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ABSTRACT
Single-snapshot signal processing in sparse linear arrays has be-
come increasingly vital, particularly in dynamic environments like
automotive radar systems, where only limited snapshots are avail-
able. These arrays are often utilized either to cut manufacturing
costs or result from unintended antenna failures, leading to chal-
lenges such as high sidelobe levels and compromised accuracy
in direction-of-arrival (DOA) estimation. Despite deep learning’s
success in tasks such as DOA estimation, the need for exten-
sive training data to increase target numbers or improve angular
resolution poses significant challenges. In response, this paper
presents a novel Siamese neural network (SNN) featuring a sparse
augmentation layer, which enhances signal feature embedding and
DOA estimation accuracy in sparse arrays. We demonstrate the
enhanced DOA estimation performance of our approach through
detailed feature analysis and performance evaluation. The code for
this study is available at https://github.com/ruxinzh/SNNS SLA.

Index Terms— Siamese neural network, single snapshot,
direction-of-arrival estimation, sparse linear arrays

I. INTRODUCTION

Radar technology is crucial for the advancement of autonomous
driving systems, offering robust performance even in adverse
weather conditions [1]–[3]. However, current automotive radar sys-
tems often struggle with low angular resolution due to the limited
size of array apertures. Addressing the challenge of achieving
substantial antenna aperture sizes for improved angular resolution,
especially in filled arrays that require numerous antennas, sparse
linear arrays (SLAs) have emerged as an efficient and economical
solution in automotive radars [4]–[7]. These arrays enable larger
apertures and better angular resolution with fewer antenna elements
and help reduce mutual coupling thanks to their wider inter-element
spacing. However, the task of designing optimal sparse arrays is
formidable, as the ideal configuration heavily depends on diverse,
specific requirements, underscoring the absence of a one-size-fits-
all solution for sparse array design [8], [9]. Additionally, random
sensor failures can result in unpredictably sparse array geometries,
further complicating the design process.

Recently, deep learning strategies for direction-of-arrival (DOA)
estimation have gained prominence [10]–[16], known for rapid
inference, enhanced super-resolution, and robust performance in
low signal-to-noise ratio (SNR) environments [10]. These networks
generate a pseudo-angle spectrum on a fixed grid, treating DOA

The work of R. Zheng, S. Sun, and H. Liu was supported in part by National
Science Foundation (NSF) under Grants CCF-2153386 and ECCS-2340029.
The work of Y. D. Zhang was supported in part by NSF under Grant ECCS-
2236023.

estimation as a multi-label classification task. However, as the grid
becomes finer, indicating a greater number of labels and potential
targets, the number of label combinations grows exponentially,
which exacerbates training data requirements and leads to label
imbalance issues, thus potentially degrading the performance of
such data-driven approaches. Additionally, many models oversim-
plify by assuming uniform target intensity, which can compromise
their effectiveness and generalizability in real-world scenarios.
Furthermore, these networks must address random sensor failures
[17]–[20] to maintain the reliability of automotive radar systems.

This paper introduces a novel Siamese neural network (SNN)
[21] designed for single-snapshot DOA estimation in SLAs. SNNs,
utilizing twin identical networks, are ideal for applications requiring
similarity learning between data elements. Our approach employs
SNNs to discern similarities between signals with identical DOAs
but varying in reflection coefficients, sparse array geometries, and
noise levels. This technique significantly improves the network’s
capability to encode data features accurately. We demonstrate the
effectiveness of the proposed method through feature analysis and
DOA estimation performance evaluations, highlighting the adapt-
ability of the proposed method across different array configurations.

II. SYSTEM MODEL

Consider a linear antenna array with N omnidirectional elements
receiving K narrowband, far-field signals from sources sk(t)
arriving from directions θk for k = 1, 2, · · · ,K. The received
signals at different sensors manifest as phase shifts, leading to the
data model:

y(t) = A(θ)s(t) + n(t), t = 1, · · · , T, (1)

where n(t) is the N × 1 complex white Gaussian noise vector and
A(θ) = [a(θ1), . . . ,a(θK)] is the N ×K array manifold matrix.
The steering vector a(θk) for direction θk is defined as

a(θ) =

[
1, ej

2πd2
λ

sin θ, . . . , ej
2πdN

λ
sin θ

]T
, (2)

where (·)T denotes transpose, dn stands for the spacing between the
first element and the n-th element for n = 2, 3, · · · , N , and s(t) =
[s1(t), s2(t), . . . , sK(t)]T represents the source signals. Because
this study analyzes the single-snapshot response y of the array, we
omit the time variable t, and Eq. (1) becomes

y = A(θ)s+ n. (3)

Figure 1(a) compares a 10-element uniform linear array (ULA)
with inter-element spacing of half a wavelength and two 7-element
SLAs, which maintain the same array aperture of 4.5λ as the ULA
but use less antenna elements modeled by a binary mask, with λ
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Fig. 1: (a) Example of ULA and SLAs. The SLAs have a 0.3
sparsity. (b) The beamforming spectrum of a single-snapshot signal
at 20 dB SNR, depicting three targets with different amplitudes and
DOAs, consistently labeled across various array configurations.

denoting the signal wavelength. The sparsity of the SLAs is defined
as

Sparsity = 1− NSLA

NULA
, (4)

where NULA and NSLA respectively represent the number of anten-
nas in the ULA and the SLA. For both SLA examples shown in
Figure 1(a), the sparsity is 0.3, indicating a 30% reduction in the
number of elements compared to the ULA.

Figure 1(b) displays the beamforming (BF) spectrum of a single-
snapshot signal for the ULA and the two SLAs, when the beam is
steered toward the 30◦ direction. The results feature a 20 dB SNR
and three targets with reflectivity intensities of 0.2, 0.5, and 1, and
DOAs of −40◦, −20◦, and 30◦, respectively. Despite variations
in the spectra from different array configurations, all are assigned
the same label for supervised learning purposes, reflecting their
fundamental similarity. This consistency underpins our decision to
use SNNs for processing signals in SLAs, capitalizing on their
ability to learn and leverage these similarities effectively.

III. NETWORK DESIGN AND ARCHITECTURE
III-A. Challenges

Treating DOA estimation as a multilabel classification task, the
size of the network output, Nout, depends on the granularity of the
angle grid. For a field of view between −60◦ and 60◦ at a 1◦

interval, the output size Nout is 121. The total number of possible
labels, Nlabels, given the number of targets, Ntargets, is

Nlabels =

Ntargets∑
k=1

(
Nout

k

)
. (5)

Even without considering variations in the input SNR, target
reflectivity, and diverse sparse array geometries, increasing Nout

and Ntargets alone would exponentially inflate the training data
requirement [10], posing challenges like severe class imbalance
and making the model nearly untrainable with a vast but underrep-
resented label spectrum.
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Fig. 2: Encoder architecture for feature extraction, where ‘CAT’
indicates vector concatenation.

III-B. Network Architecture
To overcome these challenges, we propose a novel SNN featuring

a specially designed sparse augmentation layer and frequency
embedding layer, tailored for DOA estimation of single-snapshot
signals in SLAs.

Sparse Augmentation (SA) Layer: Data augmentation is crucial
for enhancing deep learning model robustness and preventing
overfitting. This is implemented by artificially expanding the dataset
with transformations such as flipping, rotation, and translation [22].

In signal processing, the sparse augmentation layer specifically
introduces controlled sparsity into the dataset. This layer generates
a random binary mask matching the input signal size and includes a
configurable parameter for maximum sparsity as detailed in Section
II. For example, setting the maximum sparsity to 0.3 in a 10-
element ULA allows zeroing out up to three elements, forming a
sparse representation. The layer also outputs the count of activated
antenna elements, which is used for normalization. During training,
this count is determined by the sparse augmentation layer, while in
evaluation, it is set through thresholding algorithms.

Frequency Embedding (FE) Layer: Incorporating domain
knowledge through handcrafted features significantly enhances the
performance of deep learning networks, especially in complex
or poorly understood domains. The sparse augmentation layer,
which randomly masks signals, makes the input unsuitable for
convolutional layers. To remedy this, we introduce the sparse
signal frequency embedding layer that transforms sparse signals
into a continuous frequency domain, facilitating the application of
convolutional layers for feature extraction. This transformation is
mathematically defined as:

g(y) =
AH(θ)y

NSLA
, (6)

where (·)H denotes conjugate transpose and y stands for the input
signal vector. This layer allows for effective embedding of sparse
signals, preserving data integrity for enhanced feature extraction.

Siamese Neural Network: Figure 2 illustrates the architecture
of our feature encoder. Initially, a sparse signal is processed
through a fully connected (FC) layer and a ReLU activation layer,
mathematically expressed as

f(x) = σ(Wx+ b), (7)

where W and b represent the weight matrix and bias vector,
respectively, and σ(·) denotes the ReLU activation operation. A
normalization layer, h(x) = x/NSLA, where NSLA counts the
non-zero elements, stabilizes the output features. This ensures
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Fig. 3: Network architecture of the proposed SNN with sparse augmentation layer.

consistency despite varying sparsity by adjusting features relative
to active inputs, thus enhancing model reliability. The normalized
signal is then fed into a signal encoder, which consists of four
FC layers, each followed by a ReLU layer, to extract signal
features. Concurrently, the sparse signal is processed through a
frequency embedding layer, followed by a frequency encoder. This
encoder is structured as a convolutional neural network (CNN) with
four convolutional layers, where each layer is accompanied by a
ReLU and max pooling layer to extract frequency features. Finally,
both signal and frequency features are concatenated and processed
through four additional FC layers with ReLU activations to form
the embedded feature.

Figure 3 illustrates the architecture of the proposed SNN. During
training, the SNN processes two inputs. Input signals are classified
as similar pairs if they have identical target DOAs but differ in
target reflection coefficients and SNRs. Conversely, dissimilar pairs
have different target DOAs. Each signal first passes through the
SA layer, which randomly masks values to create sparse signals.
Notably, after the SA layer, signals defined as similar not only
vary in reflection coefficients and SNRs but also exhibit distinct
sparse array configurations. These signals are subsequently fed
into an encoder that extracts features, which are evaluated using
a contrastive loss function to refine the embedding space. The
function aims to minimize the distance between similar pairs while
ensuring that dissimilar pairs are separated by at least a specified
margin. The contrastive loss is mathematically expressed as

S =
1

P

P∑
j=1

(
zjg

2
j + (1− zj)max(0,m− gj)

2) , (8)

where gj = ∥vj1 − vj2∥ denotes the Euclidean distance between
the paired samples vj1 and vj2. Here, vj1 and vj2 represent the
embedded representations of two signal features, and P is the total
number of these paired samples included in the computation. The
binary label zj indicates whether the pair is similar (zj = 1) or
dissimilar (zj = 0). The parameter m is the margin, which sets
a threshold for the distance below which pairs are penalized if
considered dissimilar. This margin helps to regulate the influence
of the distance on the learning process, promoting an optimal
separation between similar and dissimilar pairs in the feature space.

Additionally, a binary cross-entropy loss is utilized for the
multilabel classification task. The total loss for the SNN is a linear
combination of the contrastive loss and binary cross-entropy loss.

III-C. Data Generation and Labeling
We simulate signals using a 20-element ULA with a half-

wavelength inter-element spacing. The simulations target a max-

imum of 3 distinct sources, each separated by at least ∆ϕ = 1◦.
The field of view is defined as ϕFOV = [−60◦, 60◦], discretized at
1◦ intervals, forming a directional grid G ∈ R1×M with M = 121
possible DOAs. A random complex reflection coefficient s is
assigned to each DOA, with its magnitude uniformly distributed
between 0.5 and 1. Signals are labeled using the ground truth as

GTn =

{
1, if θk = Gn,

0, otherwise
(9)

for n = 1, 2, · · · ,M . We generate 295, 361 unique angular
combinations. For each combination, we produce 50 signals, each
with a randomly assigned input SNR ranging between 0 dB and
30 dB.

III-D. Training Approach
We implemented the proposed network and benchmark models

using PyTorch, utilizing the Adam optimizer with a learning rate
of 1× 10−4. Training is proceeded for 1, 000 epochs with a batch
size of 1,024, and is accelerated using four Nvidia RTX A6000
GPUs to enhance efficiency.

IV. PERFORMANCE EVALUATION
To more succinctly demonstrate the effectiveness of the SA layer

and SNN, we employ two “base network” benchmarks, namely
“BaseNet1,” which is the proposed network without the SA layer
and contrastive loss, and “BaseNet2,” which lacks only the con-
trastive loss. Additionally, we employ the traditional Compressive
Sensing via Orthogonal Matching Pursuit (CS-OMP) algorithm [23]
as a conventional DOA estimation benchmark.

IV-A. Feature Analysis
The feature representations extracted by the encoder from the

same class should ideally be identical, or at least closely clustered.
The proximity of these features directly correlates with improved
classification performance. Therefore, in this subsection, we con-
duct a feature analysis. Since the output features from the encoder
are high-dimensional, we utilize Principal Component Analysis
(PCA) to reduce the dimensionality. This aids in better visualizing
the relationships among the features. Figure 4 displays the PCA
results for 5,000 signals that share the same DOA combinations
but differ in noise levels and reflection coefficients. Figure 4(a)
reveals that BaseNet2, which has the SA layer, achieves notably
tighter clustering of features compared to BaseNet1, which lacks
this layer, highlighting the importance of feature embedding by
the SA layer. The proposed SNN exhibits even tighter clustering,
underscoring its advanced embedding capabilities. This indicates
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Fig. 4: PCA-reduced embedding features for (a) ULA and (b)
Random SLAs with a sparsity of 0.3.
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Fig. 5: Evaluation of DOA performance metrics: (a) Accuracy, (b)
Precision, (c) F1-Score, and (d) Recall.

that the Siamese architecture, combined with the contrastive loss,
significantly boosts the model’s ability to effectively discern and
group similar features. Figure 4(b) displays the embedded features
of 5,000 test signals with randomly configured SLAs. To achieve
a sparsity level of 0.3, six random positions in each test signal are
set to zero. This figure illustrates the impact of signal sparsity on
all three models. However, the proposed model demonstrates the
least impact, benefiting from the robust integration of the Siamese
architecture and the contrastive loss mechanism.

IV-B. DOA Estimation
DOA estimation is treated as a multilabel classification task. For

performance evaluation, we employ accuracy, precision, recall, and
F1 score as the metrics. The evaluation involved 5, 000 test signals
across random SLAs with a sparsity of 0.3, where the input SNR
levels range between 0 dB and 30 dB, and the threshold is set to
0.5.

The evaluation metrics are defined below, where TPm, TNm,
FPm, and FNm respectively represent the true positives, true
negatives, false positives, and false negatives for the mth label for
m = 1, · · · ,M .

Accuracy:

Accuracy =
1

M

M∑
m=1

TPm + TNm

TPm + TNm + FPm + FNm
. (10)

Precision:

Precision =
1

M

M∑
m=1

TPm

TPm + FPm
. (11)

Recall:

Recall =
1

M

M∑
m=1

TPm

TPm + FNm
. (12)

F1-Score:
F1-Score = 2 · Precision × Recall

Precision + Recall
. (13)

As illustrated in Figures 5, BaseNet1 exhibits the poorest perfor-
mance among the models evaluated, while BaseNet2 significantly
surpasses BaseNet1 across all evaluation metrics at various SNR
levels. This improvement is attributed to the SA layer, which equips
BaseNet2 with the capability to effectively manage randomly
sparsed input signals, thus demonstrating the effectiveness of the
SA layer. Figures 5(a) and 5(b) further show that BaseNet2 and
the proposed SNN outperform both CS-OMP and BaseNet1, under-
scoring the advantages of deep learning strategies over traditional
methods.

Moreover, Figures 5(c) and 5(d) reveal that while BaseNet1
continues to lag in performance, the proposed method outstrips
BaseNet2 owing to the integration of a Siamese architecture and
contrastive loss, highlighting its enhanced robustness and efficacy.
Overall, the proposed SNN achieves superior performance across
all four evaluation metrics at different SNR levels, demonstrating
the effectiveness and exceptional performance of our proposed
approach.

V. CONCLUSION
In conclusion, this study successfully addressed challenges in

sparse linear arrays, particularly in automotive radar systems with
limited snapshots. We developed the novel SNN model which,
by including an SA layer for feature embedding, significantly
improves DOA estimation performance while reducing the need for
extensive training data. Rigorous feature analysis and performance
evaluation confirmed the effectiveness of the proposed approach,
demonstrating a substantial advancement in dynamic operation
environments.
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