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ABSTRACT
In this paper, we develop a deep learning framework to opti-
mize the compressive sampling matrix in a massive multiple-
input multiple-output (MIMO) system. The optimized compres-
sive sampling matrix is utilized to project high-dimensional data
received at the massive MIMO system into a lower-dimensional
space so that the directions of arrival and other signal param-
eters can be efficiently obtained with a reduced hardware com-
plexity. The proposed deep learning approach for optimizing the
compressive measurement matrix increases its robustness and
generalizability.

Index Terms— Massive MIMO, direction of arrival estimation,
compressive sampling matrix, deep learning.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is considered a
promising technology for the next-generation wireless communica-
tions and beyond. By equipping a high number of antennas, a MIMO
system can provide enhanced system capacity, energy efficiency, se-
curity, and robustness [1–6]. Moreover, the highly directional beams
offered by the massive MIMO system can also combat the severe
propagation attenuation of millimeter-wave (mmWave) channels [7–
9]. Despite the aforementioned benefits, dedicating a separate radio
frequency (RF) frontend circuit to each antenna to obtain the base-
band signals for subsequent processing requires prohibitively high
hardware cost, power consumption, and computational complexity.
Consequently, a hybrid analog-digital processing strategy, which
reduces the number of RF frontend circuits connected to all antenna
elements through a network of analog phase shifter, provides an
attractive solution that renders a hybrid beamforming strategy with
both hardware and computational efficiencies.

To achieve this objective, a compressive sampling matrix is op-
timized to reduce the dimensionality of the array received signal.
Although using random measurement matrices is a popular option
for this purpose, such unoptimized processing results in information
loss and performance degradation [10]. In [11, 12], an information-
theoretic framework is developed to optimize the compressive sam-
pling matrix by maximizing the mutual information between signal
direction of arrival (DOA) and the compressed measurements of the
array received signal based on a coarse prior distribution. However,
the coarse prior information may not always be available in practice,
thereby limiting the applicability of this strategy. To address this
issue, [13] proposed an iterative optimization strategy in which the
normalized spatial spectrum estimate in each iteration is used as the
prior information for the subsequent iteration, thereby eliminating
the requirement for a coarse prior.

Optimizing the compressive measurement matrix in a sequen-
tial adaptive setting may result superior performance compared to

the non-adaptive schemes [14, 15]. Solving such optimization prob-
lems using, for example, the projected gradient descent algorithm or
a simplified version of the projected coordinate descent algorithm,
to obtain the desired compressive sampling matrix is, nevertheless,
computationally intensive. Alternatively, codebook-based methods,
such as the hierarchical codebook developed in [15] and hierarchical
Posterior Matching (hiePM) strategy developed in [4], can reduce
the computational burden. However, the performance of the code-
book based methods is highly dependent on the quality of the code-
books and may be inferior to that of the codebook-free methods.

Recently, deep learning techniques become attractive for solving
complex optimization problems in an efficient manner. They have
been applied in various wireless communication and signal process-
ing contexts, such as massive MIMO beamforming [16, 17], intel-
ligent reflecting surface [18, 19], and DOA estimation [20–22]. A
deep learning-based approach to design adaptive beamformers for
mmWave initial alignment is discussed in [23], where only single-
antenna single-RF-chain scenarios are considered. In a more general
massive MIMO system, however, multiple signals with multiple RF
chains must be considered. The consideration of multiple signals
is particularly important in MIMO radar and integrated sensing and
communication (ISAC) applications as well as in an interference en-
vironment where the number of signal arrivals are unknown [24–28].

In this paper, we develop a deep learning-based sequential strat-
egy to optimize the compressive measurement matrix in a multi-
signal scenario. Because the neural networks can be trained offline,
adopting deep learning to solve such sequential problems is com-
putationally efficient. Moreover, compared to existing approaches
[11, 12], such approaches provide a more generalized solution be-
cause the optimization is aided by a large number of training data.

Notations: We use lower-case and upper-case bold characters to
denote vectors and matrices, respectively. In particular, IN denotes
the N ×N identity matrix. (·)T and (·)H respectively represent the
transpose and Hermitian operations of a matrix or vector. Notations

÷ and (.) 2 denote element-wise division and element-wise square
operations, respectively. In addition, vec(·) vectorizes a matrix and
det(·) represents the determinant operator. E[·] stands for the statis-
tical expectation operator. R and I respectively extract the real and
imaginary parts of a complex entry, and CM×N denotes the M ×N
complex space.

2. SIGNAL MODEL

Consider D uncorrelated far-field signals impinging on a massive
MIMO system equipped with N receive antennas from directions
θ = [θ1, θ2, · · · , θD]T. The baseband array received signal vector
is modeled as

x(t) =

D∑
d=1

a(θD)sd(t) + n(t) = A(θ)s(t) + n(t), (1)
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Fig. 1: Block diagram of an antenna array.

Analog
multiplier 

Frontend
circuit 1

Ba
se

ba
nd

 p
ro

ce
ss

in
g

Analog
multiplier 

Analog
multiplier 

Compressive 
sampling 
matrix, 𝚽

DAC

.

.

.

𝑥!"# 𝑡

𝑥$"# 𝑡

𝑥%"# 𝑡

𝑦!"#(𝑡)

𝑦$"#(𝑡)

𝑦&"#(𝑡)

.

. .
.

𝑦!(𝑡)

𝑦$(𝑡)

𝑦&(𝑡)

.

.

.

𝜙!

𝜙&
. . . 
.𝜙$

Frontend
circuit 2

Frontend
circuit 𝑀

Fig. 2: Block diagram of the system exploiting compression.

where A(θ) = [a(θ1),a(θ2), · · · ,a(θD)] ∈ CN×D is the array
manifold matrix with dth column a(θd) representing the steering
vector corresponding to θd, s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈
CD denotes the signal waveform vector, and n(t) ∼ CN (0, σ2

nIN )
denotes the zero-mean additive white Gaussian noise (AWGN) with
noise power σ2

n.

As shown in Fig. 1, separate RF frontend circuits are allocated
to each antenna to obtain the baseband signal x(t) from the array
received signal xRF(t). This scenario, however, is impractical for
large-scale antenna arrays due to its high hardware requirements. To
address this issue, we project the array received signal vector with
dimension N onto a lower-dimensional space of dimension M with
M ≪ N . Each output channel is associate with a measurement
kernel, described as a row vector {ϕm,m = 1, · · · ,M} ∈ C1×N

as depicted in Fig. 2. Note in Fig. 2 that the solid lines and dashed
lines denote the analog and digital signal flows, respectively.

After stacking the measurement kernels, the compressive sam-
pling matrix is obtained as Φ = [ϕT

1 , · · · ,ϕT
M ]T ∈ CM×N . The

compressive sampling matrix Φ is used to obtain an M -dimensional
compressed measurement vector of the N -dimensional array re-
ceived signal x as

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t), (2)

where ΦA(θ) ∈ CM×D represents the compressed array manifold
matrix. The main objective described in this paper is the optimiza-
tion of the compressive sampling matrix Φ.

3. PROBABILISTIC SIGNAL MODEL

In this section, we summarize the probabilistic signal model de-
scribed in [11, 13]. We treat the signal DOA θ as a random vari-
able with a priori distribution f(θ). The probability density function
(pdf) of the compressed measurement y can be expressed as

f(y) = Eθ{f(y|θ)} =

∫
θ∈Θ

f(y|θ)f(θ)dθ, (3)

where Θ is the angular observation region. We discretize the pdf
f(θ) into K angular bins, each with a width of ∆θ̄. Then, the distri-
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Fig. 3: Neural network framework for optimizing Φ.

bution of the compressed measurement y can be approximated as

f(y) ≈
∑
k∈K

pkf(y|θk), (4)

where pk = f(θ̄k)∆θ̄ with
∑

k∈K pk = 1 denotes the probabil-
ity of the kth angular bin, where θ̄k is the nominal angle at the kth
bin and K = {1, 2, · · · ,K} is the set of the indices of the avail-
able angular bins. The signal arriving in a particular angular bin
can be modeled as a zero-mean complex Gaussian random variable
s(t) ∼ CN (0, σ2

s). As a result, the compressed measurement y
forms a Gaussian mixture of K components. Then, the compressed
measurement vector y for a signal impinging with a nominal DOA
θ̄k can be expressed as

y|θ=θ̄k
= Φ

(
a(θ̄k)s(t) + n(t)

)
(5)

with conditional pdf

f(y|θ̄k) =
1

πMdet(Cyy|θ̄k )
e
−yHC−1

yy|θ̄k
y
, (6)

where Cyy|θ̄k = Φ(σ2
sa(θ̄k)a

H(θ̄k)+σ2
nIN )ΦH is the covariance

matrix of the compressed measurement y for a particular DOA θ̄k
and σ2

s is the estimated signal power.

4. DEEP LEARNING-BASED OPTIMIZATION OF THE
COMPRESSIVE SAMPLING MATRIX

In this section, we describe the proposed deep learning framework
for optimizing the compressive measurement matrix Φ, as shown in
Fig. 3. Because no prior information about the source distribution
is assumed, we begin the optimization procedure by considering a
uniform prior at time t = 0. The compressive sampling matrix Φ
at time t can be considered as a function of the posterior distribution
of the spatial spectrum and the compressive sample matrices of the
past observations, given as

Φ(t) = F (p(1 : t− 1),Φ(1 : t− 1)) , (7)

where vector p(t) denotes the posterior of θ at time t and F is a
function that maps the current compressive sampling matrix from
the past posteriors p(1 : t − 1) and the past compressive sampling
matrices Φ(1 : t − 1). As pointed out in [29], instead of using
all of the past observations, the posterior of the DOAs at time t,
p(t − 1), provides sufficient statistics for the design of Φ(t), i.e.,
Φ(t) = F̂(p(t− 1)) with F̂ being a mapping function.

We design a neural network to realize the function F̂ . We con-
sider an active learning framework composed of an L-layer fully



connected (FC) network that iteratively updates the posterior to ob-
tain the best posterior and accurately resolve the signal DOAs. There
might other possible neural network architectures available for this
problem, but in this paper we focus on the FC network due to its
implementation simplicity. As such, we consider an L-layer FC net-
work to obtain the compressive sampling matrix Φ(t) based on the
DOA distribution p(t− 1) from the previous time frame. Note that,
as we will see, p(t − 1) is obtained based on y(t − 1) and thus
reflects the past compressive sampling matrix Φ(t− 1).

Define t̃ = (t − 1)/T as the normalized time index, where T
is the number of snapshots. We use the posterior p(t − 1) and the
normalized time index t̃ as the input to the neural network at time t,
i.e., v(t − 1) = [pT(t − 1) t̃]T. For a total of B observations in
a particular batch of the training data, the complete training dataset
G(t − 1) is formed by concatenating vectors vb(t) corresponding
to the observations b ∈ {1, 2, · · · , B} as G(t − 1) = [vT

1 (t −
1),vT

2 (t− 1), · · · ,vT
B(t− 1)]. The neural network output provides

the compressive sampling matrix for the next measurement as

Φ̃(t) = AL (WLAL−1(· · · A1(W 1G(t− 1) + b1) · · · ) + bL) ,
(8)

where {W l, bl,Al}Ll=1 are the weights, biases, and nonlinear ac-
tivation function corresponding to the lth layer, respectively. Φ̃(t)
is an augmented matrix that denotes the real-valued representation
of the complex-valued compressive sampling matrix at time t, i.e.,
Φ̃(t) = [R(Φ(t)) I(Φ(t))]. The required Φ(t) can then be ex-
tracted from Φ̃, where the real and imaginary parts of Φ(t) respec-
tively correspond to the left and right halves of Φ̃(t).

The measurement kernels ϕm,m = 1, 2, · · · ,M , are generally
implemented using a series of phase shifters. As such, it is desirable
for the compressive measurement matrix to satisfy a constant modu-
lus constraint. Toward this end, we set the activation function of the
last layer as

AL(R(Φ)) =

[
R(Φ)÷

√
R(Φ) 2 + I(Φ) 2

]
,

AL(I(Φ)) =

[
I(Φ)÷

√
R(Φ) 2 + I(Φ) 2

]
.

(9)

Using the neural network output Φ(t), we then form an analog
beamformer to obtain compressed measurements y(t) from x(t)
at time t. We use the minimum variance distortionless response
(MVDR) spatial spectrum estimator based on the compressed mea-
surement vector to find the spatial spectrum as

P
(t)
CS-MVDR(θ) =

1

N

aH(θ)ΦH(t)Φ(t)a(θ)

aH(θ)ΦH(t)R̂
−1

yy(t)Φ(t)a(θ)
, (10)

where R̂yy(t) is the sample covariance matrix of y estimated at time
t, which is computed based on the current and past snapshots as

R̂yy(t) = βR̂yy(t− 1) + y(t)yH(t), (11)

where R̂ = 0 at time t = 0 and β is a forgetting factor. To avoid ill
conditioned matrix inversion of R̂yy , the computation of the spatial
spectrum PCS-MVDR and update of the posterior take place only when
M ≤ t < T .

The normalized spatial spectrum can be considered as the pos-
terior distribution of the DOAs at time t, i.e.,

p(t) =
[P

(t)
CS-MVDR(θ1), · · · , P

(t)
CS-MVDR(θK)]∑K

k=1 P
(t)
CS-MVDR(θk)

(12)

for M ≤ t < T . The obtained posterior distribution p(t) is then fed
to the neural network again for sequential optimization of Φ.

During the iteration through time samples, we keep the param-
eters of the neural network unchanged to yield more scalable and
faster training procedure. Once the iterations through all time sam-
ples are completed, we update the neural network parameters by
minimizing a suitable loss function. We consider the problem as a re-
gression problem and use the mean square error (MSE) loss function
between the estimated DOA distribution pi(T ) and the true distribu-
tion pitrue

for ith batch, expressed as

Loss =
1

BK

B∑
i=1

∥∥pi(T )− pitrue

∥∥2
. (13)

5. SIMULATION REULTS

Consider a massive MIMO system consisting of N = 50 receive
antennas which are arranged in a uniform linear fashion separated
by half wavelength. 9 far-field uncorrelated sources impinge on the
antenna array. We choose the compression ratio N/M = 5, which
results the dimension of the compressed measurements to be M =
10. The pdf of the DOAs are discretized with an width of ∆θ̄ =
1◦, rendering 181 components in the Gaussian mixture model. The
number of snapshots is T = 30.

The proposed neural network consists of 4 fully connected lay-
ers and each layer contains 500 nodes. The number of layers and
the nodes are chosen experimentally by considering the generaliza-
tion capability, overfitting risk, and optimization complexity of the
network. We introduce a dropout regularizer at each fully connected
layer with a rate of 0.3, which randomly discard a subset of neural
network nodes to reduce potential overfitting of the training data. We
generate 10, 000 scenarios for the training dataset, where each sce-
nario consists of 9 sources uniformly sampled from the discrete grid
of [−90◦, 90◦]. In a similar fashion a test dataset consisting of 1000
samples are generated. The input signal-to-noise-ratio (SNR) is cho-
sen randomly between 0 dB to 20 dB from a uniform distribution to
train the network. The forgetting factor is set to β = 0.9.

Assuming no prior knowledge of the DOA distribution, the train-
ing procedure of the neural network begins by considering the prior
information of each scenario for a particular batch to be uniformly
distributed. This prior information along with the time samples will
act as the input to the network. We also prepare the label of network
by making the nominal probability 1/D in the grid points where the
sources are actually present, whereas the remaining grid points are
set to zero. The neural network is trained to learn the mapping F̂
from the prior to the compressive sampling matrix by minimizing
the MSE loss function. The Adam optimizer is used with an learn-
ing rate progressively decreasing from 0.1 to 0.001. We also employ
minibatch training with a batch size of 64, and 200 epochs are com-
pleted to train the network.

We compare the performance of the proposed method to those
described in [12, 13]. In particular, reference [12] assumes that the
prior distribution of the DOAs follows a Gaussian distribution. A
presumed Gaussian distribution with mean 0◦ and variance (5◦)2 is
considered for this method. This method provides a good perfor-
mance only when the actual signals closely follow the presumed pa-
rameters. To examine the performance of the proposed method and
those described in [12, 13] for different situations, we consider two
test cases, both with 9 signals. In the first case, the signals closely
follows the presumed distribution, where the DOAs are −8◦, −6◦,
−4◦, −2◦, 0◦, 2◦, 4◦, 6◦, and 8◦. On the other hand, in the second
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Fig. 4: Estimated spatial spectra for test case 1.
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Fig. 5: Estimated spatial spectra for test case 2.
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case, the signal arrivals significantly deviate from the presumed dis-
tribution where the DOAs are −55◦, −48◦, −44◦, −20◦, 8◦, 20◦,
31◦, 41◦, and 45◦.

As shown in Fig. 4a, for test case 1, the method in [12] resolves
all of the sources successfully. On the other hand, for the second
case, as the impinging signals deviate from the assumed spatial dis-
tributions, the performance of this method degrades. As depicted in
Fig. 5a, the signals that are away from the expected mean are highly
attenuated.

The method described in [13] eliminates the requirement of the
prior knowledge by iteratively updating the prior information. Be-
ginning by a uniform prior, this method estimates the spatial spec-
trum of the impinging signals and uses this information as the up-
dated prior for the subsequent iterations. As shown in Figs. 4b and
5b, this method provides satisfactory performance in both cases.
Note that this method requires real-time optimization with a high
implementation complexity.

Figs. 4c and 5c depict the performance of the proposed deep
learning-based method in the considered two cases. In both cases,

the proposed method provides superior performance with enhanced
signal resolution compared to other two methods. Once the net-
work completes the training, which can be carried out offline, this
method can quickly resolve the DOAs. Another advantage of the
proposed deep learning-based optimization is its generalization ca-
pability. Unlike the conventional approach, where separately esti-
mate every realization of the posterior from scratch, the trained neu-
ral network can generate an optimal compressive sampling matrix
for a variety of scenarios, provided that a large training dataset is
available.

Fig. 6 compares the performance of the proposed method with
the methods described in [12, 13] in terms of the root mean squared
error (RMSE), defined as

RMSE =

√√√√ 1

QD

Q∑
q=1

D∑
d=1

(θ̂q,d − θd)2 (14)

where Q is the number of trials and θ̂q,d is estimated DOA for the
dth source of the qth Monte-Carlo trial.

For each input SNR value, 300 Monte Carlo trials are used to
compute the RMSE. The dotted lines denote the results of test case
1, where the proposed method provides superior performance com-
pared to the others. For test case 2 as depicted with the solid lines,
the method in [12] does not do well since the actual signal arrivals
do not match the assumed prior distribution. The proposed method
and the method developed in [13] provide low RMSE results.

6. CONCLUSION

In this paper, we developed a neural network-based framework to
optimize a compressive sampling matrix in a massive MIMO sys-
tem, which efficiently projects high-dimensional data into a lower-
dimensional space. The optimal compressive sampling matrix ob-
tained from the neural network allows user signal parameters to be
obtained from compressed measurements, reducing the required RF
frontend circuit. Our proposed method provides more accurate, ro-
bust, and general solutions compared to existing literature.
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