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Abstract—This paper develops a computationally efficient
approach for direction of arrival (DOA) estimation of coher-
ent signals. The proposed method structurally reconstructs a
decorrelated covariance matrix by exploiting a single row of the
rank-deficient covariance matrix and its flipped and conjugated
counterpart. The reconstruction produces a rank-restored covari-
ance matrix suitable for DOA estimation. Compared to existing
approaches, the proposed method offers a more computationally
efficient and flexible solution for coherent signal DOA estimation
while achieving more robust performance.

Index Terms—Direction of arrival estimation, coherent signals,
decorrelation, structured reconstruction.

I. INTRODUCTION

Direction of arrival (DOA) estimation is an important area in
array signal processing with applications in various fields, such
as radar, sonar, wireless communication, radio astronomy [1]–
[6]. Numerous methods have been developed for DOA esti-
mation, among which maximum likelihood-based methods are
effective regardless of the mutual coherence of the impinging
signals [7]–[10]. However, these methods are computationally
demanding due to the necessity of solving multi-dimensional
optimization problems.

Alternatively, subspace-based methods, such as multiple
signal classification (MUSIC) [11] and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [12],
are widely used to achieve high-resolution DOA estimation
with lower computational complexity. These methods exploit
the eigenstructure properties of the covariance matrix of the
received signals at the sensor array under the assumption that
the impinging signals are uncorrelated, ensuring a full-rank
covariance matrix. However, when the signals are fully or
partially correlated, such as in scenarios involving multipath
propagation, the covariance matrix becomes rank-deficient,
making direct application of subspace-based DOA estimation
methods infeasible. In such cases, a decorrelation strategy is
necessary to restore the rank of the covariance matrix and
enable effective DOA estimation.
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Several techniques have been developed to decorrelate
the rank-deficient covariance matrix. The spatial smoothing
technique [13]–[15] partitions the entire array into several
overlapping subarrays, and the average of the subarray co-
variance matrices restores the rank, enabling subspace-based
DOA estimation despite of signal coherence. However, this
method reduces the number of degrees of freedom (DOFs)
compared to the conventional approach. Particularly, when an
N -antenna uniform linear array (ULA) is used, the maximum
number of DOFs becomes ⌊N

2 ⌋, where ⌊·⌋ denotes the floor
function. To increase the number of DOFs, the forward-
backward spatial smoothing (FBSS) technique was introduced
in [16], which utilizes subarray covariance matrices along with
their flipped and conjugated versions, termed as backward
matrices, for averaging. This approach increases the number of
DOFs to ⌊ 2

3N⌋. However, this method is computationally more
expensive than standard spatial smoothing, as FBSS allows
for larger subarray sizes, requiring additional computation for
matrix averaging.

A computationally efficient approach was developed in
[17], which enables the detection of coherent signals without
requiring spatial smoothing. This method constructs a Toeplitz
matrix from a single row of the covariance matrix, effectively
restoring its rank and making it suitable for DOA estimation
of coherent signals. For an odd number of antennas, N , this
method can detect up to N−1

2 signals. To further increase
the number of DOFs using the arrangement approach, [18]
introduced an approach that incorporates both the forward
and backward vectors, achieving a DOF count similar to the
FBSS approach. In [18], two methods were developed for con-
structing the forward and backward vectors: the eigenvector
method (EVM) and the correlation vector method (CVM).
The forward-backward covariance matrix, derived from the
signal subspace using one of these methods, is then employed
for DOA estimation via the ESPRIT algorithm. However, this
approach requires prior knowledge of the number of sources to
construct the decorrelated covariance matrix, which may not
be available in practical scenarios. Additionally, the resulting
forward-backward covariance matrix is non-square, limiting
its compatibility with certain key DOA estimation algorithms,
such as MUSIC.

In [19], a different approach was introduced, wherein a



single row and a single column are used to construct a Toeplitz
matrix. Multiple Toeplitz matrices, generated from different
rows and columns, are averaged to obtain a decorrelated co-
variance matrix capable of detecting a mixture of uncorrelated
and coherent signals. This method preserves the dimension of
the decorrelated covariance matrix as the original one and can
detect a larger number of mixed signals than ⌊ 2

3N⌋ offered
by the forward-backward approach. However, its performance
degrades as the number of coherent signals increases.

In this paper, we propose a computationally efficient al-
gorithm for the DOA estimation of coherent sources, offer-
ing a similar number of DOFs as FBSS but without the
need for spatial smoothing. The proposed method structurally
constructs a decorrelated matrix utilizing a single row of
the original covariance matrix, along with its flipped and
conjugated version. Unlike [18], this approach does not require
prior knowledge of the number of sources to obtain the
decorrelated covariance matrix. Additionally, it leverages both
the signal and noise subspaces, enhancing the robustness of
DOA estimation performance [20]. As the resulting matrix is
square, it retains full-rank properties, and can be seamlessly
integrated with existing DOA estimation algorithm to handle
coherent signals.

Notations: We use bold lower-case (upper-case) letters to
describe vectors (matrices). Specifically, IL represents the
identity matrix of size L×L. (·)T, (·)∗ and (·)H respectively
indicate the transpose, conjugate, and conjugate transpose
(Hermitian) of a matrix or a vector. The symbol j =

√
−1

represents the unit imaginary number and E(·) denotes the
statistical expectation.

II. SIGNAL MODEL

Consider K far-field narrowband signals, s(t) =
[s1(t), s2(t), · · · , sK(t)]T ∈ CK , impinging on a ULA
consisting of N omnidirectional sensors with DOAs θ =
[θ1, θ2, · · · , θK ]T. We assume that the signals exhibit mutual
coherence with each other, and denote signal waveform s1(t)
as the reference. The other waveforms are its scaled versions
by complex scalars αk, i.e.,

sk(t) = αks1(t), (1)

for k = 1, · · · ,K with α1 = 1. Accordingly, the array
received signal vector at time t can be expressed as

x(t) = s1(t)

K∑
k=1

αka(θk) + n(t)

= As(t) + n(t),

(2)

where

a(θk) = [1, e−j 2π
λ d sin θk , · · · , e−j 2π

λ (N−1)d sin θK ]T ∈ CN

(3)
denotes the steering vector corresponding to DOA θk, A =
[a(θ1),a(θ2), · · · , (a(θK)] ∈ CN×K is the array manifold
matrix, and n(t) ∼ CN (0, σ2

nIN ) is the additive white

Gaussian noise vector. Then, the covariance matrix of the array
received signal is obtained as

R = E
[
x(t)xH(t)

]
= ARsA

H + σ2
nIN , (4)

where Rs is the source covariance matrix and is expressed as

Rs = σ2
sααH, (5)

σ2
s is the signal power of the reference waveform s1(t), and

α = [α1, α2, · · · , αK ]T is a complex scaling vector for the
coherent signals. The covariance matrix R can be expanded
as

R = σ2
s

K∑
k=1

K∑
k′=1

α∗
kαk′a(θk′)aH(θk) + σ2

nIN . (6)

It is observed in Eq. (6) that the covariance matrix contains
cross-correlations among the coherent sources, leading to rank
deficiency. The (m,n)th element of the covariance matrix R
can be expressed as

R(m,n) = σ2
s

K∑
k′=1

αk′e−j 2π
λ md sin θk′

K∑
k=1

α∗
ke

j 2π
λ nd sin θk

+ σ2
nδm,n

= bm

K∑
k=1

α∗
ke

j 2π
λ nd sin θk + σ2

nδm,n,

(7)
where bm =

∑K
k′=1 αk′e−j 2π

λ md sin θk′ depends on the row
index m of the covariance matrix and δm,n is the Kronecker
delta function.

III. DECORRELATION OF THE COVARIANCE MATRIX

In this section, we present a decorrelation strategy for
the rank-deficient covariance matrix of coherent signals. To
achieve this, we use one row (say, the mth row) of the co-
variance matrix and obtain the forward and backward vectors,
respectively expressed as

rf = R(m, :),

rb = Jr∗f ,
(8)

where J is the exchange matrix, which has ones along its
anti-diagonal elements and zeros elsewhere.

We extend the Toeplitz arrangement-based method devel-
oped in [17], which originally utilizes only the forward vec-
tors, by incorporating both forward and backward vectors. The
arrangement proposed in [17] is depicted as

Df =


rf (0) rf (1) · · · rf (⌊N

2 ⌋)
rf (−1) rf (0) · · · rf (⌊N

2 ⌋ − 1)

· · · · · ·
. . . · · ·

rf (−⌊N
2 ⌋) rf (−⌊N

2 ⌋+ 1) · · · rf (0)

 .

(9)
In this arrangement, by indexing the elements of rf from
−⌊N

2 ⌋ to ⌊N
2 ⌋, the first row of Df comprises elements

between rf (0) and rf (⌊N
2 ⌋). The second row is shifted one

index to the left, ranging between rf (−1) and rf (⌊N
2 ⌋ − 1).

This pattern is repeated for the subsequent rows, resulting in



the decorrelated matrix Df having a dimension of (⌊N
2 ⌋ +

1)× (⌊N
2 ⌋+ 1).

Unlike in [17], where only the forward vector is utilized,
the proposed method incorporates both forward and backward
vectors to construct the decorrelated covariance matrix. This
enables an increase in the dimension of the decorrelated
matrix, thereby enhancing the number of DOFs. To enhance
the dimension of the decorrelated matrix and hence the number
of DOFs, the first row of the forward-backward decorrelated
matrix starts p elements earlier. In so doing, although the
number of rows constructed by the arrangement will be smaller
than the number of columns, the backward vector can be
utilized to fill up the remaining rows to make the decorrelated
matrix in square shape. The forward-backward decorrelated
matrix is constructed as

Dfb =

rf (−p) rf (−p+ 1) · · · rf (⌊N
2
⌋)

rf (−p− 1) rf (−p) · · · rf (⌊N
2
⌋ − 1)

· · · · · ·
. . . · · ·

rf (−⌊N
2
⌋) rf (−⌊N

2
⌋+ 1) · · · rf (p)

rb(−⌊N
2
⌋+ 2p− 1) rb(−⌊N

2
⌋+ 2p) · · · rb(3p− 1)

· · · · · ·
. . . · · ·

rb(−⌊N
2
⌋) rb(−⌊N

2
⌋+ 1) · · · rb(p)


.

(10)
The dimension of the forward-backward decorrelated matrix
Dfb is (⌊N

2 ⌋+1+p)×(⌊N
2 ⌋+1+p). The (m′, n′)th element

of Dfb can be obtained from R as

Dfb(m
′, n′) =

{
r(−m′ + n′ − p), m′ ≤ ⌊N

2 ⌋ − p,

rb(−m′ + n′ + p), m′ > ⌊N
2 ⌋ − p.

(11)

From Eqs. (11) and (7), element Dfb(m
′, n′) can be expanded

as

Dfb(m
′, n′)=b(fb)m

K∑
k=1

γ
(fb)
k e−jπ(m′−n′) sin θk + σ2

nδm̃,m,

(12)
where

b(fb)m =

{
bm, m′ ≤ ⌊N

2 ⌋ − p,

b∗m, m′ > ⌊N
2 ⌋ − p,

(13)

γ
(fb)
k =

{
γk, m′ ≤ ⌊N

2 ⌋ − p,

γ∗
k , m′ > ⌊N

2 ⌋ − p,
(14)

m̃ =

{
−m′ + n′ − p, m′ ≤ ⌊N

2 ⌋ − p,

−n′ +m′ − p, m′ > ⌊N
2 ⌋ − p,

(15)

and γk = α∗e−j 2π
λ pd sin θk .

As a result, the decorrelated covariance matrix Dfb is
formulated as

Dfb = b(fb)m

K∑
k=1

γ(fb)g(θk)g
H(θk) +Nfb, (16)

where g(θk) = [1, e−j 2π
λ d sin θk , · · · , e−j 2π

λ (⌊N
2 ⌋+p)d sin θK ]T ∈

C⌊N
2 ⌋+p+1 acts as the steering vector in the underlying

forward-backward decorrelation scheme and Nfb is the noise
term associated with the Dfb. As evident from Eq. (16),
the decorrelated matrix Dfb is a summation of K rank-one
matrices, thus exhibiting a rank of K, i.e., the full rank is
restored, provided that ⌊N

2 ⌋ + p ≥ K, as detailed in the
following section.

IV. NUMBER OF DEGREES OF FREEDOM ANALYSIS

The decorrelated full-rank covariance matrix Dfb ∈
C(⌊N

2 ⌋+p+1)×(⌊N
2 ⌋+p+1) can be utilized to estimate the DOAs

of coherent signals using an subspace-based DOA estimation
algorithm, such as MUSIC or ESPRIT. Given the dimension
of the full-rank matrix Dfb, the maximum number of DOFs
is given by

DOF =

⌊
N

2

⌋
+ p. (17)

From this expression, it is observed that an optimal value of
p must be determined to maximize the number of DOFs.

First, let us consider the forward-only decorrelated matrix
Df , which is constructed using the forward vector rf as
defined in Eq. (9). This amounts to p = 0 in (17). When N
takes an odd number, Df has N+1

2 rows and N+1
2 columns.

As p increases, as shown in Eq. (10), the number of columns
expands to N+1

2 + p, while the number of rows derived from
the forward vectors decreases to N+1

2 −p. When the backward
vectors rb are used, the remaining rows are filled with the
properly arranged elements of rb, ensuring that the resulting
matrix is square with ⌊N+1

2 ⌋+p rows and ⌊N+1
2 ⌋+p columns.

To guarantee that Dfb retains a square matrix structure in
this case, the following condition needs to be satisfied:

2

(⌊
N + 1

2

⌋
− p

)
≥

⌊
N + 1

2

⌋
+ p, (18)

which implies

p ≤
⌊
N + 1

6

⌋
. (19)

Therefore, the optimal value of p for an odd number of N is

p =

⌊
N + 1

6

⌋
. (20)

When N takes an even number, it can be shown that, for
p = 1, Df has N

2 + 1 rows while the number of columns is
N
2 . To guarantee that Dfb retains a square matrix structure in

this case, p = ⌊N
6 + 2

3⌋ becomes the optimum choice. As a
result, in general, we have the following proposition regarding
the number of DOFs.
Proposition: The number of DOFs is given as

DOF =

{⌊
2
3N

⌋
− 1, N = 6v or 6v ± 3,⌊

2
3N

⌋
, otherwise,

(21)

where v ≥ 1 is a positive integer.

Proof. Consider an odd integer N ≥ 3 and express it as N =
2u+1, where u ≥ 1 is an integer. From Eq. (17), the number
of DOFs is

DOF =
N + 1

2
+

⌊
N + 1

6

⌋
− 1 = (u+ 1) +

⌊
u+ 1

3

⌋
− 1.

(22)



We consider three cases based on the divisibility of 3.
1) u + 1 ≡ 0 (mod 3): In this, we can write u + 1 = 3v,

where v ≥ 1 is an integer. In this case, the number of
DOFs form Eq. (22) becomes

DOF = 3v + v − 1 = 4v − 1, (23)

which is the same as ⌊ 2
3N⌋ since⌊

2

3
N

⌋
=

⌊
2

3
(2u+ 1)

⌋
=

⌊
4u+ 2

3

⌋
=

⌊
4v − 2

3

⌋
= 4v − 1.

(24)

This corresponds to N = 2u+ 1 = 6v − 1.
2) u+1 ≡ 1 (mod 3): In this, we can write u+1 = 3v+1.

In this case, the number of DOFs form Eq. (22) becomes

DOF = 3v + 1 + v − 1 = 4v, (25)

which is the same as ⌊ 2
3N⌋ since⌊

2

3
N

⌋
=

⌊
4u+ 2

3

⌋
=

⌊
4v +

2

3

⌋
= 4v. (26)

This corresponds to N = 2u+ 1 = 6v + 1.
3) u+1 ≡ 2 (mod 3): In this, we can write u+1 = 3v+2.

In this case, the number of DOFs form Eq. (22) becomes

DOF = 3v + 2 + v − 1 = 4v + 1, (27)

which is the same as ⌊ 2
3N⌋ − 1 since⌊

2

3
N

⌋
=

⌊
4u+ 2

3

⌋
= ⌊4v + 2⌋ = 4v + 2. (28)

This corresponds to N = 2u+ 1 = 6v + 3.
In a similar way, when N is even, it can be proven that the
number of DOFs is ⌊ 2

3N⌋ for N = 6v + 2 or 6v + 4, which
equals ⌊ 2

3N − 1⌋ = 2
3N − 1 when N = 6v.

V. COMPUTATIONS COMPLEXITY ANALYSIS

Assuming the availability of the coherent covariance matrix
R, the computation of the proposed forward-backward decor-
related covariance matrix involves the following steps:

1) Construction of forward and backward vectors rf and
rb: The forward vector rf is obtained by selecting a
row from R, while the backward vector rb is constructed
by flipping and conjugating the elements of rf , without
requiring any arithmetic operations.

2) Construction of Dfb: The matrix Dfb is formed by
arranging the elements of rf and rb, without requiring
additional arithmetic operations.

In comparison, FBSS requires the following steps:
1) To perform FBSS, L subarray covariance matrices of size

M × M is formed, where M < N . The L
2 forward

subarray covariance matrices can be obtained by slicing
the original covariance matrix R, while the backward
subarray matrices are constructed by flipping and conju-
gating L

2 matrices, without any additional computational
cost.
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Fig. 1: Estimated MUSIC spectrum for 7 coherent signals.

2) The averaging operation for L forward and backward
matrices incurs a computational complexity of O(LM2).

As a result, the total computational complexity for FBSS is
O(LM2). Unlike the proposed approach, where the compu-
tational cost remains fixed, the values of L and M in FBSS
depend on the number of sources to be detected, contributing
to the overall complexity. Considering the maximum number
of sources to be determined, i.e., K = 2

3N , M should be
at least K + 1, and L should be at least K

2 . Thus, the
overall computational complexity is O( 4

27N
3). Additionally,

the CVM method described in [18], which is based on the
arrangement of correlation elements, has a computational
complexity similar to the proposed approach, while the EVM
method, which requires an eigen-decomposition with a compu-
tational complexity of O(N3), which is dominated by matrix
multiplication.

VI. SIMULATION RESULTS

In this section, we present simulation results of the proposed
method and compare its performance with FBSS [16], EVM,
and CVM [17]. We consider a ULA consisting of 11 antennas.
First, we examine the case where the number of coherent
sources equals the number of DOFs, i.e., K = ⌊ 2

3N⌋ = 7. Fig.
1 considers 7 coherent signals with DOAs of 36°, −42°, 8°,
54°, 5°, −33°, and −19°. The input signal-to-noise ratio (SNR)
of the reference signal is set to 20 dB, and 1, 000 snapshots
are used. The magnitude of the scaling factor is chosen from
a uniform distribution within the range of 0.5 to 2, while the
phase is chosen between 30° and 60° Fig. 1 demonstrates that
the proposed approach successfully detect all 7 sources, which
represent the maximum number of DOFs achievable using an
11-element ULA.

Fig. 2 compares the performance of the considered ap-
proaches in terms of root mean-squared error (RMSE). The
RMSE is defined as

RMSE =

√√√√QK

Q∑
q=1

K∑
k=1

(θk − θ̂q,k), (29)

where Q is the number of Monte Carlo trials, and θk and
θ̂q,k represent the true and estimated DOAs for the qth trial
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Fig. 2: RMSE performance comparison.

of the kth source, respectively. We consider 5 signals with
DOAs −25°, −14°, 4°, −10°, 16° for the RMSE computation.
5, 000 Monte-Carlo trials are performed. Fig. 2(a) illustrates
the RMSE values against the input SNR, where the input
SNR varies between −30 dB and 10 dB, with the number
of snapshots fixed at 1,000. It is observed that the proposed
approach and FBSS achieve lower RMSE values compared to
EVM and CVM. Specially, at lower SNR levels, the proposed
approach achieves the lowest RMSE among all methods. It is
noted that the proposed method incurs a significantly lower
computational complexity compared to the FBSS and EVM.

Fig. 2(b) depicts the RMSE values against the number of
snapshots used. In this case, the number of snapshots varies
from 10 to 1,000, while the input SNR is fixed at 0 dB. It is
observed that the proposed approach and the FBSS outperform
the other methods in this case as well.

VII. CONCLUSION

In this paper, we proposed an efficient approach to decorre-
late the rank-deficient covariance matrix of an array data vector
corresponding to coherent impinging signals. The method
utilizes a single row of the coherent covariance matrix along
with its flipped and conjugated version to structurally arrange
and restore the rank of the covariance matrix. The proposed
method is significantly more computationally efficient than
FBSS and EVM-based approaches while providing robust
performance. Moreover, unlike CVM and EVM, this method
preserves the square matrix structure of the decorrelated
covariance matrix, offering greater flexibility for different
estimation algorithms.
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