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ABSTRACT
In this paper, we analyze the Cramer-Rao bound of the dis-
tributed direction-of-arrival (DOA) estimation problem where
the covariance matrix is formulated in a mixed-precision man-
ner. In this scheme, the self-covariance matrix of a subarray
is locally computed using the full-precision data received at the
subarray, whereas one-bit data are exploited at the fusion cen-
ter to compute the cross-covariance matrices between different
subarrays. As such, the resulting covariance matrix of the dis-
tributed array consists of full-precision subarray self-covariance
matrices and low-precision cross-covariance matrices between
subarrays, thus termed as a mixed-precision covariance ma-
trix. Such distributed DOA estimation scheme offers substantial
reduction of the network communication overhead while main-
taining the degrees of freedom offered by the distributed array.
We provide the Cramer-Rao bound analysis which enables us
to understand the importance of the self- and cross-covariance
matrices and optimize the array parameters. The CRB analysis
results are compared with the root mean-square error perfor-
mance of the estimated signal DOAs.

Index Terms— Direction-of-arrival estimation, Cramer-Rao
bound, mixed-precision covariance matrix, one-bit quantization,
distributed array.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important technique in
array signal processing [1, 2]. The recent development in, e.g., sen-
sor networks and unmanned vehicles has promoted distributed and
collaborative sensing to become an integral part of wireless sensing
systems. When forming a large-scale array is infeasible or imprac-
tical, using distributed arrays, which are made up of multiple sepa-
rately spaced array platforms with a small number of sensors, is an
attractive option. In such platforms, fusing the information observed
at multiple distributed subarrays forms a virtual array with a higher
aperture, higher degrees of freedom (DOFs), and much more capable
sensing capability [3–8].

Distributed array processing can be performed either coherently
or noncoherently [3, 4]. In order to perform DOA estimation via co-
herent processing, the fusion center needs to receive data observed
at all subarrays to compute the covariance matrix. This requirement
demands a high volume of data traffic between the subarrays and
the processing center. To mitigate this problem, a distributed DOA
estimation scheme based on mixed-precision data is developed in
[9]. In this scheme, each subarray computes the full-precision self-
covariance matrix of the subarray and also the quantized one-bit
data, which are sent to the fusion center. The fusion center computes
the cross-covariance matrices between different subarrays using the
one-bit data. As such, the resulting total covariance matrix of the
distributed array consists of full-precision subarray self-covariance

matrices and low-precision cross-covariance matrices between sub-
arrays, thus termed as a mixed-precision covariance matrix. Such
distributed DOA estimation scheme offers substantial reduction of
the network communication overhead while maintaining the high
number of DOFs offered by the distributed array.

The objective of this paper is to provide an analysis of the
Cramer-Rao bound (CRB) to understand the performance offered
by the distributed DOA estimation approach exploiting a mixed-
precision covariance matrix. The CRB analysis is considered to a
general case where each subarray is a sparse linear array [10, 11].
By using coarray lags and lag interpolation, sparse arrays provide
a much higher number of DOFs and improved robustness [12–19].
We focus on the analysis in the difference coarray-based DOA es-
timation problem, i.e., the number of sources is higher than the
number of physical sensors. The derived CRB results are important
to understand the offerings of the self- and cross-covariance matrices
and to optimize the array parameters. The results are compared with
the root mean-square error (RMSE) performance of the estimated
signal DOAs.

Notations: We use lower-case (upper-case) bold characters to
denote vectors (matrices). In particular, IN denotes the N × N
identity matrix, and 0 denotes a vector or matrix of all zero elements
with a proper dimension. (·)∗, (·)T, and (·)H respectively represent
the conjugate, transpose, and Hermitian operations. Notation ⊗ de-
notes the Kronecker product, vec(·) vectorizes a matrix, diag(·) and
bdiag(·) form diagonal and block-diagonal matrices, and Tr(·) rep-
resents the trace operator. In addition, [A]u,v denotes the (u, v)th
element of matrix A and E[·] is the statistical expectation opera-
tor. Q(·) denotes the element-wise one-bit quantization operation,
 =
√
−1 stands for the unit imaginary number, and Re(·) and Im(·)

respectively extract the real and imaginary parts of a complex entry.
Moreover, the labels FP, MP and 1B denote full-precision, mixed-
precision and one-bit data, respectively. Finally, CM×N denotes the
M ×N complex space.

2. SYSTEM MODEL

Consider a distributed array platform consisting of K collinear sub-
arrays. The kth subarray consists of Mk sensors, which are located
at Sk = {pk,1d, pk,2d, · · · , pk,Mkd} for k = 1, · · · ,K, where
d = λ/2 and λ denotes the signal wavelength. It is assumed that
all subarrays are fully synchronized and the subarray locations are
precisely known. For convenience and without loss of generality,
the sensor position pk,md relative to its respective reference sensor
position pk,1d is considered an integer multiple of d.

Consider L uncorrelated far-field narrowband signals impinging
on the K subarrays from distinct angles θ = [θ1, · · · , θL]T. The
baseband signal vector received at the kth subarray is expressed as:

xk(t) =

L∑
l=1

ak(θl)sl(t) + nk(t) = Aks(t) + nk(t), (1)



where sl(t) denotes the signal waveform impinging from direction
θl, s(t) = [s1(t), · · · , sL(t)]T,

ak(θ) = [e−pk,1π sin(θ), e−pk,2π sin(θ), . . . e−pk,Mk
π sin(θ)]T

(2)
is the steering vector of the kth subarray for a signal imping-
ing from angle θ, and nk(t) represents the additive circularly
complex white Gaussian noise vector observed at the kth subar-
ray with mean 0 and covariance matrix σ2

nIMk . Matrix Ak =
[ak(θ1),ak(θ2), . . . ,ak(θL)] is referred to as the manifold matrix
of the kth subarray. We also define A = [AT

1 , AT
2 , · · · AT

K ]T as
the manifold matrix of the entire array for later use. The stacked
received signal vector for all subarrays is denoted as

x(t) = [xT
1 (t), · · · ,xT

K(t)]T ∈ CM×1, (3)

where M =
∑K
k=1Mk denotes the total number of sensors across

all subarrays.

3. MIXED-PRECISION DOA ESTIMATION

3.1. Local Processing at Subarrays

The self-covariance matrix of the received data for the kth subarray
is given as:

Rk = E[xk(t)xH
k (t)] = AkSAH

k + σ2
nIM , (4)

where S = E[s(t)sH(t)] = diag([σ2
1 , σ

2
2 , · · · , σ2

L]) is the source
covariance matrix with σ2

l , l = 1, . . . , L, denoting the power of the
lth source.

In practice, the self-covariance matrix of the kth subarray is es-
timated using T available data samples, expressed as

R̂k =
1

T

T∑
t=1

xk(t)xH
k (t). (5)

On the other hand, the kth subarray performs one-bit quantiza-
tion of the received data and sends the results to the fusion center.
The real and imaginary parts of signal vector xk(t) are respectively
quantized to form a one-bit signal vector, expressed as [20]:

yk(t) =
1√
2
{Q[Re(xk(t))] + Q[Im(xk(t))]} . (6)

3.2. Centralized Processing at Fusion Center

When the full-precision data are available at the fusion center, it
would compute the cross-covariance matrix between the received
data at the k1th and k2th subarrays as:

Rk1k2 = E[xk1(t)xH
k2(t)]

= Ak1SAH
k2 =

L∑
l=1

σ2
l ak1(θl)a

H
k2(θl),

(7)

for k1, k2 = 1, . . . ,K with k1 6= k2.
As we consider one-bit data samples transferred from each

subarray to the fusion center, the fusion center estimates the cross-
covariance matrix between the k1th and k2th subarrays based on the
one-bit, i.e.,

R1B
k1k2 = E

[
yk1(t)yH

k2(t)
]
. (8)

Based on the relationship between the one-bit covariance matrix and
the normalized covariance matrix described in [21, 22], we can find
the following relationship:

R1B
k1k2 = Ak1diag(p̄)AH

k2 , (9)

where p̄ = [σ̄2
1 , · · · , σ̄2

L]T denotes the normalized signal power of
the L sources with σ̄2

l = σ2
l /(σ

2
n +

∑L
k=1 σ

2
k). It is noted that,

as only the cross-covariance matrices between different subarrays
are considered, the R1B

k1k2
term in (9) does not include noise power

entries because of the zero covariances.
Based on the arcsine relationship between the one-bit covari-

ances R1B
k1k2

and the normalized full-precision covariances R̄k1k2

[21, 23], we obtain

R̄k1k2 = sin
(π

2
Re
[
R1B
k1k2

])
+  sin

(π
2

Im
[
R1B
k1k2

])
. (10)

Therefore, the cross-covariance matrix Rk1k2 between subarrays k1
and k2 accounting for the signal powers is obtained from R1B

k1k2
as

[9]
Rk1k2 = G

1/2
k1

R̄k1k2G
1/2
k2
, (11)

where Gk is a diagonal matrix with [Gk]m,m = [Rk]m,m for m =
1, · · · ,Mk.

4. CRB ANALYSIS

The unknown parameters in the underlying problem include the
DOA and power of the L sources, respectively denoted as vectors
θ = [θ1, · · · , θL]T and p = [σ2

1 , σ
2
2 , · · · , σ2

L]T, and the noise
power, denoted as σ2

n. Define ω = [ω1, · · · , ωL]T as the spatial
frequencies of the L sources with ωl = d sin(θl)/λ = sin(θl)/2.
Then, the unknown parameters are grouped as an (2L + 1) × 1
vector ψ = [ωT,pT, σ2

n]T.
We consider the stochastic CRB under the assumption that the

sources are known to be uncorrelated [10, 24]. Using the pessimistic
model developed in [22] and the arcsine relationship described in
Section 3.2, we describe the probability model of x(t) in a compact
form as x(t) ∼ CN (0,R) with

R =


R1 R1,2 · · · R1,K

R2,1 R2 · · · R2,3

...
...

. . .
...

RK,1 RK,2 · · · RK

 . (12)

In this expression, Rk represents the self-subarray covariance matrix
for the kth subarray as defined in (4), whereas Rk1,k2 is the cross-
subarray covariance matrix between the k1th and the k2th subarrays
as defined in (11), where k, k1, k2 = 1, · · · ,K.

The general expression of the Fisher information matrix (FIM)
is given by

[F]u,v = −E
[
∂2 ln p(x|ψ)

∂ψu∂ψv

]
, (13)

where ψu denotes the uth element ofψ, such that u, v ∈ {1, 2, · · · ,
2L+ 1}.

Exploiting T snapshots, the (u, v)th element of the FIM corre-
sponding to the covariance matrix R is expressed as [10, 25, 26]:

1

T
[F]u,v = Tr

(
R−1 ∂R

∂ψu
R−1 ∂R

∂ψv

)
=

[(
RT⊗R

)− 1
2 ∂r

∂ψu

]H[(
RT⊗R

)− 1
2 ∂r

∂ψv

]
.

(14)



Because we are interested in the CRB of the signal DOAs, we
partition the parameter vector ψ as ψ = [ωT | pT σ2

n]T, and
denote r = vec(R). Then, the FIM can be expressed as [10]

1

T
F =

[
∆ω

∆o

]H
[∆ω ∆o] =

[
∆H

ω∆ω ∆H
ω∆o

∆H
o ∆ω ∆H

o ∆o

]
, (15)

where

∆ω =
(
RT ⊗R

)− 1
2

[
∂r

∂ω1
, · · · , ∂r

∂ωL

]
, (16)

depends only on ω, whereas

∆o =
(
RT ⊗R

)− 1
2

[
∂r

∂σ2
1

, · · · , ∂r

∂σ2
L

,
∂r

∂σ2
n

]
(17)

depends on the other parameters.
Following the derivation in [10], if the FIM is invertible, the

CRB of θ can be expressed as the Schur complement of the ∆H
o ∆o

block as [27]:

CRB(ω) =
1

T
(∆H

ωΠ⊥o ∆ω)−1, (18)

where Π⊥o = I −∆o(∆H
o ∆o)−1∆H

o . It is shown in [10] that the
nonsingularity of FIM is equivalent to the nonsingularity of ∆H

o ∆o

and ∆H
ωΠ⊥o ∆ω .

In the following, we first review the results of the FIM using
full-precision and one-bit data based on [10] and [22], and the FIM
for the mixed-precision data is then derived.

4.1. FIM Using Full-Precision Data

Following the derivations in [10], we first define aD(θl) as the steer-
ing vector of the coarray corresponding to the lth source and J ∈
{0, 1}M

2×(2D−1) as a binary matrix such that a∗(θ) ⊗ a(θ) =
JaD(θ), where D denotes the cardinality of the set of non-negative
virtual sensors of the difference coarray [19]. Denoting RFP as the
covariance matrix obtained from the full-precision data, its vector-
ized form rFP is given as

rFP =

L∑
l=1

σ2
l JaD(θl) + σ2

nvec(IM ). (19)

Its partial derivative with respect to the spatial frequency ωl is ob-
tained as

∂rFP

∂ωl
= 2πσ2

l · J · diag(D) · aD(θl), (20)

and its partial derivatives with respect to the source power σ2
l and

the noise power σ2
n are respectively given as

∂rFP

∂σ2
l

= JaD(θl) and
∂rFP

∂σ2
n

= vec(IM ). (21)

Substituting (20) and (21) into (15)–(18) renders the FIM and CRB.

4.2. FIM Using One-Bit Data

Now we formulate the FIM for the case when the covariance matrix
of the entire array is computed from one-bit data [22]. Treating the
multiple subarrays as a single sparse linear array, the full-precision
normalized cross-covariance matrix R̄FP is given as

R̄FP = Adiag(p̄)AH +

(
1−

L∑
l=1

σ̄l
2

)
IM . (22)

From the arcsine law, we can obtain,

R1B =
2

π
arcsine

(
R̄FP

)
. (23)

Substituting (22) to (23) and vectorizing the result, we obtain

r1B =
2

π
J · arcsine

[
Adp̄ +

(
1−

L∑
l=1

σ̄l
2

)
e

]
, (24)

where Ad is the steering matrix corresponding to the difference
coarray of the entire distributed array, and the column vector e ∈
{0, 1}(2D−1)×1 is defined such that [e]i = δ(i−D).

The partial derivative of r1B with respect to spatial frequency ωl
can be formulated as

∂r1B
∂ωl

= −4jσ̄l
2J · diag(d)

[
diag(h̄) · Re

(
ad(θl)

)
− e

+jdiag(h) · Im
(
ad(θl)

) ]
.

(25)

Similarly, its partial derivatives with respect to the source power σ2
l

and the noise power σ2
n are respectively given as

∂r1B
∂σ2

l

=
2

π
J
[
diag(h) · Re

(
ad(θl)

)
− e

+jdiag(h̄) · Im
(
ad(θl)

) ] (26)

and

∂r1B
∂σ2

n

=
2

π
J
[
diag(h) · e + jdiag(h̄) · e

]
, (27)

where d = [−lD−1d, · · · , 0, · · · , lD−1d]T denotes the locations
of the virtual sensors of the difference coarray considering sensor
locations of all subarrays combined. Also, h and h̄ are given as

h =

1−

∣∣∣∣∣Re

(
L∑
l=1

σ̄l
2ejdπ sin θl

)∣∣∣∣∣
2
−1/2

(28)

and

h̄ =

1−

∣∣∣∣∣Im
(

L∑
l=1

σ̄l
2ejdπ sin θl

)∣∣∣∣∣
2
−1/2

. (29)

Similarly, substituting (25)–(27) into (15)–(18) renders the FIM and
CRB. It is noted that, for the underlying case, because the one-bit
data are used in computing (25)–(27), the one-bit covariance matrix
R1B is used in (16) and (17) in lieu of R.

4.3. FIM Using Mixed-Precision Data

Denote a mask matrix Γ = bdiag(IM1 , · · · , IMK ) such that Γ ◦
R = Γ ◦ RFP represents the block-diagonal self-covariance ma-
trix entries in R that are estimated using full-precision data, and
denote Γ̄ = 1 − Γ such that Γ̄ ◦ R = Γ̄ ◦ R1B represents the
off-block-diagonal cross-covariance matrix entries in R that are es-
timated from one-bit data. Therefore,

R = Γ ◦R + Γ̄ ◦R = Γ ◦RFP + Γ̄ ◦R1B. (30)

Therefore, by using the partial derivatives of the covariance ma-
trices respectively obtained for the full-precision and one-bit data
in Sections 4.1 and 4.2, the FIM elements ∆ω and ∆o exploited



in (16) and (17) can be computed based on the respective results
corresponding to the full-precision and mixed-precision data. We
denote the elements for the full-precision data as ∆FP

ω and ∆FP
o

whereas those for the one-bit data as ∆1B
ω and ∆1B

o . Further de-
noting ΓE = diag[vec(Γ)] and Γ̄E = diag[vec(Γ̄)], the mixed
precision FIM components can be computed as

∆MP
ω = ΓE∆FP

ω + Γ̄E∆1B
ω (31)

and
∆MP

o = ΓE∆FP
o + Γ̄E∆1B

o . (32)

Therefore, we can obtain the CRB of the sparse array for the
mixed-precision data case from (18), (31) and (32). It is noted that,
for the CRB to exist, the FIM must be nonsingular [10]. It can be
inferred from the above expressions that the mixed-precision FIM is
nonsingular and thus invertible when the full-precision and one-bit
FIMs are nonsingular.

5. NUMERICAL RESULTS

We consider a distributed array consisting of two sparse subarrays.
Each subarray consists of 3 sensors. L = 7 sources are assumed to ar-
rive in [−60◦, 40◦] with a uniform angular separation. The subarray
configuration is given as

S1 = {0, 1, 4}d, S2 = {7, 9, 11}d.

Fig. 1(a) shows the CRB and the RMSE performance of the dis-
tributed array with respect to the number of snapshots, K. When
computing the RMSE results, the lag interpolation method described
in [28] is used, and the results are computed from 100 independent
trials. It is observed that, while inferior to the full-precision data case
due to one-bit quantization in reconstructing the cross-covariances,
with the only addition of the subarray self-covariance matrices, the
mixed-precision processing offers a substantial improvement from
the one-bit data case. Fig. 1(b) depicts the CRB and RMSE with
respect to the input signal-to-noise ratio (SNR) of each signal and
confirms a similar trend.

Fig. 2 shows the CRB with respect to the number of sources,
L. Note that, as the number of interpolated array sensors is 12, the
maximum number of sources that can be detected by the distributed
array is 11. It is observed that the CRB degrades as the number of
sources increases. Furthermore, the simulation results in both Figs. 1
and 2 confirm that the CRB corresponding to full-precision, mixed-
precision, and one-bit data follow a similar trend irrespective of the
parameters being considered.

6. CONCLUSION

In this paper, we have analyzed the CRB for a distributed array ex-
ploiting mixed-precision covariance matrix. The analytical and sim-
ulation results confirmed the effectiveness of the distributed DOA
estimation strategy using mixed-precision data that achieves a high
estimation accuracy with significantly reduced network communica-
tion overhead. The results are also helpful for the design and opti-
mization of distributed arrays.
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