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ABSTRACT
This paper considers a wireless network assisted by an intelligent
reflecting surface (IRS) to enhance data transmission between the
base station and mobile users. Our objective is to estimate and pre-
dict the user-IRS channels by exploiting a small number of sparsely
distributed active elements with a low pilot overhead. The Her-
mitian and Toeplitz properties of the data covariance matrices are
used to perform covariance matrix interpolation for enhanced esti-
mation of the time-varying user-IRS multipath channels, and a ma-
chine learning-based channel predictor is developed to predict the
channels based on prior channel estimates so as to shorten the re-
quired training pilot signals and enhance the transmission data rate.
Simulation results verify the effectiveness of the proposed method
for accurate channel estimation and prediction.

Index Terms— Intelligent reflecting surface, sparse array, struc-
tured matrix completion, channel estimation, machine learning.

1. INTRODUCTION

The development of ubiquitous machine-to-machine and human-to-
machine communications in next-generation wireless networks re-
quires faster data transmission, higher channel capacity, more reli-
able communication, and lower latency [1–4]. Recently, commu-
nication networks have expanded to the millimeter-wave frequency
band to enable high data-rate applications such as high-quality video
transmission, vehicle-to-infrastructure communications, intra- and
inter-vehicle messaging, device-to-device communications, Internet
of Things frameworks, tactile Internet [5–8].

Millimeter-wave channels have limited scattering and thus are
not viable to support mobile users who are not in the line-of-sight
(LOS) of the base station (BS) transmitter [9]. Therefore, it is cru-
cial to build extra links between the BS and the mobile users in or-
der to have them reliably connected. Intelligent reflecting surfaces
(IRS), which can alter the wireless channels between the BS and the
mobile users, are a promising emerging technology for 5G and be-
yond [10–13]. An IRS is typically a rectangular metasurface made of
a high number of passive reflecting elements that may each be dig-
itally modified to induce a specific amplitude change and/or phase
shift of the incident signal, enabling broadcasters and receivers to
work together to change the wireless links. Designing an IRS with a
small number of active components can result in high-precision per-
formance for pilot overhead reduction, wireless channel reconfigu-
ration, and channel estimation [14–16]. Note that active elements in
this context imply that the signals received by these elements can be
digitized for processing.

In [14], the effectiveness of active IRS-assisted channel estima-
tion, equipped with randomly distributed sparse active IRS elements
and using compressive sensing and machine learning (ML) tech-
niques, is demonstrated. References [15, 16] show that exploitation

of structural deployment of sparse active IRS elements further en-
hances signal parameter estimation using subspace-based direction-
of-arrival (DOA) estimation methods, such as ESPRIT and MUSIC.
It is revealed that the number of training data required for chan-
nel estimation is independent of the number of IRS elements so
the training overhead is manageable even for a large IRS. Exploit-
ing active IRS elements offers several attractive advantages, particu-
larly for target recognition, user localization, and secure connectiv-
ity [17–19].

Several methods have been developed for multiple-input multiple-
output (MIMO) and multiple-input single-output (MISO) systems
to predict channels with realistic priors channel state information
(CSI) [20–22]. In [21], a comparative analysis between a Kalman
filter-based channel predictor and an ML-based channel predictor
using the realistic channels from the spatial channel model. Accord-
ing to the analysis, the overall complexity of the Kalman filter-based
channel prediction is lower than that of ML-based techniques. How-
ever, because ML-based techniques can train the neural network
(NN) offline, once the neural network is trained, the ML-based
predictor requires much lower complexity than one based on the
Kalman filter.

The objective of this paper is, while providing accurate channel
estimation between the IRS and mobile users, to enhance the data
transmission by predicting the channels based on the prior estimated
channel knowledge. A MISO channel model is shown in Fig. 1. We
first estimate the fast-fading multipath channel between the mobile
user and the IRS with the aid of an L-shaped sparse array of active
IRS elements. We then train a multilayer perceptron (MLP) network
to forecast the subsequent channel based on the previous estimates
of the IRS-user channels. Simulation results verify that the proposed
technique increases the transmission data rate between the BS and
mobile users via the IRS by reducing the number of required training
pilots and achieving faster channel estimation.

Notations: We use lower-case and upper-case bold characters to
denote vectors and matrices, respectively. In particular, IN denotes
the N×N identity matrix. (·)T, (·)H and (·)† respectively represent
the transpose, Hermitian, and pseudo-inverse operations of a matrix
or a vector. ∥.∥∗ and ∥.∥F respectively represent the nuclear norm
and the Frobenius norm of a matrix. Tr(·) represents the trace opera-
tor, and diag(·) forms a diagonal matrix from a vector. ⊗ computes
the Kronecker product. A ≽ 0 implies that matrix A is positive
semidefinite. In addition, E[·] stands for the statistical expectation
operator and CM×N denotes the M ×N complex space.

2. SYSTEM MODEL

Consider a MISO downlink communication system with an IRS,
equipped with a small number of active elements, deployed to aid
communications between a single-antenna user and the BS equipped



Fig. 1. IRS-assisted channel model.

with Nb antennas. The IRS, which is a uniform planar array consist-
ing of M = Mx × Mz elements, is deployed in a scenario where
the direct links between the user and the BS are significantly ob-
structed. Among the M reflecting elements, the IRS contains M̄
active elements, which have both sensing and reflecting capabilities.
As illustrated in Fig. 1, the active elements are arranged in a sparse
L-shape, which consists of a horizontally (x-axis) placed subarray
and a vertically (z-axis) placed subarray. The numbers of the active
IRS elements in these two subarrays are respectively M̄x and M̄z ,
and the total number of the active elements is M̄ = M̄x + M̄z − 1
because the element in the corner is shared by both subarrays. The
two-dimensional (2-D) steering vector aIRS(φ, ϑ) of the entire IRS
can be expressed as [23]

aIRS(φ, ϑ) = az(φ)⊗ ax(ϑ), (1)

where φ ∈ [−π/2, π/2] and ϑ ∈ [−π/2, π/2] are the azimuth and
elevation angles, and

ax(φ) = [1, e−j 2π
λ

d sin(φ), . . . , e−j 2π
λ

d(Mx−1) sin(φ)]T, (2)

az(ϑ) = [1, e−j 2π
λ

d sin(ϑ), . . . , e−j 2π
λ

d(Mz−1) sin(ϑ)]T. (3)

In the above expressions, λ is the wavelength and d is the inter-
element spacing between IRS elements in both x and z directions.

The M -dimensional channel vector between the IRS and the
mobile user is denoted as the superposition of L paths, expressed
as

h =

L∑
l=1

βla
H
IRS(ϑl, φl), (4)

where βl is the path gain for l = 1, 2 · · · , L.
The structure of the time frames used for channel detection and

prediction is shown in Fig. 2, where B denotes the channel order.
The channel within the short time period of each time frame Tn =
T −n+1 for n = B,B− 1, · · · , 1 can be considered slowly time-
varying. Each time frame Tn contains an IRS transmission mode
and an IRS sensing mode. In the sensing mode, the IRS collects Ṫ
samples for each time frame to estimate the user-IRS channel hTn ∈
CM×1.

3. CHANNEL ESTIMATION AND PREDICTION

We consider channel estimation and prediction in two phases. In
phase I, we estimate the uplink channels hTn between the user and

Fig. 2. The transmission frame structure.

the IRS using the limited number of active IRS elements. To enhance
the channel estimation capability and performance, we use the nu-
clear norm-based interpolation technique to estimate the DOAs of
the user-IRS multipath channel and the associated channel gains at
the IRS to reconstruct the full channel. Based on estimated chan-
nels hT−B+1,hT−B , · · · , hT for consecutive time frames T −
B + 1, T − B, · · · , T , we then use an MLP network in phase II
to predict channel hT+1 without requiring training samples in the
(T + 1)th time frame, so that the full frame at time T + 1 can be
used for data transmission. These two phases are described in detail
in the following two subsections.

3.1. Phase I: User-IRS Channel Estimation
In phase I, the active IRS elements are used to estimate the multipath
channel between the user and IRS. The uplink signal is character-
ized by L uncorrelated far-field narrowband multipath components
impinging to the IRS from DOAs {φl, ϑl} for l = 1, · · · , L.

3.1.1. 2-D DOA and Path Gain Estimation

During the sensing mode, the IRS uses its active elements to receive
signals from the user. At any time t in time frame Tn, the received
signal at the IRS corresponding to the x-axis and the z-axis subar-
rays are respectively expressed as [15, 23]

x(t) =

L∑
l=1

βlaX(φl)su(t) + nX(t), (5)

z(t) =

L∑
l=1

βlaZ(ϑl)su(t) + nZ(t), (6)

where su(t) =
√
Ps(t) denotes the source signal transmitted by

the mobile user, P is the transmitted power, s(t) is the transmitted
waveform with E(|s(t)|2) = 1, and nX(t) and nZ(t) are the addi-
tive white Gaussian noise (AWGN) vectors.

We use the optimized non-redundant array (ONRA) structure for
both sparse linear subarrays of active elements in the x- and the z-
axes [24, 25]. The positions of the active elements along the two
subarrays are represented by X = {p0, p1, · · · , pM̄x−1}λ/2 and
Z = {q0, q1, · · · , qM̄z−1}λ/2, respectively, where pi and qi are
integers for all i, and p0 = q0 = 0 is assumed. We also denote
Wx = pM̄x−1+1 and Wz = pM̄z−1+1 as the lengths of active and
passive elements included within the respective apertures of the two
subarrays. In addition, aX(φl) ∈ CWx×1 and aZ(ϑl) ∈ CWz×1

respectively denote the steering vectors of the two subarrays along
the x and z axes.

Assuming that the noise is uncorrelated to the signals, we use
the MUSIC algorithm to estimate the DOAs of the multipath signals.
We first consider the elevation angles and stack the received signals
at the vertical subarray in the following matrix form at each time
frame, i.e.,

Z = [z(1), z(2), · · · , z(Ṫ )] ∈ CWz×Ṫ . (7)

We use Z to estimate the covariance matrix of z(t), given as

RZIRS = ZZH = AZRsA
H
Z + σ2

nIWz , (8)



where Rs = diag(σ2
1 , σ

2
2 , · · · , σ2

L), σ2
l = |βl|2 represents the

power of the l-th path signal, and σ2
n denotes the noise power. Be-

cause of the sparse spacing between the elements, the covariance
matrix RZIRS is sparse with missing elements in the half-wavelength
space. We consider matrix interpolation of RZIRS to obtain the co-
variance matrix of the uniform linear array along the z-axis from the
following nuclear norm minimization problem [26, 27]:

minimize
w

∥T (w)V −RZIRS∥
2
F + ζ∥T (w)∥∗

subject to T (w) ≽ 0,
(9)

where T (w) denotes the Hermitian-Toeplitz matrix with w as its
first column, ∥T (w)∥∗ = Tr(

√
T H(w)T (w)) is the nuclear norm

of T (w), and ζ is a tunable regularization parameter. In addition,
V = vpv

T
p is the binary mask matrix indicating whether each ele-

ment in the sparse covariance matrix is measured, where

⟨vp⟩g =

{
1, gd ∈ Z,
0, otherwise,

(10)

and g ∈ {p0, p1, · · · , pNx−1} is the index of the active element
locations and ⟨·⟩g denotes the element corresponding to the position
at gd. The interpolated covariance matrix is denoted as R̂zIRS =

T (w) ∈ CWz×Wz . We apply the MUSIC algorithm to R̂ZIRS to
estimate the elevation DOAs of the user-IRS multipath signals. The
same way we can also determine the interpolated R̂xIRS .

3.1.2. Pair-Matching for 2-D DOA Estimation

In a multipath propagation environment, it is important to correctly
pair between the estimated elevation angles and the corresponding
azimuth angles. The array manifold matrix of the z-axis subarray
can be constructed according to the estimated elevation angles as

Âz = [az(ϑ̂1),az(ϑ̂2), · · · ,az(ϑ̂L)] ∈ CMz×L. (11)

The interpolated cross-covariance matrix between z(t) and x(t) can
be achieved as [28]

R̂zx = V̂zs(Λ̂zs − σ2
nI)

1
2 (Λ̂xs − σ2

nI)
1
2 V̂H

xs, (12)

where V̂xs and V̂zs denote the estimated signal subspaces for the
two linear arrays, whereas Λ̂xs and Λ̂zs are the diagonal matrices
containing the eigenvalues corresponding to the signal subspaces.
Noticing that Rs can be estimated as

R̂s = Â†
zV̂zs(Λ̂s − σ2

nI)V̂
H
zs(Â

†
z)

H, (13)

we can estimate the steering matrix Âx as [23]

Âx =
(
R−1

s Â†
zRzx

)H

. (14)

From the estimated Âx ∈ CMx×L, we can determine the azimuth
angle sequence to reconstruct the steering matrix of the IRS for the
user-IRS channel as ÂIRS = [âIRS(φ1, ϑ1), · · · , âIRS(φL, ϑL)] ∈
CM×L.

3.1.3. Path Gain Estimation

The path gains are identical for the x- and z-axis subarrays. There-
fore, to estimate the path gain of the user-IRS channel, computation
in one of these two subarrays will suffice. The received signal at the
z-direction subarray can be rearranged as

yz(t) = Azgsu(t) + nz(t), (15)

where g = [β1, β2, · · · , βL]
T represents the path gains and can be

estimated from

ĝ =
1

σ2
s

(AH
z Az)

−1AH
z ȳz, (16)

and ȳz = E{yz(t)s
∗
u(t)}. From the above DOA and path gain

estimates, we can reconstruct the user-IRS multipath channel hr .

3.2. Phase II: Machine Learning-Based Channel Prediction

In this section, we develop an ML-based algorithm for predicting
channel hT+1. As shown in Fig. 3, the MLP structure has three
levels: an input layer, an output layer, and K fully connected hidden
layers.

To prepare the dataset for network training, we first concatenated
the consecutive channels as v = [hT

T−B+1, · · · ,hT
T ]

T. Denoting
W k, bk, and Ak as the weights, biases, and activation function of
the kth network for k = 1, 2, · · ·K, the predicted output can be
obtained as

ĥT+1 = Ak(W kAk−1(· · · ,A1(W 1v + b1) · · · ) + bK). (17)

This procedure leads to the direct prediction of the upcoming chan-
nels from the estimated channels. Note that the same procedure can
be used to predict the channels at t > T +1. However, the accuracy
of the estimated channels would degrade.

In the MLP training phase, the inputs to the MLP network are
the channel vectors ĥT−B+1, ĥT−B , · · · , ĥT estimated in phase I,
and the output is the reference channel vector hT+1 at the (T +
1)-th time slot. To exploit a real-valued MLP architecture, we re-
shape the inputs to a 2BM -dimensional input layer containing the
real and imaginary parts of the complex-valued input vectors, i.e.,
{Re(ĥT−B+1), Im(ĥT−B+1), · · · ,Re(ĥT ), Im(ĥT )}. Each hid-
den layer uses 2BM nodes. The output layer is designed to have
2M dimensions, which correspond to the real and imaginary parts
of channel vector {Re(hT+1), Im(hT+1)} at the (T + 1)-th time
slot. The last reshaped layer combines the real and imaginary parts
to reconstruct the complex-valued predicted channel vector h̃T+1.

We use the adaptive moment estimation (ADAM) optimizer and
the following mean square error (MSE) is used as the loss function
to train the network:

Closs =
1

Ntrain

Ntrain∑
n=1

∥ĥT+1 − hT+1∥2, (18)

where ĥT+1 and hT+1 are the predicted and reference channels,
respectively, and Ntrain is the number of observations for a channel
sequence.

4. SIMULATION RESULTS

The IRS has a total of M = 23 × 23 = 529 elements, among
which M̄ = 11 are active. Each of the two linear subarrays
in the L-shape sparse active array comprises 6 sensors, and the
positions of the active elements along the x- and the z-axes are
X = Z = {0, 3, 7, 12, 20, 22}λ/2. The corresponding non-
negative lags of the two linear subarrays are DX

self = DZ
self =

{0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 19, 20, 22}λ/2.
The BS, RIS, and the initial position of the user are located at

(0 m, 0 m, 10 m), (30 m, 4 m, 10 m), and (30 m, 34 m, 1.5 m),
respectively. The number of paths between the user and the IRS is
L = 2. The large-scale path loss for user-IRS distance r meters is
given as PL(r)[dB] = 10 log10(4πfc/c)

2+10αlog10(r/r0), where



Fig. 3. MLP structure for hT+1 estimation.
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Fig. 4. RMSE of channel estimates versus user transmission power.

fc, α, and r0 are the carrier frequency, the path loss exponent, and
the reference distance (r0 = 1 m), respectively [29]. In this paper,
fc = 28 GHz is assumed.

The path loss exponents of the two paths between the IRS and
the mobile user are set to 2.2 and 2.1, respectively. The training and
testing data sets are generated based on the user’s constant walking
speed, which is assumed to be either 1 m/s or 3 m/s in two different
scenarios. The length of each time frame is Tn = 140 ms, where the
sensing time is 40 ms and that for data transmission is 100 ms.

We use the root-mean-square error (RMSE) to evaluate the chan-
nel estimation and prediction performance. The RMSE of the esti-
mated channel for the nth time frame is defined as

RMSE =

√√√√ 1

Q

Q∑
q=1

∥ĥq,n − hq,n∥2, (19)

where Q is the number of independent trials.
Fig. 4 shows the RMSE performance of the estimated user-IRS

channel with respect to the transmit power of the mobile user, where
Ṫ = 1, 000 samples are used. The channel noise is fixed at σ2

n =
−80 dBm. The channel RMSE decreases as the transmit power in-
creases. For channel prediction, Ntrain = 113 training data sets are
generated based on different estimated user-IRS channels based on
the user moving speeds, and the ADAM training algorithm is used
with a batch size of 64. All channels fed into the training network
are estimated in phase I. The user-transmitted power was 25 dBm,
and the ReLU activation function is used in the hidden layers.

Fig. 5 shows the RMSE performance of the test datasets with
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Fig. 5. RMSE of the predicted channels.

respect to the number of iterations. The test results are based on three
separately trained networks employing different user moving speeds
(1 m/s and 3 m/s). The first network is trained using data generated
with the user moving speed of 1 m/s and the second one is trained
based on the user with a moving speed of 3 m/s. The third network is
trained using mixed data sets of these two speeds. The RMSE of the
predicted channels decreases with the number of iterations (epoch).
When the user speed is fixed (1 m/s or 3 m/s), using three or four
consecutive input channels (B = 3 or B = 4) provides similar
performance. With higher user speeds, more iterations are needed
to saturate predicted channel RMSE for input channels (B = 3 or
B = 4). When trained with mixed-speed data, RMSE decreases
faster, but the floor is higher with more iterations.

5. CONCLUSION

In this paper, we presented a novel approach to improve user qual-
ity of services through the design of an IRS setup that utilizes both
estimated and predicted channels based on communication require-
ments. By training the neural network based on the CSI of the pre-
vious time frames, the channels are predicted to reduce the pilot
overhead required for channel estimation. Additionally, structured
matrix completion and pair-matching methods are applied to en-
able multipath channel detection with an L-shaped structured IRS,
resulting in an increased array aperture and reduced computational
overhead. Simulation results confirmed the effectiveness and perfor-
mance of the proposed approach.
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