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Abstract

This paper addresses the detection of weak astronomical signals that are con-
taminated by strong frequency-hopping (FH) interferers and suffer from miss-
ing samples. The problem is considered in the time-frequency domain and
we successively suppress artifacts due to missing samples, estimate and re-
move FH interferers, and detect the weak astronomical signals. More specif-
ically, we first suppress the artifacts due to missing samples by developing a
waveform-adaptive time-frequency kernel. The instantaneous spectra of the
FH interferers are then estimated using a sparsity-based approach that takes
the inherent properties of FH signals into account. Finally, a sparse coherent
integrated cubic phase function is applied to effectively detect weak astro-
nomical chirp components over a long integration time. Simulation results
are provided to demonstrate the effectiveness of the proposed approach.
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Nomenclature


√
−1

Fd/F
−1
d One-dimensional forward/inverse discrete Fourier transform

(DFT/IDFT) matrices with respect to (w.r.t.) the d dimen-
sion

Fd1,d2 Two-dimensional DFT w.r.t. the d1 and d2 dimensions
◦ Element-wise (Hadamard) product operator
(·)T Transpose operation
(·)∗ Conjugate operation
mod Modulo operation
p(·) Probability density function (PDF)
CN (·) Complex Gaussian distribution
B(·) Bernoulli distribution
Gamma(·) Gamma distribution
Beta(·) Beta distribution
|·| Cardinality of a set
b·c Floor fucntion

1. Introduction

Radio astronomy is recognized as a vitally important field that explores
the universe and broadens the human perspective. As astronomical signals
span a broad frequency spectrum, they are interfered by a growing number
of terrestrial radio frequency signals from various sources. While a radio tele-
scope array typically performs coherent beamforming for signal enhancement
and radio frequency interference (RFI) mitigation, residual RFIs from array
sidelobes may often remain above the desired sensitivity level [3]. This prob-
lem is compounded with the fact that the desired signal is extremely weak,
as inferred by, e.g., the recent discoveries made by the Laser Interferome-
ter Gravitational-Wave Observatory (LIGO) [4]. As such, detection of weak
astronomical signals in the presence of strong interference represents one of
the main research problems in the radio astronomy field [5]. Astronomical
signals typically have time-varying spectra that are characterized by their
instantaneous frequencies (IFs). Because the variation of the IFs is primar-
ily due to the Doppler effects from the relative motion between the observed
astronomical sources and the telescope array, the IFs typically exhibit a lin-
ear frequency modulated (LFM) behavior over a moderate processing time
period. For example, the dynamic spectrum of the observed signal from Crab
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pulsar precisely follows an LFM characteristic over a time duration of 0.08 s
[6].

Some important frequency bands are protected for exclusive radio astron-
omy use [7]. However, they could be very close to legal high power broadcast-
ing or communication users which, even with well-designed transmitters, may
have spurious signals that are leaked into these protected bands with a much
higher signal level than the desired radio astronomical signals. The situation
becomes much worse when frequency band allocations overlap. For exam-
ple, the 225 − 328.6 MHz band is used to provide frequency-hopping (FH)
radio communications for tactical air-to-air and air-to-ground-to-air commu-
nications [8], while the 322.0 − 328.6 MHz band is an important spectrum
used in several United States and European radio astronomy observations
for low-frequency observations of pulsars and flare stars [7–9]. FH signals are
commonly used in a wide range of wireless communication systems because
of many unique features such as resistance to jamming and multipath fading,
as well as low probability of intercept. In this paper, multiple fast FH signals
are considered as interferers and thus must be effectively suppressed before
desired weak astronomical signals can be detected. Because FH signals are
received through terrestrial propagation, they are likely to experience missing
observations due to path obstruction and fading. In this case, existing FH
parameter estimation methods [10, 11] do not offer desirable performance.

Both LFM and FH signals can be categorized as nonstationary because
they exhibit time-varying spectral contents. To analyze such signals, vari-
ous time-frequency representations (TFRs) have been proposed [12–20]. In
particular, the separable kernel TFRs [12, 13] outperform the conventional
TFRs in terms of the resolution and energy concentration properties. Nev-
ertheless, in the cases where the desired signal components distribute away
from the axes in the time-frequency plane, the separable kernel TFRs cannot
achieve adequate energy concentration. Reassignment methods [14, 15] con-
centrate the energy distribution of these desired signal components towards
their centers of gravity, yielding effective sharpening of the TFRs. On this
basis, less deformation of the IF profile is achieved with synchrosqueezing
methods [16–18], which are variants of the reassignment family. However,
since these methods aim to simultaneously localize noise and signal compo-
nents, the different signal components of interest become difficult to resolve
in low signal-to-noise ratio (SNR) conditions. The empirical wavelet trans-
form (EWT) approach [19] adaptively decomposes the signal by constructing
a wavelet filter bank with the underlying spectrum information, which relies
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on robust preprocessing for peak detection to a great extent, and its perfor-
mance degrades in the low SNR region as well. A modified version of the
EWT is presented in [20], where segmentation boundaries are created by ex-
ploiting the MUSIC estimation. However, as the spectrum shape is ignored
in the boundary estimation process, a sufficiently satisfactory segmentation
cannot be obtained. In addition, none of them investigated the robust FH
spectrum estimation in the presence of missing samples.

The method developed in this paper achieves robust FH spectrum es-
timation in the presence of missing data and, as a result, enables effective
suppression of the FH interferers for weak astronomical signal detection. To-
ward this end, a waveform-adaptive time-frequency kernel and the adaptive
optimal kernel (AOK) are first applied to mitigate the effect of missing sam-
ples, and a Bayesian compressive sensing (BCS) based technique, which takes
the inherent characteristic of FH signals into account, is used for FH spec-
trum estimation. After FH interference removal, the weak LFM astronomical
signals are detected and estimated via the coherent integrated cubic phase
function (CICPF), which is efficiently implemented by applying the sparse
Fourier transform (SFT) [21]. The contributions of this work is threefold: (1)
A two-stage kernel design that combines pre-filtering based on the inherent
FH signal characteristic and the standard signal-dependent adaptive kernel
is proposed to mitigate artifacts due to missing samples and obtain enhanced
joint-variable representation of the FH signals; (2) A structure-aware BCS
technique is exploited to achieve improved signal spectrum and IF estima-
tions; (3) A sparse-CICPF is developed to achieve low-complexity detection
of weak LFM astronomical signals with a long coherent integration time.

Note that, in the following discussion, lower and upper-case bold charac-
ters are used to denote vectors and matrices, respectively.

2. Signal Model

Consider a continuous-time signal consisting of weak astronomical chirp
components, strong FH interferers, and additive complex white Gaussian
noise. Let th denote the h-th system-wise hopping instant, at time instant
t ∈ [th−1 , th), the received signal s(t) can be expressed as

s(t) =
L∑
l=1

Ale
π(2al,1t+al,2t

2) +

Kh∑
k=1

Ah,ke
2πfh,kt + v(t), (1)
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where Al, al,1 and al,2 respectively denote the complex amplitude, initial
frequency and chirp rate of the l-th astronomical components, and Kh rep-
resents the number of pure tones within the h-th system-wise dwell. In
addition, Ah,k and fh,k are the complex amplitude and carrier frequency of
the k-th tone, respectively, and v(t) denotes the additive complex Gaussian
noise. Then, periodic sampling of s(t) with the sampling interval of ts yields
the discrete-time received signal, expressed as

s[n] =
L∑
l=1

Ale
π(2al,1nts+al,2(nts)

2) +

Kh∑
k=1

Ah,ke
2πfh,knts + v[n]. (2)

Consider a collection of N samples x[n] = [x[n − 1], . . . , x[n − N ]]T as
the observation data with N −M missing samples, 0 < M ≤ N , and the
positions of these missing samples are assumed to be randomly distributed.
As such, x[n] can be regarded as the Hadamard product of the original data
vector s[n] = [s[n − 1], . . . , s[n − N ]]T and a binary mask vector b[n] =
[b[n− 1], . . . , b[n−N ]]T, i.e.,

x[n] = s[n] ◦ b[n], (3)

with

b[n] =

{
1, if n ∈ J ,
0, otherwise,

(4)

where J ⊂ {1, 2, . . . , N} is the set of observed time instants with cardinality
|J | = M .

3. Sparsity-Based FH Signal Estimation and Suppression

The main steps of the proposed two-stage methodology are summarized
in the flowchart depicted in Fig. 1. In this section, we provide a detailed
explanation of the first step, i.e., sparsity-based FH signal estimation and
mitigation, whereas the detection of weak astronomical signal is discussed in
Section 4.

3.1. Joint-Variable Representations

The continuous-time definitions of the joint-variable representations can
be found in [22]. Substituting n · ts for the continuous-time index t, the
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Figure 1: Flowchart of the proposed signal processing scheme.

discrete-time case can be established as follows. Let Cxx denote the instan-
taneous autocorrelation function (IAF) matrix, whose entry corresponding
to time n and delay τ can be expressed as

Cxx[τ, n] = x[n+ τ ]x∗[n− τ ]. (5)

Then, the ambiguity function (AF) matrix of signal vector x[n], expressed
w.r.t. time lag τ and Doppler frequency κ, can be obtained by performing
IDFT of the IAF w.r.t. the time index n, i.e.,

Axx{τ, κ} = F−1
n Cxx{τ, n} =

∑
n

Cxx{τ, n}e2πκn, (6)

where the notation {τ, κ} is used to emphasize that the matrix Axx is con-
structed w.r.t. variables τ and κ. On the other hand, the Wigner-Ville dis-
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tribution (WVD) can be obtained by performing DFT of the IAF w.r.t. the
lag index τ , i.e.,

Wxx{f, n} = FτCxx{τ, n} =
∑
τ

Cxx{τ, n}e−4πfτ . (7)

Note that, to make the discrete processing more convenient, there is a dif-
ference between the discrete-time IAF defined in (5) and the conventional
definition of Cxx[τ, n] , x[n+ τ/2]x∗[n− τ/2] in the sense that only integer
lags are used in (5). This is a common practice in discrete-time bilinear
time-frequency analysis (see, e.g., Chapter 6 of [22]). As a result, in (7), the
exponential term −4πfτ is used, rather than −2πfτ .

3.2. Waveform-Adaptive Kernel Design

Missing samples cause artifacts in the time-frequency domain [23], which
must be mitigated before reliable FH interference parameter estimation can
be performed. One of the techniques that achieves effective artifact mitiga-
tion is through the application of proper time-frequency kernels. A time-
frequency kernel is a two-dimensional multiplicative low-pass filter in the
AF domain, which can be translated to a two-dimensional convolution in
the time-frequency domain. Time-frequency kernels can be either signal-
independent or signal-dependent. As signal-dependent kernels perform pa-
rameter tuning adaptively, they generally provide better performance for ar-
tifact suppression and auto-term preservation. The AOK [24], which is based
on radial Gaussian functions in the AF domain, is a commonly used signal-
dependent kernel. With the optimization process in obtaining an AOK, the
auto-term components are selected as much as possible within the low-pass
Gaussian filter in the AF domain, while the pass-band area of the filter is
limited to filter out the cross-terms which are located away from the AF
origin.

However, the conventional AOK fails to filter out the near-origin artifacts
induced by missing samples in the AF domain, which yields false vertical
connections between multi-hopping-components in the resulting TFR. In the
underlying problem, we can mitigate this problem by utilizing the a priori
knowledge that the AF of the FH interference components is concentrated in
the lag axis, whereas the AF of the missing-sample artifacts exhibits strong
presence along the Doppler axis due to the impulsive nature of each missing
sample. Thus, a proper pre-filtering window can be adopted before the kernel
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optimization to prevent the artifacts from being falsely identified as desired
signal components.

For signals with time-varying characteristics, the AOK is usually imple-
mented with a time-localized short-time AF A(t; τ, κ) at each time instant
t [24]. In our proposed method, prior to the radial kernel optimization pro-
cedure, the short-time AF is pre-filtered by utilizing a window, which is
designed by thresholding the a priori knowledge-based conjectural single-
component auto-term AF Â[τ, κ], expressed as [1]

g̃[τ, κ] =

{
|Â[τ, κ]|, if |Â[τ, κ]| > ξ,

0, otherwise,
(8)

where ξ is a threshold, which is chosen to only keep meaningful FH auto-terms
in the AF domain. Then the pre-filtered short-time AF can be expressed as

Ãxx(t; τ, κ) = g̃[τ, κ] · Axx(t; τ, κ). (9)

The TFR corresponding to the kernelled AF is obtained as its two-dimensional
Fourier transform, expressed as

W̃xx{f, n} = Fτ,κ

[
Ãxx{n; τ, κ} ◦Φopt{n; τ, κ}

]
, (10)

where Φ{n; τ, κ} is the time-localized AOK matrix.

3.3. Structure-aware BCS-based FH Interference Mitigation

To suppress the FH interference, an accurate estimate of the FH param-
eters is required. Conventional Fourier-based TFRs do not generally provide
a high-resolution signal energy representation. In this section, we consider
a compressive sensing based approach which yields a high-resolution TFR.
The compressive sensing approach obtains the kernelled TFR W̃xx{f, n}
by exploiting the one-dimensional Fourier transform relationship in (7) but
through a sparse reconstruction operation. Compared to the sparse TFR
reconstruction based on the two-dimensional Fourier transform relationship
between the AF and the TFR [25], those using the one-dimensional Fourier
transform relationship between the IAF and the TFR yields improved per-
formance with local sparsity constraints under lower computation complexity
[26]. Denote the n-th column of the IAF matrix C̃xx{τ, n} as c̃xx[n], and the
n-th column of the bilinear TFR matrix W̃xx{f, n} as w̃xx[n]. Then, their
relationship conforms to the following standard linear model:

c̃xx[n] = F−1
f w̃xx[n]. (11)
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(a) Accept, ψ > ζ (b) Neutral, ψ = ζ (c) Reject, ψ < ζ

Entry
under test

Nonzero
entry

Zero
entry

Figure 2: Example patterns of three different TFR categories.

Various compressive sensing algorithms can be used for sparse TFR recon-
struction. In this paper, we use the structure-aware BCS method proposed
in [2]. For notational convenience, we simplify the notations c̃xx[n], F−1

f and
w̃xx[n] as c, Λ and w, respectively. In this case, (11) is simplified as c = Λw.

The BCS is a nonparametric sparse linear inverse solver which assumes
the likelihood model as [27]

p (c; w, γ0) = CN (c; Λw, γ0I), (12)

where the variance γ0 follows the inverse Gamma distribution, i.e., γ−1
0 ∼

Gamma(c, d). Note that, c, d here and a, b, ψ, ζ in the following discussion
represent the model hyperparameters for the priors. To encourage sparsity of
the FH signal TFR, a Dirichlet process prior with a spike-and-slab centering
distribution [28, 29] is employed to the i-th entry of w:

p(wi; γi, πi) = (1− πi)δ0 + πiCN (wi; 0, γi), (13)

where πi is a mixing weight standing for the prior probability of a nonzero
entry, δ0 represents the delta function, and we also assign a Gamma prior
to the precision as γ−1

i ∼ Gamma(a, b). To make the inference analytical,
a product of two latent variables z and θ, i.e., wi = zi · θi is introduced to
follow the PDF in (13), where θi ∼ CN (θi; 0, γi), and zi is a binary variable
with zi ∼ B(πi). zi = 1 implies that the i-th entry is nonzero, whereas zi = 0
implies a zero entry.

Because the FH spectrum shows a piecewise constant frequency spectrum,
observed TFR patterns with such characteristics should be enhanced whereas
TFR patterns deviating from such characteristics should be mitigated. Fig.
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2 shows several TFR structure patterns for a neighborhood within an Eu-
clidean distance of 2, where the horizonal direction shows the discretized
time entries, and the vertical direction represents the frequency entries. The
possible TFR structure patterns are divided into three categories, and differ-
ent priors are designed to encourage the FH spectrum to have a horizontally
linear structure. On the other hand, entries that are on adjacent rows are
discouraged because they tend to broaden the signal bandwidth, thus are
contradictory to the fact that the underlying FH signals are instantaneously
narrowband.

Let set J�i denote the neighborhood of index i, and zJ�i =
∑

i zi denote
the total number of non-zero entries of zi in this neighborhood. Then, by
utilizing the conjugate property of the Beta and Bernoulli distributions, we
analytically acquire the posterior distribution of πi as

p
(
πi;ψ, ζ, zJ�i

)
= Beta

(
ψ + zJ�i , ζ + |J�i| − zJ�i

)
. (14)

From (14) we can see that the amount of samples drawn for the mixing weight
πi in (13) is determined by zJ�i , ψ, and ζ. Therefore, the time-frequency
structure pattern exerts impact on the prior by directly controlling the value
of the zJ�i term and the choice of the hyperparameters ψ and ζ.

The posterior probability is decided jointly by the likelihood and the
prior. We adopt the maximum a posteriori (MAP) estimator to infer the
estimation for w as

ŵ = arg max
w

p (w |c) , (15)

where marginal distribution p (w |c) can be obtained by integrating out the
hyperparameters γ, π, and α0 in the posterior distribution of w as

p (w |c) ∝
∫
p (w |γ,π, c, α0 ) dγdπdα0. (16)

Hereby we obtain the sparse reconstruction result of (11). The estimation of
the entire FH spectrum is rendered by repeating the BCS-based estimation
for each column of W̃xx{f, n}.

Once the interference IFs are estimated from sparse reconstruction as
described above, we perform the signal stationarization that demodulates
the IF of the selected signal to zero frequency, i.e., direct-current (DC) [30].
Then, the FH interference is suppressed through DC component removal,
and the remaining signal is remodulated back [31]. To avoid performance
degradation due to phase estimation error, we divide the entire data into
multiple segments for separated processing.
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4. Weak Astronomical Signal Detection

After FH interference removal, we will detect and estimate the weak LFM
astronomical signals. We use the CICPF to make effective coherent integra-
tion of the LFM signals, where the SFT is used to achieve fast computations
of the Fourier transform of the underlying sparse frequency modulated com-
ponents. The CICPF is developed based on the cubic phase function (CPF),
defined as [32]

Pyy[n,Ω] =
∑
τ

y[n+ τ ]y[n− τ ]e−Ωτ
2

, (17)

where Ω denotes the instantaneous frequency rate (IFR), i.e., the second
derivative of the signal phase w.r.t. the time index n. Stacking Pyy[n,Ω]
corresponding to all values of n and Ω in a CPF matrix Pyy, the weak
auto-terms of the LFM astronomical signal can be enhanced by coherently
integrating {f,Ω} energy along straight lines parallel to the time axis, i.e.,
[33]

–Pyy{f,Ω} = Fn

(
Pyy{n,Ω}e−Ωn

2
)
. (18)

For LFM signal components described in (2), the CICPF result will show
spikes at location (4πal,1ts, 2πal,2t

2
s).

As the coherent integration of large-scale data using conventional fast
Fourier transform is computationally demanding, we developed a sparse-
CICPF based on SFT in this work. In this approach, the CPF in each IFR
row is first dechirped with the corresponding value of Ω, and the resulting
Ω-th row vector can be written as

p̃Ω[n] =
∑
τ

y[n+ τ ]y[n− τ ]e−Ω(τ2+n2). (19)

The SFT is then applied to each row to obtain the CICPF in a similar
manner as we proposed in [34]. To tear apart the nearby coefficients in the
spectrum, a permutation is adopted to reorder the signals in the frequency
domain as

z[n] = w̃[n] · p̃Ω[[σ · n] mod N ], n ∈ [1, N ], (20)

where σ ∈ [1, N ] is a random odd number that is invertible mod N , and
σ−1 is a natural number such that (σ × σ−1) mod N = 1. Note that the
permutated signal is filtered by a leakage-proof window w̃[n]. Let Lw denote
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Figure 3: Illustrative examples of permutation with different values of σ. (N = 16, B = 8)
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the window length in the time domain. We perform a reduced-dimensional
fast Fourier transform (FFT) to a bucket consisting of B samples as

Z[f ] = FFT

{
bLw/Bc−1∑

i=0

z[n+ i ·B]

}
, n ∈ [1, B]. (21)

The set of the coordinates of the estimated sparse component can be ex-
pressed as

S =

{
f ∈ [1, N ]

∣∣∣∣hσ[f ] ∈
{

arg max
f

|Z[f ]|
}}

, (22)

where hσ(f) is a hash function defined as

hσ[f ] =

⌊
σB

N
· f
⌋
. (23)

Define an offset function

oσ[f ] = σ · f −N · hσ[f ]/B. (24)

Then the estimated CICPF map becomes

P̂Ω[f ] =


Z[hσ[f ]]

G[oσ[f ]]
· e−πoσ [f ]Lw/N , f ∈ S,

0, f /∈ S.
(25)

We select a different value of σ and repeat (20)–(25) for an accurate
estimation of the sparse spectrum at IFR Ω. To better explain the principle
of the image to preimage mapping, which is the fundamental reason for the
significant improvement of the efficiency in the proposed sparse-CICPF, three
illustrative examples with different values of σ are shown in Fig. 3. The peaks
corresponding to the true large coefficients remain stable in different σ loops,
as such, the large-scale coherent integration process can be performed with
reduced-dimensional operations.

5. Simulation Results

According to the IEEE 802.11 standard [35], at least 18 dB of the input
SNR at the receiver end is needed for reliable communications. In the simu-
lations, since the FH signal appears as interference, we set the SNR slightly
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lower than the communication requirement but still strong enough for the
weak signal detection. On the other hand, the astronomical signals usually
have an SNR of −20 dB or less [36]. By adopting adaptive cancellation and
spatial filtering techniques beforehand, the SNR can be improved. There-
fore, we consider an example where the input SNR of the weak astronomical
signal to be −16 dB, and the input interference-to-noise ratio (INR) of the
FH interference to be 15 dB. The missing-sample rate of the signal data set
is assumed to be 30%. The sampling rate is 15 MHz. A data set of length 222

samples is considered in this paper. The astronomical signal consists of two
components, whose initial frequencies are 324.4 MHz and 325.3 MHz, and
chirp rates are −7.2 MHz/s and 21.6 MHz/s, respectively. The FH compo-
nents from two interferers are randomly hopped within the 322.0−328.6 MHz
band that is shared by astronomy and tactical communications. To achieve
a satisfactory performance and simultaneously keep the computational com-
plexity within an affordable range, segmented processing is adopted. The
segmentation length in the simulation is set to 256. The true spectrum of
the FH interference in one segment is given in Fig. 4(a), where the solid black
segments represent FH components.

Figs. 4(b) and 4(c) show the AF and WVD results without missing sam-
ples, while the missing-sample versions are presented in Figs. 4(d) and 4(e),
respectively. The bilinear cross-terms can be observed in Figs. 4(d) and 4(e),
along with the noise-like artifacts induced by the missing samples. Figs. 4(f)
and 4(g) show the AF and TFR results using the proposed two-step kernel,
where the cross-terms and artifacts are evidently mitigated. The results of
the subsequent structure-aware BCS operation are presented in Fig. 4(h),
which represent a significant improvement as compared to the WVDs de-
picted in Figs. 4(c) and 4(e). For comparison, we also present in Fig. 4(i)
the result obtained by using the linear TFR based sparse Bayesian learning
(SBL) approach in [11], which does not reveal a reliable FH spectrum. Based
on the reconstructed spectrum in Fig. 4(h), the FH interference parameters
can be accurately estimated. Fig. 4(j) shows the TFR after FH interference
removal, which clearly confirms the effective removal of the FH interference.
Note that the astronomical chirp signal remains invisible in this TFR plot
because of its low SNR, and it cannot be revealed in the CPF processing ei-
ther. To detect the weak astronomical signal, sparse CICPF is applied, and
the result is shown in Fig. 4(k). Note that the IFR and the initial frequency
are respectively normalized by 2π/N and 2π in the CPF and CICPF results.
The locations of the two spikes on the CICPF plane are (0.32,−0.1342) and
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Figure 4: Simulation results.
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(0.44, 0.4027), respectively. From these results, the corresponding signal pa-
rameters can be accurately estimated. On the other hand, as we cannot
effectively suppress the FH interference with the reconstruction result in Fig.
4(i), weak astronomical signal detection based on the method described in
[11] is thus unrealistic.

Furthermore, we have run 1000 Monte Carlo trials to compare the per-
formances of different approaches, where the input INR varies from 0 dB
to 15 dB. Three different missing-sample ratios are also considered for the
trials with the proposed scheme, and all the other parameter settings in the
former simulation remain unchanged. Note that for the detection of the weak
astronomical signals in the presence of strong FH interference, currently no
existing method is reported in the literature. Therefore, in the Monte Carlo
trials, we combine the state-of-the-art LFM signal detection algorithm CI-
CPF [33] with the most recent FH parameter estimation techniques, i.e.,
sparse linear regression (SLR) [10], linear TFR based SBL [11], respectively,
and take their results for comparison. When the input INR is low, the inter-
ference cannot be effectively suppressed while it is still much stronger than
the desired weak astronomical signal, thus the detection probability is low.
When missing samples exist, conventional linear TFR based methods fail to
estimate the FH parameters, consequently weak astronomical signal cannot
be detected in this case. Hence, the detection performance for the linear
TFR based methods in the missing-sample case is not included in the fig-
ure. It can be concluded from Fig. 5 that the proposed scheme is superior
to all the existing methods in terms of the detection performance, and the
advantage is more remarkable in low INR regions. On the other hand, higher
missing-sample ratios result in more severe decrease in the detection probabil-
ity. However, the proposed scheme with 10% missing samples still performs
slightly better than the SBL+CICPF scheme with no missing samples, and
the proposed scheme with 20% missing samples remains advantageous to the
SLR+CICPF scheme with no missing samples if the input INR is lower than
7 dB.

6. Conclusion

In this paper, we proposed a novel comprehensive scheme for robust as-
tronomic signal reception in the presence of fast FH interference and missing
data observations. The parameters of the FH interferers are estimated in
the time-frequency domain through novel waveform-adaptive kernel design
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Figure 5: Statistic result through exhaustive Monte Carlo trials.

and structure-aware BCS-based sparse reconstruction. After FH interference
suppression, the astronomical LFM signals are detected and accurately esti-
mated using coherent signal integration based on the proposed sparse-CICPF
approach. The presented method achieves robust and low-complexity adap-
tive parameter estimation of FH interference and weak astronomical signals
in the presence of missing samples. The effectiveness of the proposed scheme
is verified by simulation results. Future research efforts will focus on further
performance improvement through, for example, the utulization of a con-
tinuous nonlinear function for optimal latent parameter determination with
respect to the time-frequency neighboring patterns. We will also investigate
the effect of gapped-missing samples in astronomy observation and the robust
detection of astronomical signals in such challenging situations.
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