding the location of peaks
of the spatial spectrum obtained using Eq. (13). Once the DOAs are
estimated, the estimated steering vectors can also be subsequently
obtained. On the other hand, to accurately obtain the signal power,
a covariance matrix fitting problem can be formulated using the
estimated DOAs as the support information as

min
P (θ̂)

∥∥∥R̂yy −ΦA(θ̂)P (θ̂)AH(θ̂)ΦH − σ2
nI

∥∥∥2

F
, (17)

where the optimization variable P (θ̂) = Diag([P (θ̂1), · · · , P̂ (θQ)]).
The closed-form solution to Eq. (17) is given as [16, 26]

P (θ̂) =
[
GHG

]−1

GHz, (18)

where G is an M2 ×Q matrix given as

G =
[
vec(Φa(θ̂1)a

H(θ̂1)Φ
H), · · · , vec(Φa(θ̂Q)a

H(θ̂Q)Φ
H)

]
,

(19)
and z = vec(R̂yy − σ̂2

nI) is a vector of dimension M2. Once
the estimated DOAs and the corresponding powers are obtained, the
digital beamforming weights can be obtained from Eq. (15).

V. ANALYSIS OF COMPUTATIONAL COMPLEXITY

The S-HBF can lower the hardware requirements for implementing
a massive MIMO system and the computational complexity for
optimizing the analog beamforming matrix.

The complexity of computing the gradient of MI for the F-HBF
requires a complexity of O(KMN2) [16]. Considering JFI inner
iterations are required to optimize Φ for a particular DOA prior
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and JFO outer iterations are used to reoptimize Φ by updating the
prior of DOAs, the total computational complexity for optimizing
Φ is O(JFOJFIKMN2). On the other hand, for the S-HBF
structure, the computational complexity required for optimizing Φ is
O(JSOJSIKM̃Ñ2) = O(JSOJSIKMN2/L3), which reduces the
complexity by a factor of L3. Note that the complexity is proportional
to JSO and JSI , which respectively denote the numbers of outer and
inner iterations required for the S-HBF case.

VI. SIMULATION RESULTS

We compare the performance of the DBF, F-HBF, and S-HBF in
terms of the output SINR performance. We consider a uniform linear
receive array comprising N = 48 antennas with a half-wavelength
inter-element spacing in a massive MIMO system, and M = 12 RF
chains are used in the hybrid beamforming structures. The pdf of
the DOAs are discretized with an width of ∆θ̄ = 0.01 deg, resulting
in a total K = 1801 grids. The DOAs of the desired source and
two interfering users are chosen from a uniform distribution with
the range between −60◦ to 60◦. In the iterative optimization of the
analog beamforming matrix Φ based on gradient ascent update, the
step size is chosen as γ = 0.001. We perform 20 inner iterations and
3 outer iterations to optimize Φ.

In the first example, we consider the desired user with DOA 5◦

with a varying input signal-to-noise ratio (SNR), whereas two inter-
fering users have DOAs of −6◦ and 15◦ and an input interference-
to-noise ratio (INR) of 10 dB, and 100 snapshots are considered.
For the S-HBF case, L = 2 subarrays are assumed. Fig. 3 depicts

the output SINR for DBF, F-HBF, and S-HBF with respect to the
input SNR. It demonstrates that DBF and F-HBF result in equivalent
performance. For S-HBF, there is a noticeable performance loss at a
low input SNR, but such loss vanishes as the input SNR increases.
For example, the output SINR differs by approximately 4 dB at 0 dB
input SNR, whereas no difference is observed when the input SNR
is 10 dB. Note that, for the F-HBF case, MN = 576 phase shifters
are required, while for S-HBF, the number of required phase shifters
is reduced to MN/L = 288.

Fig. 4 shows the output SINR with respect to the number of sub-
arrays in an S-HBF structure. For convenience of subarray division,
we consider N = 96 antennas, M = 24 RF chains, and different
values of L = 1, 2, 3, 4, 6, 8, 12 subarrays. The input SNR is set
at 10 dB. Note that, when the number of subarrays is L = 1, the
S-HBF becomes equivalent to the F-HBF. It can be observed that,
when the number of subarrays is L = 2 or L = 3, the output SINR
performance of the S-HBF is very close to that of the F-HBF, whereas
approximately 3 dB of SINR loss is observed when L = 4.

As discussed previously, the S-HBF structure reduces computa-
tional complexity for the analog beamformer optimization. Fig. 5
depicts the MATLAB runtime with respect to the number of subarrays
L for two S-HBF architectures, one with 48 antennas and 12 RF
chains and the other with 96 antennas and 24 RF chains. It is observed
that, even with only L = 2 subarrays, the S-HBF structure reduces
the runtime significantly compared to the F-HBF case.

Fig. 6 compares the output SINR performance of F-HBF and S-
HBF across various numbers of inner and outer iterations for an
input SNR of 15 dB. For a single outer iteration, both F-HBF and
S-HBF experience an SINR loss of around 8.58 dB compared to
the the fully digital case. However, as the number of outer iterations
increases, the convergence accuracy improves rapidly. With 2 outer
iterations, only 5 inner iterations reduces the SINR loss to 0.7 dB
compared to the F-HBF case, and around 10 inner iterations are
required for full convergence. In contrast, for the S-HBF case, 5 inner
iterations reduces the SINR loss to 1.1 dB, while 45 inner iterations
are required for full convergence. For three or more outer iterations,
both F-HBF and S-HBF achieve full accuracy with a small number
of inner iterations (e.g., 5), demonstrating the fast convergence of the
optimization method in both cases.

VII. CONCLUSION

In this paper, we presented an efficient solution for the imple-
mentation of a hybrid beamforming structure in a massive MIMO
system. This subarray-based hybrid beamforming architecture offers
a hardware- and power-efficient solution. By sharing the analog
beamforming weights across the subarrays, the complexity of analog
beamformer optimization is also significantly reduced. Simulation
results verify the effectiveness of the proposed approach in terms
of the output SINR and optimization complexity.
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