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ABSTRACT
This paper addresses the direction-of-arrival (DOA) estimation
problem of mixed coherent and uncorrelated signals using a
sparse rectangular array, where tensor reconstruction is em-
ployed to preserve the structure of multi-dimensional array
signals. In the proposed approach, we first estimate the DOAs
of uncorrelated signals using the subspace algorithm. After
eliminating the contribution of uncorrelated signals from the
covariance tensor, a structural tensor decorrelation process is
introduced to decorrelate the resulting coherent covariance ten-
sor. The canonical polyadic decomposition method is employed
to the decorrelated covariance tensor to detect the coherent
signals. The conditions of signal resolvability are analyzed.

Index Terms— Direction of arrival estimation, sparse array, ten-
sor decomposition, Canonical polyadic decomposition, mixed coher-
ent and uncorrelated signals

1. INTRODUCTION

Direction of arrival (DOA) estimation holds significant importance
in the area of array signal processing with broad applications to
wireless communication, radar, automotive vehicle, sonar, acoustic
tracking, radio astronomy, and biomedical imaging [1–8]. Among
the methods developed for DOA estimation, subspace-based meth-
ods, such as MUSIC [9] and ESPRIT [10], are popularly used to re-
solve uncorrelated signals. However, these methods cannot resolve
highly correlated or coherent signals. Real-world scenarios often in-
volve coherent signals, which frequently emerge from phenomena
like multipath propagation in wireless communications to low-angle
reflection in radar systems. In addition, for estimating coherent sig-
nals, decorrelation techniques based on covariance matrices, such as
spatial smoothing [11, 12] and matrix reconstruction [13, 14], are
popularly used.

The problem becomes further challenging when a mixture of co-
herent and uncorrelated signals is present. Several approaches have
been developed to effectively handle both coherent and uncorrelated
signals. Reference [15] considers DOA estimation for uniform linear
arrays (ULAs) in a mixed coherent and uncorrelated signal scenario.
The method involves initially estimating the uncorrelated signals us-
ing the MUSIC algorithm, followed by their removal through the
exploitation of the symmetric properties of the ULA. Subsequently,
a Toeplitz matrix is reconstructed for the remaining coherent sig-
nals. DOA estimation of mixed coherent and uncorrelated signals
is considered in [16] for a multiple-input multiple-output (MIMO)
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radar framework where both the transmit array and the receive array
are sparse ULAs forming a coprime sum coarray. The DOAs of the
coherent signals are estimated using Bayesian compressive sensing
[17].

Many practical sensing problems involve two-dimensional (2-
D) DOA estimation to simultaneously determine both azimuth and
elevation angles of signal arrivals. The methods mentioned above
primarily rely on matrix-based processing. When dealing with
multi-dimensional array signals using multiple snapshots, multi-
dimensional signal processing relying on high-dimensional tensor
modeling can be exploited to enable preservation of structural char-
acteristics of the signals.

The inherent characteristics of tensor signals can be effec-
tively exploited through tensor decomposition techniques. Com-
monly used methods for tensor decomposition include the canonical
polyadic decomposition (CPD) [18, 19], the Tucker decomposition
[20], and the high-order singular value decomposition (HOSVD)
[21]. For instance, tensor decomposition is employed in [22] for
DOA estimation in multi-dimensional ULAs. A DOA estimation
approach is introduced in [23, 24] based on coarray tensors designed
for multi-dimensional structured sparse arrays. It is important to
note that these methods only consider uncorrelated signals. To han-
dle coherent signals, tensor-based spatial smoothing techniques is
presented in [25] and [26]. However, the repeated tensor calcula-
tions in these methods result in limited decorrelation effectiveness
with a high computational overhead. In [27], the structural property
of the covariance tensor is investigated to reconstruct a tensorial
Hermitian and Toeplitz structure.

In this paper, we consider a mixed coherent and uncorrelated
signal scenario for 2-D DOA estimation. To maintain the structural
properties of the multi-dimensional signal, our approach employs
tensor-based processing. The proposed procedure begins with the
estimation of 2-D DOAs of the uncorrelated signals using the MU-
SIC algorithm. The effect of uncorrelated signals is eliminated in the
covariance tensor through the utilization of the symmetric conjugate
property inherent to the covariance tensor of uncorrelated signals.
Subsequently, the remaining coherent covariance tensor is subjected
to decorrelation using a structured tensor reconstruction method. By
applying the CPD to the decorrelated coherent covariance tensor, the
2-D DOAs of the coherent signals are estimated. The effectiveness
of the proposed technique is validated by theoretical analysis and
simulation results.

Notations: We use lower-case, upper-case, and upper-case cal-
ligraphic bold characters to denote vectors, matrices, and tensors,
respectively. In particular, I and I denote the identity matrix and
the identity tensor of a proper dimension, respectively. (·)T and
(·)H respectively represent the transpose and Hermitian operations



of a matrix or a vector, and (·)∗ denotes complex conjugate. ◦ and
⊙ denote outer product and element-wise product, respectively. In
addition, κ(·) represents the Kruskal rank of a matrix and CM×N

denotes the M ×N complex space. |P| returns the cardinality of set
P. E(·) denotes statistical expectation.

CPD: The CPD represents a high-order tensor as a linear com-
bination of a minimum number of rank-1 tensor components. For an
N -dimensional tensor A ∈ CI1×I2×···×IN , its rank-R CPD can be
expressed as

A =

R∑
r=1

ηra1(r) ◦ a2(r) ◦ aN (r)
∆
= Jη;A1;A2;AN K, (1)

where an(r) ∈ CIn is a canonical polyadic (CP) factor, An =
[an(1),an(2), · · · ,an(R)] ∈ CIn×R denotes the corresponding
factor matrix for n = 1, 2, · · · , N , and η = [η1, η2, · · · , ηR]T is a
vector of scalar coefficients.

2. ARRAY AND SIGNAL MODELS

2.1. Array Geometry Model
We consider an origin-symmetric 2-D sparse rectangular array S as
shown in Fig. 1. The X and Y axes comprise Mx and My sensors,
respectively. In both axes, the inter-element spacing is d = λ/2
with λ denoting the wavelength of the incoming signals. Px and Py

denote the positions of the sparsely placed sensors along the X and
Y axes, respectively, and the sensor locations for the 2D array S is
expressed as

P = {(x, y) | x ∈ Px, y ∈ Py}. (2)
Without any loss of generality, it is assumed that the number of sen-
sors in each direction, i.e., Mx and My , is an odd number. The total
number of sensors in this configuration is MxMy . We also define
Ux and Uy such that Uxd = max(Px) and Uyd = max(Py).

2.2. Signal Model
Consider mixed coherent and uncorrelated narrowband far-field sig-
nals impinging on the array S, where D signals are mutually un-
correlated and L signals are coherent. The L coherent signals ex-
hibit coherence with one another but remain uncorrelated with the
D uncorrelated signals. These L coherent signals impinging from
azimuth and elevation angles (θlc, ϕ

l
c) are scaled versions of sc(t)

up to a complex scalar αl, l = 1, 2, · · · , L, whereas the waveform
of the dth uncorrelated signal is denoted as sdu(t). The total num-
ber of uncorrelated and coherent signals impinging on the array is
Q = D+L. Note that we use subscripts c and u to denote coherent
and uncorrelated signals, respectively.

For a signal impinging from azimuth angle θ and elevation angle
ϕ, the steering vectors in the X and Y directions for the array S are
respectively expressed as

a(µ) = [e−jπP(x,0)µ, · · · , e−jπP(x,Mx−1)µ]T ∈ CMx ,

a(ν) = [e−jπP(y,0)ν , · · · , e−jπP(y,My−1)ν ]T ∈ CMy ,
(3)

where µ = sin(ϕ) cos(θ), ν = sin(ϕ) sin(θ), and P(x,i) and P(y,i)

denote the location of the ith sensor from Px and Py , respectively.
Therefore, the signals received at the array S at time t can be ex-
pressed as

X(t) =

L∑
l=1

αlsc(t)a(µ
l
c) ◦ a(νl

c) +

D∑
d=1

sdu(t)a(µ
d
u) ◦ a(νd

u)

+W (t) ∈ CMx×My , (4)

X−X

Y

−Y

Z

Fig. 1: Array configuration

where W (t) is the noise matrix.
Due to the non-uniformity of the sparse array, it is required

to perform array interpolation to apply traditional DOA estimation
methods. The interpolation is performed by augmenting virtual sen-
sors in the integer multiple of the half-wavelength region spanned by
the array S. The resultant interpolated array can be expressed as

U = {(xU, yU) | xU ∈ {−Ux, · · · , Ux}d, yU ∈ {−Uy, · · · , Uy}d}.
(5)

The received signal from the 2-D sparse array S can be augmented to
obtain the received signal from the interpolated uniform rectangular
array (URA) U. Let

⟨Y (t)⟩(xU,yU) =

{
⟨X(t)⟩(xU,yU), (xU, yU)d ∈ P,
0, (xU, yU)d ∈ U\P,

(6)

where ⟨.⟩(xU,yU) denotes the element corresponding to the sensor
location at (xU, yU)d. A binary matrix B is defined to distinguish
the virtual and physical sensors in the interpolated URA as

⟨B⟩(xU,yU) =

{
1, (xU, yU)d ∈ P,
0, (xU, yU)d ∈ U\P,

(7)

and its tensor version, denoted as B, is derived by replicating the
matrix B in additional dimensions.

Therefore, the initialized signal matrix Y (t) can be related to
the signal matrix of the full URA U as

Y (t) = B ⊙XU(t), (8)

where XU(t) is the signal matrix of the full URA. Denoting aU(µ)
and aU(ν) as the steering vectors respectively in the X and Y direc-
tions corresponding to the full URA U, the covariance tensor of the
initialized signal matrix Y (t) is expressed as

R =B ⊙

{
σ2
s

L∑
l=1

L∑
l′=1

α∗
l αl′aU(µ

l′
c ) ◦ aU(ν

l′
c ) ◦ a∗

U(µ
l
c) ◦ a∗

U(ν
l
c)

+

D∑
d=1

σ2
sdaU(µ

d
u) ◦ aU(ν

d
u) ◦ a∗

U(µ
d
u) ◦ a∗

U(ν
d
u) + σ2

nI
}

∈ C(2Ux+1)×(2Uy+1)×(2Ux+1)×(2Uy+1), (9)

where σ2
s = E(|sc(t)|2) is the power of the reference signal of the

coherent signal components and σ2
sd = E(|sdu(t)|2) is the power of

the dth uncorrelated signal. The covariance tensor encompasses con-
tributions from both the coherent components and the uncorrelated
signals. The presence of cross-terms among the coherent compo-
nents hinders the covariance tensor from conforming to a full-rank
CP problem and, therefore, renders the tensor to be rank-deficient.



3. DOA ESTIMATION

The process of estimating the DOAs for both the coherent group and
the uncorrelated signals is carried out through a two-step approach.
We first estimate the DOAs of the uncorrelated signals by employ-
ing a subspace-based technique, namely, the MUSIC algorithm. We
then eliminate the contributions of the uncorrelated signals by con-
sidering the conjugate symmetric property of the covariance tensor
associated with the uncorrelated signals in a symmetric array. These
two steps are briefly discussed in the following subsections.

3.1. DOA Estimation of Uncorrelated Signals
In this section, we consider the covariance tensor that only corre-
sponds to the physically present sensors, i.e., the covariance tensor
in (9) is squeeze by removing the 0 elements corresponding to the
holes. The covariance tensor corresponding to the physical array is
reshaped into a covariance matrix R ∈ CMxMy×MxMy . As signals
arriving from the coherent group yield a rank-1 component, the co-
variance matrix can be partitioned into signal and noise subspaces as

R = UsΛsU
H
s +UnΛnU

H
n , (10)

where Us represents the signal subspace comprising D+1 dominant
eigenvectors of R, while Un is the noise subspace consisting of the
remaining MxMy − D − 1 eigenvectors. Λs and Λn are diagonal
matrices consisting of signal and noise eigenvalues, respectively. As
multiple coherent signal components form combined steering vec-
tors a(µc) =

∑L
l=1 a(µ

l
c) and a(νc) =

∑L
l=1 a(ν

l
c), these vectors

fail to establish a valid manifold and thus do not exhibit a signifi-
cant presence in the MUSIC spectra. As a result, the DOAs of the
uncorrelated signals can be obtained from the peak locations of the
MUSIC spectrum.

3.2. Eliminating the Contribution of Uncorrelated Signals
The contribution of uncorrelated signals to the covariance tensor can
be eliminated by recognizing the conjugate symmetric property of
the covariance tensor. The covariance tensor R in (9) can be de-
composed into two parts, namely, uncorrelated part Ru and coher-
ent part Rc. The (ux, uy, u

′
x, u

′
y)th element of the uncorrelated part

of the covariance tensor can be expressed as

Ru(ux, uy, u
′
x, u

′
y)

=b

{
D∑

d=1

σ2
sde

−jπ(ux−u′
x)µd

ue−jπ(uy−u′
y)ν

d
u + σ2

nζ(ux,uy,u′
x,u′

y)

}
,

(11)
where ux, u

′
x ∈ {−Ux, · · · , Ux}, uy, u

′
y ∈ {−Uy, · · · , Uy}, b =

B(ux, uy, u
′
x, u

′
y), and ζ(ux,uy,u′

x,u′
y)

equals 1 if ux = u′
x and

uy = u′
y and equals 0 otherwise. It is noticed that the uncorrelated

components of the covariance tensor exhibit conjugate symmetric
property, i.e., Ru(ux, uy, u

′
x, u

′
y) = R∗

u(−ux,−uy,−u′
x,−u′

y).
On the other hand, the (ux, uy, u

′
x, u

′
y)th element of the coher-

ent part can be expressed as

Rc(ux, uy, u
′
x, u

′
y) = b

{
σ2
s

L∑
l′=1

αl′e
−jπuxµl′ e−jπuyνl′

·
L∑

l=1

α∗
l e

jπu′
xµlejπu′

yνl + σ2
nζ(ux,uy,u′

x,u′
y)

}

= b

{
k(ux,uy)

L∑
l=1

α∗
l e

jπu′
xµlejπu′

yνl + σ2
nζ(ux,uy,u′

x,u′
y)

}
,

(12)

where k(ux,uy) = σ2
s

∑L
l′=1 αl′e

−jπuxµl′ e−jπuyνl′ depends only
on the first two indices (ux, uy) of the covariance tensor. Clearly,
the coherent part Rc does not share the conjugate symmetric prop-
erty. Therefore, subtracting the conjugate symmetric components
from the covariance tensor R would eliminate the contribution of
uncorrelated signals, and the remaining difference covariance ten-
sor, expressed as

Z(ux, uy, u
′
x, u

′
y)

= R(ux, uy, u
′
x, u

′
y)−R∗(−ux,−uy,−u′

x,−u′
y)

= b

{
σ2
s

L∑
l=1

q(ux,uy),l e
jπu′

xµlejπu′
yνl + ϵ

}
, (13)

will correspond only to the coherent signal components, where
q(ux,uy),l =

∑L
l′=1(αl′α

∗
l − α∗

l′αl)e
−jπuxµl′ e−jπuyνl′ , and ϵ

represents the error due to the limited number of snapshots.

3.3. Decorrelation of Coherent Covariance Tensor via Struc-
tural Tensor Reconstruction

We employ a tensor reconstruction strategy, similar to the one de-
scribed in [27], to decorrelate the tensor Z and obtain a Hermitian
Toeplitz tensor D ∈ C(Ux+1)×(Uy+1)×(Ux+1)×(Uy+1) so that a full
rank-L CP problem can be formulated. By fixing the first two in-
dices of Z as (ux, uy), i.e., Z(ux, uy, :, :), tensor D is constructed
by rearranging its elements. More specifically, the (−ũx + ũ′

x)th
row of Z(ux, uy, :, :) can be exploited as the (ũx, :, ũ

′
x, :)th slice of

D(ux,uy). Similarly, the (−ũy + ũ′
y)th column of Z(ux, uy, :, :) is

utilized to construct the (:, ũy, :, ũ
′
y)th slice of D(ux,uy). In sum-

mary, the mapping between Z(ux, uy, :, :) and D(ux,uy) can be ex-
pressed as

D(ux,uy)(ũx, ũy, ũ
′
x, ũ

′
y) = Z(ux, uy,−ũx + ũ′

x,−ũy + ũ′
y),
(14)

where ũx, ũ
′
x ∈ {0, · · · , Ux} and ũy, ũ

′
y ∈ {0, · · · , Uy}.

Substituting (13) into (14), the reconstructed tensor D(ux,uy)

can be expressed as

D(ux,uy)(ũx, ũy, ũ
′
x, ũ

′
y)

= b

{
L∑

l=1

q(ux,uy),l e
jπ(−ũx+ũ′

y)µlejπ(−ũy+ũ′y)νl + ϵ

}
.

(15)

Tensor D(ux,uy) exhibits a tensorial Hermitian and Toeplitz struc-
ture. Accordingly, D(ux,uy) can be represented as

D(ux,uy) = b

{
L∑

l=1

q(ux,uy),l g(µl)◦g(νl)◦g∗(µl)◦g∗(νl) + ϵ

}
,

(16)
where g(µl) = [1, · · · , e−jπUxµl ]T ∈ C(Ux+1) and g(νl) =

[1, · · · , e−jπUyνl ]T ∈ C(Uy+1) act as the azimuth and elevation
steering vectors for the lth coherent signal. Eq. (16) is a rank-L CP
problem, and the steering vectors can be estimated by employing
CPD on D(ux,uy). Based on the estimated steering vectors, the
DOA information can be subsequently estimated. However, due to
the missing sensors, tensor D(ux,uy) contains holes. These missing
elements in D(ux,uy) are interpolated as in [28] before applying the
CPD.

4. SIGNAL IDENTIFIABILITY

To identify the uncorrelated signal, the number of eigenvectors in
signal subspace Us associated with the covariance matrix in (10),
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Fig. 2: DOA estimation performance.

i.e., D + 1, should satisfy the following criterion,

D + 1 ≤ MxMy − 1. (17)

Consequently, the maximum number of uncorrelated signals that can
be identified in the presence of a single coherent signal group is
MxMy − 2.

The maximum number of identifiable coherent signals us-
ing the proposed method relies on the uniqueness of the CPD
of D(ux,uy). Denote the estimated CP factor matrices as Ĝ(µ) =

[ĝ(µ1), ĝ(µ2), . . . , ĝ(µL)] and Ĝ(ν) = [ĝ(ν1), ĝ(ν2), . . . , ĝ(νL)],
where ĝ(µl) and ĝ(νl) are the estimated steering vectors. These
matrices, along with their conjugates Ĝ

∗
(µ) and Ĝ

∗
(ν), have a

dimension of C(Ux+1)×L and C(Uy+1)×L, respectively.
The unique estimation of these factor matrices is guaranteed

through CPD under the condition [29]:

κ(Ĝ(µ)) + κ(Ĝ(ν)) + κ(Ĝ∗(µ)) + κ(Ĝ∗(ν)) ≥ 2L+ 3, (18)

where κ(Ĝ(µ)) = κ(Ĝ∗(µ)) = min(Ux + 1, L) and κ(Ĝ(ν)) =

κ(Ĝ∗(ν) = min(Uy + 1, L). To obtain the upper bound of the
number of signals to be detected, we consider the scenario of Ux +
1 ≤ L and Uy + 1 ≤ L. In this case, Eq. (18) becomes 2Ux +
2Uy + 4 ≥ 2L + 3, i.e., L ≤ Ux + Uy + 1/2. Since L takes an
integer value, the maximum number of coherent signals that can be
identified becomes

L ≤ Ux + Uy. (19)

Combining (17) and (19), the maximum number of detectable mixed
uncorrelated and coherent signals using the proposed approach is
given by

DOF ≤ MxMy + Ux + Uy − 2. (20)

5. SIMULATION RESULTS

We consider a 2-D sparse array with the numbers of sensors in the
X- and Y -axes being Mx = My = 5. The total number of sensors
is MxMy = 25. The sensors are positioned in both axes at Px =
Py = {−3,−2, 0, 2, 3}d. The numbers of elements in the X and Y
axes for the interpolated URA are 2Ux + 1 = 2Uy + 1 = 7 with
Ux = Uy = 3. Therefore, the proposed approach can identify up to
Ux+Uy = 6 coherent signal components in a single coherent group
and MxMy − 2 = 23 uncorrelated signals.

To estimate the DOAs involving a mixture of coherent and un-
correlated signals, after identifying the uncorrelated signals using the
MUSIC algorithm, the difference covariance tensor Z is obtained.

Without loss of generality, the (1, 1)th slice of Z , i.e., Z(1,1,:,:),
is utilized to obtain the decorrelated tensor D(1,1) ∈ C4×4×4×4.
Subsequently, CPD is performed on D(1,1) to estimate the steer-
ing vectors, which are then used to obtain the signal DOAs. We
use MATLAB Tensorlab 3 Toolbox [30] to implement CPD on the
decorrelated tensor derived through the structural reconstruction ap-
proach. The optimization of factor matrices is carried out using the
alternating least squares algorithm [31]. Unless otherwise specified,
the input signal-to-noise ratio (SNR) is 10 dB, and 1,000 snapshots
are used.

Fig. 2(a) considers a scenario involving 6 coherent signal com-
ponents and Fig. 2(b) depicts a scenario with 5 coherent components
and 10 uncorrelated signals. In both cases, successful identifica-
tion of all signals is evident through the utilization of the proposed
method.

The estimation performance is further evaluated in terms of the
root mean-squared error (RMSE), expressed as

RMSE =

√√√√ 1

EQ

E∑
e=1

Q∑
q=1

[
(θq − θ̂q,e)2 + (ϕq − ϕ̂q,e)2

]
, (21)

where E is the number of Monte Carlo trials. We consider 10 mixed
signals with 3 coherent components and 7 uncorrelated signals for
the RMSE evaluation.

Fig. 2(c) depicts the RMSE values as the input SNR varies be-
tween −10 dB and 20 dB. It is evident in the figure that the proposed
method achieves low RMSE values when the input SNR is higher
and there is a floor limited by the number of snapshots. Therefore,
an increase in the number of snapshots leads to a reduction in the
RMSE floor.

6. CONCLUSION

This paper utilized tensor decomposition methods to estimate the
2-D DOAs considering a mixed coherent and uncorrelated signal
scenario. After detecting the uncorrelated signals using a subspace-
based method, we proposed a structural tensor reconstruction-based
decorrelation procedure for the DOA estimation of coherent sig-
nal components. Exploiting the structural characteristics of multi-
dimensional signals through a CPD tensor modeling approach, the
proposed method achieved high estimation performance. The effec-
tiveness of the proposed method was assessed through the identifi-
ability condition analysis and simulation results.
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