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ABSTRACT

Massive multiple-input multiple-output (MIMO) is a promis-
ing technique for 5G communications due to its superior
spectrum and energy efficiencies. Despite its many advan-
tages, the high number of antennas used in massive MIMO
brings many challenges in practical implementations. Among
them, the pilot overhead for downlink channel estimation
becomes unaffordable in frequency division duplex (FDD)
massive MIMO systems. In this paper, we exploit the avail-
able a priori knowledge of the channel to optimize the pilot
design. By utilizing the low-rank nature of the channel ma-
trix, we first derive the minimum number of pilot symbols
required for perfect channel recovery. Further, under the gen-
eral Gaussian mixture model for the channel vector, the pilot
symbols are optimized to maximize the mutual information
between the measurements of the user and the corresponding
channel vector. Simulation results demonstrate the effective-
ness of the proposed optimal pilot design for the downlink
channel estimation in FDD massive MIMO systems.

Index Terms— Channel estimation, Gaussian mixture,
massive MIMO, pilot optimization.

1. INTRODUCTION

With the development of millimeter wave technology, mas-
sive multiple-input multiple-output (MIMO) has been widely
expected to be the key enabling technology in next generation
wireless communications standards. The significant benefits
of massive MIMO in system capacity, spectrum efficiency,
energy efficiency, security, and robustness stem from the high
number of antennas exploited at the base station [1-7]. This
fact, on the other hand, also brings a number of challenges,
such as the pilot design for downlink channel estimation in
frequency division duplex (FDD) massive MIMO.

In wireless communications, the channel state informa-
tion is essential for reliable data transmission and efficient re-
source allocation. In general, the number of pilot symbols in
MIMO communications should not be less than the number
of antennas at the base station in order to effectively iden-
tify the channel states. This results in a huge pilot overhead
for the downlink channel estimation in FDD massive MIMO,
thereby reducing the spectrum efficiency. In the FDD opera-
tion, a user estimates its downlink channel from the received

pilot symbols, and feeds the estimated channel state informa-
tion back to the base station. Hence, it is a critical task to
identify the downlink channel in massive MIMO with a sig-
nificantly reduced number of pilot symbols.

In recent years, reducing the pilot overhead in massive
MIMO systems has been the subject of extensive studies. Dif-
ferent design criteria have been developed, such as maximiz-
ing the system spectral efficiency [8], maximizing the aver-
age received signal-to-noise ratio (SNR) [9], maximizing the
summation of the conditional mutual information [10], maxi-
mizing the sum-rate upper bound [11], minimizing the mean
squared error (MSE) [9, 12], minimizing the sum MSE [12],
and minimizing the weighted sum MSE [13]. These tech-
niques are developed by exploiting the sparsity of the chan-
nel vector due to the narrow angular spread of the incom-
ing/outgoing rays at the base station in typical cellular sys-
tems. All these techniques assume the channel vector to be
modeled as a single smooth Gaussian variable. Such assump-
tion is very strict and may suffer from performance loss when
the actual channel deviates from the assumed model.

In this paper, we perform optimal pilot design by exploit-
ing the low-rank feature of the downlink channels in FDD
massive MIMO, and modeling the channels to follow a gen-
eral Gaussian mixture distribution. First, we study the asymp-
totic behavior of the minimum mean-squared error (MMSE)
estimator. It reveals that a perfect channel recovery can be
achieved in the asymptotic regime, provided that the num-
ber of pilot symbols is not less than the maximum rank of
the channel covariance matrices of all Gaussian components.
Second, we adopt the mutual information maximization cri-
terion to optimize the pilot symbols for the downlink chan-
nel estimation. The optimization problem is solved using a
gradient-based search method based on the gradient of the ap-
proximated information with respect to the pilot matrix. Sim-
ulation results demonstrate the effectiveness of the proposed
pilot design for the downlink channel estimation in massive
MIMO systems.

2. SIGNAL MODEL IN MASSIVE MIMO

Assume that a massive MIMO base station uses N > 1
antennas to transmit a set of pilot symbols {¢(l) € CV,l =
1,2,---,L}. The baseband received signal at the single-



antenna user terminal is expressed as
y=®h +n, @)

where ® = [p(1),$(2), - ,d(L)]" € CL*N is the L-
symbol pilot matrix, h € C¥ is the frequency-flat fading
downlink channel vector, and . ~ CN(0,021) is the zero-
mean additive Gaussian white noise with variance o2. Here,
()T denotes the transpose operation, and I represents an
identity matrix.

The least squares (LS) estimate of h is given by
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where (-)! denotes the Hermitian transpose. In order to per-
form the above matrix inversion, the number of pilot symbols
must not be less than the number of antennas, i.e., L > N.
In massive MIMO systems, as the number of antennas at the
base station, [V, is typically very large, such a pilot overhead
becomes unaffordable.

In order to guarantee the spectrum efficiency, therefore,
the number of pilot symbols in FDD massive MIMO systems
must be much less than the number of antennas at the base sta-
tion, i.e., L < N. In such a case, the LS solution is no longer
applicable. Hence, we exploit the a prior knowledge of the
channel to significantly reduce the number of pilot symbols
required for channel recovery.

3. PILOT OPTIMIZATION IN MASSIVE MIMO

3.1. Gaussian mixture channel model

In a massive MIMO system, the channels are usually sparse
and low-rank due to the small number of users and the narrow
angular spread of the beam. The latter leads to a high correla-
tion between different paths that link the base station and the
user [8—10]. We further model the channel vector to follow
a Gaussian mixture distribution. This distribution model is
well verified in practice to describe the real environment with
a high flexibility and tractability (see, e.g., [14—16] and the
references therein).

Let the probability density function (pdf) of the channel
vector h be modeled by a Gaussian mixture distribution as

F(R) =D e (h), 3)
ke
which implies that it contains K = |K| Gaussian compo-

nents, and the k-th component is activated with probability
pe > 002 rexPe =1 and, when activated, that component
generates a complex-valued Gaussian vector with distribution
F9(R) =N (ull), RiL)).

Under the channel distribution model (3), the user mea-
surement y also follows a Gaussian mixture distribution as

Fw) = > meN (ug) R, @

ke

where the mean vector and covariance matrix of the k-th com-
ponent are given by

Yy
R¥) = eR oM 1 521 5)

The MMSE estimate of the channel vector h, defined as
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is given by [17]
~ MMSE
A = E{hly} = puytp, @)
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where E{-} denotes the statistical expectation,
—1
up, = uil + R [RY)] (y-uf))  ®

is the k-th component of the MMSE estimator of h given the
measurement y, and

pef M (y
Phly = f(y)( ) ®
is the corresponding posterior probability [18]. When the

downlink channel is estimated, it will be sent back to the base
station.

3.2. Asymptotic behavior of the MMSE estimator

Similar to the asymptotic analysis in [12], in this section, we
analyze the behavior of the MMSE estimator in the high-SNR
asymptotic regime. The asymptotic analysis verifies the pos-
sibility of perfect channel recovery from a small number of
pilot symbols, because the channel matrix in massive MIMO
systems is low rank.

Theorem: Let 7(*) be the rank of the channel covari-
ance matrix of the k-th Gaussian component in the Gaussian
mixture distribution, Rglk,z, ie., rk) = rank(Rng,z), where
rank(-) denotes the rank of a matrix. Let VT (v (*))H
denote the eigen-decomposition of (R;lk,i)%i’H@(Rglk,Z)%,
where V(¥ — ['v(lk)7 - 7,05\1?)] is a unitary matrix consisting
of the eigenvectors, and r — diag(y1,72, "+ »Vr0, 0,

-,0) is a diagonal matrix consisting of the eigenvalues
withy; > v9 > -+ > 7, > 0. Assume that the number of
randomly generated pilot symbols, L, is no less than the max-

imum of r(¥) of all Gaussian components, i.e., L > I{la]é( r(k),
S
then the lower bound of the MSE of the MMSE estimate of

h is given by

()
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which approaches zero in the high-SNR asymptotic regime,
i.e., when 02 — 0. The upper and lower bounds approach
each other with an increasing SNR, and they coincide as the

SNR tends to infinity [17]. Therefore, perfect channel recov-
ery is possible because
2
} =0, an
2

~ MMSE

lim F { Hh —h
SNR— o0

where SNR = ||h||? /o2 denotes the SNR of the user’s chan-

nel.

3.3. Optimal pilot design

According to [19], a channel estimated under the maximum
mutual information criterion is equivalent to the one esti-
mated under the MMSE criterion. Considering that there is
no closed-form MSE expression for the Gaussian mixture
variable [17], we alternate the mutual information maximiza-
tion criterion to optimize the pilot symbols for the downlink
channel estimation.

The pilot optimization problem is formulated to maximize
the mutual information between the measurement vector y
and the channel vector h [20], i.e.,

I(y;h) = h(y) — h(y|h)
subjectto ®PT =T (12)

max
P

where h(y) denotes the differential entropy of the measure-
ment y, and h(y|h) represents the conditional differential en-
tropy of the measurement y given the channel h. The or-
thonormal constraint ®®" = T is introduced to avoid in-
creasing the mutual information by simply scaling ® to be
larger because scaling ® only affects the channel rather than
the noise. Another common constraint is the total transmit
power budget, i.e., Tr{<I>‘I>H} < L.

It is difficult to analytically derive the differential entropy
even for a simple estimation problem, let alone the parame-
ter estimation problem with the high dimensionality and non-
Gaussianity. By performing the first-order Taylor series ex-
pansion of the logarithm of the Gaussian mixture distribution
in the definition of the differential entropy of the measure-
ment vector y, we obtain the approximated differential en-
tropy as [14]

h(y) ~ —log lz prf® (yo)] , (13)

kel

where y, = E{y} is the mean value of the measurement.
Following the zero mean assumption of the channel vector [8,
10], we have ug,k) = <I>u§lk) = 0 for all individual Gaussian
components of y. In this case, it is natural to set the Taylor

series expansion point to y, = 0, resulting in

(14)

where |-| denotes the determinant of a matrix. We now have
the approximated differential entropy of y as

—1
h(y) =~ —log [Z Dk ‘R?(Jky) + Llogm, (15)

ke

where the second term is a constant independent of the pilot
matrix ®.

Because the additive noise n is independent of the chan-
nel h, the conditional differential entropy of y given h be-
comes

h(ylh) = h(n) = Llog(enay), (16)

which is independent of the pilot matrix .
Note that the mutual information I(y;h) is invariant
when the pilot matrix ® undergoes a unitary rotation, i.e.,

I(y;h)|qe =1(y; h)|e

~ —log lz Dk ‘R;f“y) ’

keK

-1

— Llog(ear,),(17)

where Q € CE*L is a unitary matrix satisfying Q" Q =
QQ" =1

Taking the gradient of the approximated mutual informa-
tion in (17) with respect to the pilot matrix ®, we have

1 1
(k) (k) (k)
k;}C Dk ‘Ryy [Ryy} PRy,

Val(y;h)~ (18)
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which is then used in a gradient ascent search for the optimal
pilot design according to

® =& +1Val(y;h), (19)

where v > 0 is a small step size. The updated pilot matrix is a
linear combination of the current pilot matrix and the approx-
imated mutual information gradient with respect to the pilot
matrix.

The orthonormal constraint in (12) can be enforced by
seeking the closest row-orthonormal matrix to the updated pi-
lot matrix @, which is an orthogonal Procrustes problem [21].
The orthonormal pilot matrix closest to ® is given by

d - DY G, (20)

where ® = DEGY is the singular value decomposition
(SVD) of &, and > is a modified 3 with all singular values
replaced by one. Then, & is used to substitute ® in the next
iteration in calculating (18) and then updated using (19) to
achieve an iterative search procedure until convergence. Ex-
perience shows that fast convergence is achieved benefited
from the sparsity of the channel.



4. SIMULATION RESULTS

In the simulation, we assume that the base station in a massive
MIMO is equipped with a uniform linear array (ULA) with
N = 100 omnidirectional antennas spaced a half wavelength
apart (i.e., d = A/2). A Gaussian mixture model is learned
from the a priori power azimuth spread of the user channel.
Specifically, the channel covariance matrix is generated as

Rﬁfﬁ:/ o2a(0)a(0)do Q1)
A(k)

according to the piecewise-Gaussian approximation, where
a(f) is the steering vector of the ULA, o} is the channel
power, and A®*) denotes the k-th observation region at the
base station (e.g., A®) N A*) =0,V k, k' € K,k # Kk and
Urex A®) = (= /2, /2] for the ULA). The corresponding
probability of the k-th Gaussian component, which reflects
the power azimuth spread, can be modeled by a Laplacian
distribution as [22]
1 _ V2|9, 9]

= e cAs 22
Dk NP (22)

where 0 and o 45 respectively denote the mean direction-of-
arrival (DOA) and the azimuth spread of the downlink chan-
nel. Although the Laplacian distribution is the most popular
one in typical outdoor propagations, other classes of distribu-
tions are also applicable in certain circumstances [22].

In the simulation, the mean DOA is uniformly distributed
as 6 ~ U[—90°,90°], and the azimuth spread is set as 045 =
3°. Both the mean DOA and the azimuth spread are assumed
to be known at the base station. In order to avoid the effects
of user channel SNR scaling on the absolute error levels, we
utilize the normalized MSE (NMSE), defined as

2

Nye h(‘]) - HMMSE(Q)
NMSE(h) = , (23)
Nyc ; Ik (g)lI*

to evaluate the performance of channel estimation, where

Nye = 1,000 is the number of Monte-Carlo trials, and
- MMSE
h (¢) is the MMSE estimate of h(q), i.e., the user chan-

nel obtained in the g-th Monte Carlo trial. The step size for
the iterative pilot optimization is set as v = 0.1.

Numerical results show that the maximum rank of the
channel covariance matrices over different Gaussian compo-
nents is 8, i.e., Il?alé( rd) = 8. In Fig. 1, we depict the NM-

SEs versus the in%ut SNR of the channel with different pilot
lengths. The NMSE performance is clearly a function of the
input SNR for both the optimized and random pilot symbols,
where the channels are scaled by +/SNR to model the varying
quality of the channel. From Fig. 1, it is observed that the
channel estimation performance can be greatly improved by
using the proposed pilot symbols as compared to the random
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Fig. 1. NMSE performance comparison of the channel esti-
mation versus the input SNR of the channel for different num-
bers of the pilot symbols.

pilot symbols. The performance advantage becomes more
significant as the input SNR increases. It is also observed
that, when the number of pilot symbols reaches the maximum
rank of the covariance matrices over different Gaussian com-
ponents, the channel estimation performance cannot be fur-
ther improved by increasing the number of pilot symbols. On
the contrary, when the number of pilot symbols is less than
the maximum rank of the covariance matrices, the channel es-
timation performance can be further improved by increasing
the number of pilot symbols. The simulation result is consis-
tent with the asymptotic behavior analyzed in the Theorem.

5. CONCLUSION

In this paper, by modeling the channel vector in massive
MIMO as a flexible and tractable Gaussian mixture distribu-
tion, we first proved that the channel can be perfectly recov-
ered in the high-SNR asymptotic regime, provided that the
number of pilot symbols is not less than the maximum rank of
the channel covariance matrices of all Gaussian components.
Then, we proposed an optimal pilot design by maximizing
the mutual information between the measurements of the user
and its corresponding channel vector. The proposed pilot op-
timization method can be extended to serve an arbitrary num-
ber of users in FDD massive MIMO systems by exploiting
the a priori knowledge of the channel vectors to be estimated.
With the available Gaussian mixture distribution, there is a
closed-form solution to the underdetermined channel estima-
tion problem under the MMSE criterion. Simulation results
demonstrated that the proposed optimal pilot outperforms the
random pilot in terms of the NMSE of channel estimation.
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