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ABSTRACT

In this paper, we analyze the effect of sensor placement to the
achievable number of degrees-of-freedom (DOFs) when the sen-
sors deviate from a half-wavelength grid. More specifically, we
consider two variations of a uniform linear array (ULA), namely,
when one or more sensors are shifted from half-wavelength grid
positions and when the inter-element spacing of the ULA is
smaller than a half-wavelength. The numerical rank and the
rank-revealing QR factorization of the array data covariance
matrix are examined and the number of DOFs of the array is
studied in terms of the rank of the array data covariance matrix.
A threshold based on the rank-revealing QR factorization is pro-
posed to separate the eigenvalues respectively corresponding to
the signal and noise subspaces, and thus the numerical rank
of the array data covariance matrix is estimated. Simulation
results are provided to justify the findings and provide insights
on sensor placements to preserve the array DOFs.

Index Terms— Direction-of-arrival estimation, degrees-of-
freedom, non-integer array, rank analysis, QR factorization.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of signals using an array of
sensors is one of the most widely studied problems in the field of
array signal processing [1, 2]. Due to the Nyquist sampling theo-
rem, the most commonly used sensor array is the uniform linear ar-
ray (ULA), which consists of sensors that are linearly and uniformly
placed along the integer multiples of half the signal wavelength. It
is well known that ULAs equipped with N omnidirectional sensors
offer N − 1 degrees-of-freedom (DOFs). A number of sparse linear
array structures [3–10] have been studied over the past decade that
provide additional DOFs compared to a ULA by leveraging the cor-
relation lags provided by the difference coarray [11, 12]. Increased
array DOFs and improved performance are further achieved by ex-
ploiting wideband and multi-frequency signals [13–16] as well as
sensor motion [17, 18].

The majority of linear arrays being considered in the literature,
regardless whether they are uniform or sparse, is limited to arrays
where the sensors are placed along the half-wavelength grid. On
the other hand, the effect of sensor position perturbation to the array
sensing capability and performance has not been adequately investi-
gated in the literature. In this paper, we consider a simple problem
by investigating how the number of achievable DOFs for a linear ar-
ray varies when the sensors are placed off the half-wavelength grid.
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We refer to arrays with all sensors placed on the half-wavelength
grid as integer arrays, whereas any arrays that violate this condition
as non-integer arrays.

There are studies on the optimized design and application of
non-integer linear arrays for interference suppression [19] and DOA
estimation [20, 21]. In [19], a technique was developed to suppress
interference signals by optimizing the sensor positions, rendering
non-integer arrays as the optimization solution. A Fourier domain
root-MUSIC method was proposed in [20] for DOA estimation us-
ing arbitrary two-dimensional arrays. The non-Toeplitz structure of
the covariance matrix of non-integer arrays was studied in [21] and
an interpolation technique was proposed to detect more uncorrelated
signals than sensors in the coarray domain. However, the number of
DOFs is not considered in these works.

Recent advances in rational array design [22, 23] have sparked a
wave of interest in non-integer arrays. In [22, 23], the performance
of rational sparse arrays and the conditions for unique identifiability
and unambiguous detection of signals were analyzed. An irregular
Vandermonde decomposition was introduced in [24] that extends the
conventional Vandermonde decomposition to a broader range of ma-
trices. The concept of rational sparse arrays was extended to the de-
sign of multi-frequency coprime rational arrays exploiting reduced
frequency separation in [25]. It is pointed out that, while the uti-
lization of rational frequencies offers great flexibility in the multi-
frequency sparse array design [14, 16] and the resulting virtual ra-
tional coprime array, it becomes more important to take the spatial
correlation or sidelobe issues into account. Bearing this in mind, the
condition for unique identifiability and unambiguous source detec-
tion was examined in [26].

With increased interest in such non-integer arrays, it is important
to examine the potential number of DOFs that can be achieved with
such arrays. In this paper, we study how the achievable number of
DOFs of an N -element ULA would vary when it violates the integer
array conditions. We focus on two cases, namely, when one sensor
is shifted from its original half-wavelength grid position and when
the inter-element spacing of the entire ULA is compressed to a value
that is smaller than a half-wavelength. We analyze how the smallest
signal subspace (SS) eigenvalue varies in these two scenarios. A QR
factorization-based threshold level for the separation of signal and
noise subspaces is defined, and the numerical rank of the covariance
matrix is analyzed by observing the smallest SS eigenvalue.

Notations: We use lower-case (upper-case) bold characters to
denote vectors (matrices). In particular, IN denotes the N × N
identity matrix and 0 stands for a vector or matrix of all zeros with
a proper dimension. (·)∗, (·)T, (·)H and E[·] respectively represent
the complex conjugate, transpose, Hermitian, and statistical expec-
tation operations. diag(·) forms a diagonal matrix and Tr(·) rep-



resents the trace operator. In addition, xi denotes the ith element
of vector x and ȷ =

√
−1 stands for the unit imaginary number.

The spectral norm of matrix B is its largest singular value, given as
||B||2=

√
λmax(BHB), where λmax(·) returns the largest eigen-

value. Finally, CM×N denotes the M ×N complex space.

2. SIGNAL MODEL

Consider a ULA with N omnidirectional sensors and L < N far-
field uncorrelated narrowband signals impinging on the array from
distinct angles θ = [θ1, · · · , θL]T. The baseband signal vector re-
ceived at the array is expressed as

x(t) =

L∑
l=1

a(θl)sl(t) + n(t) = As(t) + n(t), (1)

where a(θ) = [e−ȷp1π sin(θ), e−ȷp2π sin(θ), · · · , e−ȷpNπ sin(θ)]T is
the steering vector of the array for signal impinging from angle
θ, pn denotes the position of the nth sensor scaled to the half-
wavelength unit, sl(t) denotes the signal waveform impinging from
direction θl, s(t) = [s1(t), · · · , sL(t)]T, and n(t) represents the
zero-mean additive circularly complex white Gaussian noise vector
observed at the array with covariance matrix σ2

nIN . In addition,
A = [a(θ1),a(θ2), · · · ,a(θL)] ∈ CN×L denotes the ULA mani-
fold matrix. The covariance matrix of the received data vector is
obtained as

Rx = E
[
x(t)xH(t)

]
= ARsA

H + σ2
nIN , (2)

where Rs = E
[
s(t)sH(t)

]
= diag

([
σ2
1 , σ

2
2 , · · · , σ2

L

])
is the

source covariance matrix. In practice, the covariance matrix is
estimated from K snapshots of the available received data as

R̂x =
1

K

K∑
t=1

x(t)xH(t). (3)

Performing eigen-decomposition on the received data covariance
matrix yields

Rx = UΛUH =

L∑
p=1

λpupu
H
p +

N∑
q=L+1

λququ
H
q , (4)

where U = [u1,u2, · · · ,uN ] contains all eigenvectors, and
Λ = diag([λ1, λ2, · · · , λN ]) denotes a diagonal matrix contain-
ing the corresponding eigenvalues.

Ideally, when the eigenvalues are sorted in a descending order,
the smallest N −L eigenvalues corresponding to the noise subspace
(NS) are equal to the noise power σ2

n so that λ1 ≥ λ2 ≥ · · · ≥ λL >
λL+1 = · · · = λN = σ2

n. In practice, however, as the estimated
covariance matrix R̂x is computed based on a limited number of
snapshots, the eigenvalues corresponding to the NS are generally not
equal to the noise power. In this case, the estimated eigenvalues are
related as λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂L > λ̂L+1 ≥ · · · ≥ λ̂N . As indicated
in [27], in such a non-ideal scenario, when perfect statistics of the
received data are not available, a challenging task is to determine a
proper threshold λ̂thr between the smallest eigenvalue λ̂L of the SS
and the largest eigenvalue of the NS λ̂L+1 such that λ̂L > λ̂thr >

λ̂L+1.

3. NUMERICAL RANK AND RANK-REVEALING QR
FACTORIZATION OF THE COVARIANCE MATRIX

3.1. Numerical Rank of the Covariance Matrix

For an arbitrary matrix D ∈ CN×N , its numerical rank r ≤ N with
respect to a small positive tolerance O(ϵ) is defined as [28]

r = min{rank(B) : B ∈ CN×N , ||D−B||2 ≤ O(ϵ)}. (5)

The numerical rank r of D is equal to the number of columns that
are linearly independent for any perturbation of D with a norm at
most of the tolerance O(ϵ).

It is noted that, for the underlying array covariance matrix con-
sidered here, the smallest estimated NS eigenvalues are not O(ϵ),
rather they are σ2

n + O(ϵ) such that O(ϵ) → 0 as K → ∞. In
this case, the term O(ϵ) denotes the tolerance of the estimated NS
eigenvalues from its true value of σ2

n when the number of available
snapshots is finite. Therefore, the numerical rank of the array covari-
ance matrix can be alternatively defined as follows:

Definition: For a given O(ϵ) > 0, the numerical rank of the array
covariance matrix R̂x ∈ CN×N is the smallest integer r ≤ N such
that λr > σ2

n +O(ϵ).

3.2. Rank-Revealing QR Factorization

When the distance between two or more sensors is less than half-
wavelength, the magnitude of the smallest eigenvalue of the SS will
be closer to that of the NS. This makes it more challenging to estab-
lish a boundary that separates the SS eigenvalues from the NS ones.
Instead of directly examining the eigenvalues, in this paper, we ex-
ploit the rank-revealing QR factorization to evaluate the rank of the
array covariance matrix.

The threshold for separating the signal and noise subspaces can
be analyzed using the QR factorization of the covariance matrix of
the array data vector. The concept of numerical rank discussed in
[29] along with the rank-revealing properties of QR factorization
[30, 31] can be utilized to study the identifiability of the antenna
array when one or more sensors are shifted from the integer posi-
tions to non-integer ones. In the following, we provide brief review
for rank-revealing QR factorization, and identifiability analysis for
non-integer arrays is considered in the subsequent section for two
scenarios.

It is shown in [29] that, if R̂x has a numerical rank of r and there
exists a permutation matrix Π ∈ {0, 1}N×N such that performing
QR factorization on ΠR̂x yields

ΠR̂x = QR = Q

[
R11 R12

0 R22

]
, (6)

and if
λmin(R11) > ||R22||2, (7)

where Q ∈ CN×N is an orthonormal matrix, R ∈ CN×N is an up-
per triangular matrix, and R11 ∈ Cr×r and R22 ∈ C(N−r)×(N−r),
then (6) is said to be a rank-revealing QR factorization of R̂x.

As R̂x is full rank in the presence of noise, there exists a per-
mutation matrix Π such that in (6) the diagonal entries of the upper
triangular matrix R are in a decreasing order. Since the eigenvalues
of any upper triangular matrix are the diagonal entries themselves
[32], it implies that, for any array covariance matrix R̂x, condition
(7) is satisfied and a rank-revealing QR factorization of R̂x exists.
Our objective is to determine the number of eigenvalues belonging



to the SS, i.e., L, from r identified by the QR factorization. From the
eigenvalue interlacing property [33, 34], it can be easily shown that
λr(R̂x) = λ̂L ≥ λmin(R11) and ||R22||2 ≥ λr+1(R̂x) = λ̂L+1

always hold. Therefore, we have

λ̂L ≥ λ̂min(R11) > ||R22||2 ≥ λ̂L+1 ≈ σ2
n +O(ϵ). (8)

It is observed from (8) that the spectral norm of R22 can be cho-
sen as the suitable threshold value λ̂thr to separate the SS and NS
eigenvalues and thus determine the numerical rank of R̂x.

4. EFFECTS OF NON-INTEGER SENSOR LOCATIONS
ON SMALLEST SS EIGENVALUES

In this section, we investigate how the eigenvalues of the covariance
matrix of the array data vector are affected when the position of the
array sensors deviates from the half-wavelength grid, given a fixed
number of sources L. Two cases are considered. In the former, for an
N -element ULA with sensors placed along the half-wavelength grid,
we shift one of its sensors, originally located at an integer location,
pl, to a non-integer position and varies between pl−1 and pl+1. For
the latter case, the sensors in the N -element ULA remain uniformly
spaced but their inter-element spacing is compressed by a factor α ≤
1. In both cases, we observe how the smallest SS eigenvalue as well
as the numerical rank of the covariance matrix vary.

We express (4) in a matrix format as

Rx = UsΛsU
H
s +UnΛnU

H
n , (9)

where Us = [u1, · · · ,uL], Un = [uL+1, · · · ,uN ], Λs =
diag([λ1, · · · , λL]), and Λn = diag([λL+1, · · · , λN ]). Define
Λ′

s = Λs − σ2
nIL. Then, (9) can be written as

Rx = Us(Λ
′
s + σ2

nIL)U
H
s +UnΛnU

H
n

= UsΛ
′
sU

H
s + σ2

nIN .
(10)

Comparing (2) and (10), we observe that ARsA
H = UsΛ

′
sU

H
s .

When considering all the impinging signals to have an equal power,
denoted as σ2

s , we have

AAH =
1

σ2
s

UsΛ
′
sU

H
s , (11)

which suggests that the eigenvalues of the covariance matrix Rx and
those of the matrix AAH are proportional, and their corresponding
eigenvectors are identical.

It is note that, for any N -element array with L < N impinging
signals, the sum of the eigenvalues of the covariance matrix of the
received array data vector is the summation of the total received sig-
nal power and the noise power across all sensors, expressed for the
equal-power signal case as

N∑
i=1

λi = Tr(Rx) = N

L∑
i=1

σ2
i +Nσ2

n = σ2
sNL+Nσ2

n. (12)

That is, the trace of the covariance matrix will remain constant re-
gardless of the position of the sensors and the spatial location of the
signal sources, given a fixed number of sensors and signals.

Because the maximum rank of AAH is L, considering that ma-
trices AAH and AHA share the same rank and the first L eigen-
values, we use the condition number of matrix AHA. Due to the
invariance of the matrix trace, the condition number mainly reflects
the smallest SS eigenvalue in a normalized sense.
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Fig. 1: Variation of the condition number of AHA in two scenarios.

In the following two subsections, we numerically evaluate the
variation of the condition number of matrix AHA, by considering
two baseline ULAs with N1 = 10 and N2 = 20 sensors, respec-
tively, and the corresponding numbers of impinging signals in the
two cases are respectively L1 = 9 and L2 = 19. In all cases, the
signals are uniformly distributed in [−60◦, 60◦]. No noise is consid-
ered in this section.

4.1. Shifting a Single Sensor to an Off-Grid Position

We first examine the condition number of matrix AHA when the
fifth sensor of each ULA at p5 = 4 is shifted from its original posi-
tion and moves closer to one of its neighboring sensors at p4 = 3 and
p6 = 5. It is observed in Fig. 1(a) that, for each of the two scenarios,
the condition number of the matrix AHA is minimum when the fifth
sensor is located at its original position on the half-wavelength grid,
i.e., p5 = 4, representing that the smallest SS eigenvalue achieves
the highest value. When the fifth sensor moves in either direction,
the condition number increases, implying that the smallest SS eigen-
value becomes smaller. It is noticed that, for a higher number of
array sensors, the condition number is higher but is less sensitive to
the shift of the fifth sensor. In all array configurations, the condition
number increases drastically when the position of the fifth sensor
moves very close to either of the adjacent sensor positions at p4 = 3
and p6 = 5. In this case, the signal received at the fifth sensor is
identical to the other sensor and, therefore, it no longer contributes
to the array DOFs.

4.2. Compressing the Inter-Element Spacing of the ULA

Now we consider how the condition number of matrix AHA varies
as the inter-element spacing of the two ULAs is compressed by a
factor of α with α varying between 0.1 and 1. From Fig. 1(b) it can
be observed that the condition number is minimum when α = 1, i.e.,
the original ULAs with half-wavelength inter-element spacing, and
increases monotonically as the compression factor decreases until
the condition number saturates to a high value. This indicates that, as
a ULA is compressed, the smallest eigenvalue reduces. It is observed
that, as the value of α reduces, the condition number increases at a
much faster rate for a ULA with a higher number of sensors. In
other words, the smallest SS eigenvalues is more sensitive to the
array inter-element compression for a larger ULA.

5. DOA ESTIMATION PERFORMANCE

In this section, we use the MUSIC algorithm to evaluate the DOA
estimation performance for the two scenarios considered in the pre-
vious section, namely, when the array sensors are either shifted or
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Fig. 2: Eigenvalues and MUSIC spectra when shifting sensor position p5.
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Fig. 3: Eigenvalues and MUSIC spectra when compressing the ULA.

compressed. We consider two ULAs consisting of N1 = 10 and
N2 = 20 sensors, respectively with L1 = 9 and L2 = 19 uncorre-
lated signals uniformly distributed in [−60◦, 60◦]. 1,000 snapshots
are assumed and the input signal-to-noise ratio (SNR) is set to 5 dB.

5.1. Shifting a Single Sensor to an Off-Grid Position

For the first scenario in which we consider that only a single sensor
is shifted from its integer location to a non-integer one, we shift the
fifth sensor, originally located at p5 = 4, to all fractional locations
on either side between p5 = 3 and p5 = 5. Fig. 2(a) shows how
the estimated smallest SS eigenvalue λ̂L and the QR factorization
threshold λ̂thr = ||R22||2 change for the two ULAs as p5 is varied.
It is observed that, when p5 < 3.19 and p5 > 4.80, λL for the
10-element ULA falls below the threshold, i.e., λL ≤ λthr and,
correspondingly, the numerical rank of R̂x representing the number
of identifiable signals of the array drops from 9 to 8. In Fig. 2(b), we
show that, when p5 = 4.5, all the L = 9 signals are clearly resolved
using the MUSIC algorithm. On the other hand, when p5 = 4.87, as
shown in the MUSIC spectrum depicted in Fig. 2(c), the signals are
not clearly resolved.

To compare the performance between arrays with a different
number of sensors, as discussed in Fig. 1(a), with an increasing num-
ber of array sensors in the ULA, the condition number becomes less
sensitive to the position change. Fig. 2(a) verifies that, for the 20-
sensor array case, the crossing point of the estimated smallest SS
eigenvalue λ̂L and the RQ factorization threshold λ̂thr moves closer
to the two edges and becomes 3.07 and 4.90, respectively. Com-
pared to the 10-sensor array, the 20-sensor array has a wider range
of non-integer positions to which the fifth sensor can be shifted with-
out losing a DOF. Correspondingly, when the 20-element array with
19 impinging signals is considered, it is observed in Fig. 2(d) that all
sources are still resolved via MUSIC when p5 = 4.87, thus validat-

ing our claims.

5.2. Compressing the Inter-Element Spacing of the ULA

Fig. 3(a) shows the variation of the estimated smallest SS eigenvalue
λ̂L and the QR factorization threshold λ̂thr with respect to the com-
pression factor α for both 10- and 20-element arrays. It can be seen
that the smallest SS eigenvalue λL is above the threshold λthr when
α > 0.78 for the 10-element array and α > 0.96 for the 20-element
array. These results are consistent with the observations made in Fig.
1(b) that an array with a higher number of sensors is more sensitive
to the compression factor α.

Fig. 3(b) shows the estimated MUSIC spatial spectrum of the
10-element array which indicates that all the L = 9 signals are de-
tected when the compression factor is α = 0.85. As the compression
factor is further reduced to α = 0.75, as shown in Fig. 3(c), the 10-
element array fails to correctly identify the 9 signals. On the other
hand, as the 20-element array is more sensitive to the inter-element
compression, it is observed in Fig. 3(d) that it cannot resolve all 19
sources even when α is 0.85.

6. CONCLUSION

In this paper, we examined the effect of placing array sensors off the
half-wavelength grid on the number of achievable DOFs of the array.
We analyzed the smallest SS eigenvalue in relation to the change in
sensor positions and gain insights into how the sensors can be placed
in non-integer positions without losing the DOFs. Such analysis is
achieved by exploiting the rank-revealing QR factorization, and the
signal identifiability is represented in terms of the numerical rank of
the covariance matrix. Such analyses gave us insights in the design
of sparse array configurations, particularly in the context of rational
sparse arrays.



7. REFERENCES

[1] H. L. Van Trees, Optimum Array Processing: Part IV of Detec-
tion, Estimation, and Modulation Theory. Wiley, 2002.

[2] T. E. Tuncer and B. Friedlander (Eds.), Classical and Modern
Direction-of-Arrival Estimation, Academic Press, 2009.

[3] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel ap-
proach to array processing with enhanced degrees of freedom,”
IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4167–4181,
Aug. 2010.

[4] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime
samplers and arrays,” IEEE Trans. Signal Process., vol. 59, no.
2, pp. 573–586, Feb. 2011.

[5] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime
array configurations for direction-of-arrival estimation,” IEEE
Trans. Signal Process., vol. 63, no. 6, pp. 1377–1390, March
2015.

[6] J. Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, “Augmented
nested arrays with enhanced DOF and reduced mutual cou-
pling,” IEEE Trans. Signal Process., vol. 65, no. 21, pp. 5549–
5563, Nov. 2017.

[7] Z. Zheng, W. Wang, Y. Kong and Y. D. Zhang, “MISC Array:
A new sparse array design achieving increased degrees of free-
dom and reduced mutual coupling effect,” IEEE Trans. Signal
Process., vol. 67, no. 7, pp. 1728–1741, April 2019.

[8] W. Shi, Y. Li, and R. C. de Lamare. “Novel sparse array design
based on the maximum inter-element spacing criterion,” IEEE
Signal Process. Lett., vol. 29, pp. 1754–1758, July 2022.

[9] S. Wandale and K. Ichige, “Flexible extended nested arrays
for DOA estimation: Degrees of freedom perspective,” Signal
Process., vol. 201, no. 108710, pp. 1–10, Dec. 2022.

[10] A. Ahmed and Y. D. Zhang, “Generalized non-redundant
sparse array designs,” IEEE Trans. Signal Process., vol. 69,
pp. 4580–4594, Aug. 2021.

[11] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans.
Antennas Propagat., vol. 16, no. 2, pp. 172–175, March 1968.

[12] R. T. Hoctor and S. A. Kassam, “The unifying role of the co-
array in aperture synthesis for coherent and incoherent imag-
ing,” Proc. IEEE, vol. 78, no. 4, pp. 735–752, April 1990.

[13] Q. Shen, W. Liu, W. Cui, S. Wu, Y. D. Zhang, and M.
G. Amin, “Low-complexity wideband direction-of-arrival es-
timation based on co-prime arrays,” IEEE/ACM Trans. Audio,
Speech and Language Process., vol. 23, no. 9, pp. 1445–1456,
Sept. 2015.

[14] S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA es-
timation exploiting a uniform linear array with multiple co-
prime frequencies,” Signal Process., vol. 130, pp. 37–46, Jan.
2017.

[15] A. Liu, X. Zhang, Q. Yang, and W. Deng, “Fast DOA estima-
tion algorithms for sparse uniform linear array with multiple
integer frequencies,” IEEE Access, vol. 6, pp. 29952–29965,
2018.

[16] S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “Enhanced
DOA estimation exploiting multi-frequency sparse array,”
IEEE Trans. Signal Process., vol. 69, pp. 5935–5946, Oct.
2021.

[17] G. Qin, M. G. Amin, and Y. D. Zhang, “DOA estimation ex-
ploiting sparse array motions,” IEEE Trans. Signal Process.,
vol. 67, no. 11, pp. 3013–3027, June 2019.

[18] H. Wu, Q. Shen, W. Cui, and W. Liu, “DOA estimation with
nonuniform moving sampling scheme based on a moving plat-
form,” IEEE Signal Process. Lett., vol. 28, pp. 1714–1718,
2021.

[19] P. J. Bevelacqua and C. A. Balanis, “Optimizing antenna array
geometry for interference suppression,” IEEE Trans. Antennas
Propagat., vol. 55, no. 3, pp. 637-641, March 2007.

[20] M. Rubsamen and A. B. Gershman, “Direction-of-arrival esti-
mation for nonuniform sensor arrays: From manifold separa-
tion to Fourier domain MUSIC methods,” IEEE Trans. Signal
Process., vol. 57, no. 2, pp. 588–599, Feb. 2009.

[21] Y. I. Abramovich, N. K. Spencer and A. Y. Gorokhov, “DOA
estimation for noninteger linear antenna arrays with more un-
correlated sources than sensors,” IEEE Trans. Signal Process.,
vol. 48, no. 4, pp. 943-955, April 2000.

[22] P. Kulkarni and P. P. Vaidyanathan, “Non-integer arrays for ar-
ray signal processing,” IEEE Trans. Signal Process., vol. 70,
pp. 5457–5472, 2022.

[23] P. Kulkarni and P. P. Vaidyanathan, “Rational arrays for DOA
estimation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP) , Singapore, 2022, pp. 5008–5012.

[24] M. Wagner, Y. Park, and P. Gerstoft, “Gridless DOA estimation
and root-MUSIC for non-uniform linear arrays,” IEEE Trans.
Signal Process., vol. 69, pp. 2144-2157, 2021.

[25] Y. D. Zhang and M. G. Amin, “Multi-frequency rational sparse
array for direction-of-arrival estimation,” in Proc. Int. Symp.
Signals, Circuits and Systems, Ias, i, Romania, July 2023.

[26] M. W. T. S. Chowdhury and Y. D. Zhang, “Unambiguous DOA
estimation using multi-frequency rational sparse arrays," in
Proc. Asilomar Conf. Signals, Syst. Comput., Pacific Grove,
CA, Oct. 2023.

[27] V. T. Ermolaev and A. B. Gershman, “Fast algorithm for
minimum-norm direction-of-arrival estimation,” IEEE Trans.
Signal Process., vol. 42, no. 9, pp. 2389-2394, Sept. 1994.

[28] S. Ubaru, Y. Saad, and A. Seghouane, “Fast estimation of ap-
proximate matrix ranks using spectral densities,” Neural Com-
put., vol. 29, no. 5, pp. 1317–1351, May 2017.

[29] Y. P. Hong, and C.T. Pan, “Rank-revealing QR factorizations
and the singular value decomposition,” Math. Comput., vol. 58,
no. 197, 1992, pp. 213–32.

[30] T. F. Chan and P. C. Hansen, “Some applications of the rank
revealing QR factorization,” SIAM J. Scientific Stat. Comput.,
vol. 13, pp. 727–741, 1992.

[31] M. Gu and S. C. Eisenstat, “Efficient algorithms for computing
a strong rank revealing QR factorization,” SIAM J. Scientific
Comput., vol. 17, pp. 848–869, 1996.

[32] J. A. Ball, I. Gohberg, L. Rodman, and T. Shalom, “On the
eigenvalues of matrices with given upper triangular part,” Inte-
gral Equ. Oper. Theory, vol. 13, pp. 488–497, 1990.

[33] W. H. Haemers, “Interlacing eigenvalues and graphs,” Linear
Algebra App., vol. 226, pp. 593–616, 1995.

[34] X. Chen, and S. N. Zheng, “A unified proof of interlacing prop-
erties of eigenvalues of totally positive matrices,” Linear Alge-
bra App., vol. 632, pp. 241–245, Jan. 2022.


