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Abstract—This paper tackles the challenge of one-bit off-
grid direction of arrival (DOA) estimation in a single snapshot
scenario based on a learning-based Bayesian approach. Firstly,
we formulate the off-grid DOA estimation model, utilizing the
first-order off-grid approximation, incorporating one-bit data
quantization. Subsequently, we address this problem using the
Sparse Bayesian based framework and solve iteratively. However,
traditional Sparse Bayesian methods often face challenges such
as high computational complexity and the need for extensive
hyperparameter tuning. To balance estimation accuracy and com-
putational efficiency, we propose a novel Learning-based Sparse
Bayesian framework, which leverages an unrolled neural network
architecture. This framework autonomously learns hyperpa-
rameters through supervised learning, offering more accurate
off-grid DOA estimates and improved computational efficiency
compared to some state-of-the-art methods. Furthermore, the
proposed approach is applicable to both uniform linear arrays
and non-uniform sparse arrays. Simulation results validate the
effectiveness of the proposed framework.

Index Terms—Sparse arrays, off-grid, DOA estimation,
Bayesian approach

I. INTRODUCTION

The problem of direction of arrival (DOA) estimation is
fundamentally important in sensor array signal processing with
widely application in radar, sonar, navigation, and wireless
communications [1–5]. Most super-resolution DOA estimation
algorithms such as MUltiple SIgnal Classification (MUSIC)
[6] and Estimation of Signal Parameters via Rotational Invari-
ant Techniques (ESPRIT) [7] have been primarily developed
and applied to uniform linear arrays (ULAs), where sensor
elements are arranged in a straight line with equal spacing,
typically half the signal wavelength. However, in practical
applications, achieving higher resolution with ULA requires
a larger aperture and thus an increased number of array
elements, significantly raising hardware costs [4]. Further-
more, ULAs are susceptible to mutual coupling effects, which
can degrade DOA estimation performance [8]. To address
this problem, sparse linear arrays (SLAs) have been used
over the past few decades to achieve desired apertures with
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fewer active elements. Some SLA configurations, such as the
minimum redundancy array (MRA) [9], the nested array [10],
the co-prime array [11], and the generalized coprime array
configurations [12], have been well studied and analyzed in the
past decades. While subspace-based methods, such as MUSIC
and weighted subspace fitting [13, 14], and covariance matrix-
based compressive sensing methods [12, 15] can be applied
to SLAs, they require a high number of snapshots to achieve
accurate covariance matrix estimation, making them imprac-
tical in snapshot-limited scenarios commonly encountered in
automotive applications [5].

In antenna array systems, high-precision, high-sampling-
rate analog-to-digital converters (ADCs) are costly and power-
intensive [16]. Low-bit or even one-bit quantization offers
a cost-effective solution to simplify sampling hardware and
increase sampling rates [17]. Consequently, low-resolution
ADC signal processing has drawn significant research interest,
with research on one-bit DOA estimation becoming one of
the key focuses. Subspace-based methods exploiting one-bit
quantized data, along with performance analyses, are presented
for both ULAs and SLAs [1], [18, 19].

In the past decade, methods leveraging sparse reconstruction
[20] and compressed sensing (CS) [21] have emerged to
address one-bit DOA estimation, leading to various estimators
such as the Binary Iterative Hard Thresholding (BIHT) algo-
rithm [22], the Bayesian Compressed Sensing (BCS) algorithm
[23], Sparse Learning via Iterative Minimization (SLIM), and
Iterative Adaptive Approaches (IAA) [16]. These techniques
operate effectively with SLAs in single-snapshot scenarios.
All the above methods are considered on-grid approaches, as
they determine DOAs by peak searching over a fixed discrete
angular spectrum.

For off-grid source signals, grid refinement is often nec-
essary to maintain estimation accuracy, necessitating denser
grids and increased computational complexity. In CS-based
methods, denser grids also lead to higher correlations among
dictionary atoms, thereby degrading algorithm performance.
To this end, gridless and off-grids estimation methods have
been proposed to address an one-bit off-grid DOA estimation
problem. Gridless methods, such as Atomic Norm Minimiza-
tion (ANM) [24], estimate DOAs without grid division but



require computationally intensive semidefinite programming
(SDP). On the other hand, off-grid methods, such as off-
grid iterative reweighted (OGIR) algorithm [25], alternatively
refine on-grid spectrum estimates and grid gap estimates for
improved estimation accuracy. Off-grid methods generally
eliminate the need for dense grid division making them
more flexible and applicable for real DOA estimation tasks
compared to gridless methods. However, these methods often
require hundreds of iterations to achieve satisfacory results,
with each iteration involving computationally matrix inversion.

Recently, model-based deep learning has gained traction
in the signal processing community [26], including DOA
estimation research [27–29]. Such hybrid approaches combine
the interpretability of classical array signal models with the
representation power of deep neural networks, thus better
addressing limitations of traditional methods in handling high-
dimensional, noisy, or complex data.

In this paper, we propose a novel learning-based sparse
Bayesian approach to tackle the problem of one-bit off-
grid DOA estimation. We choose the sparse Bayesian frame-
work for its robustness to noise and superior reconstruction
accuracy, especially in single-snapshot scenarios. We first
formulate the one-bit off-grid model using a first-order grid
approximation. By applying the maximum a posteriori (MAP)
criterion and incorporating sparse signal priors, we construct
an iterative minimization problem, which is mapped to a
neural network architecture, employing convolutional neural
networks (CNNs) to replace matrix inversion operations and
deep neural networks (DNNs) for off-grid updates. Simulation
results demonstrate that the proposed method outperforms
state-of-the-art algorithms in terms of accuracy, providing
more precise off-grid DOA estimates across various signal-
to-noise ratio (SNR) scenarios, using only a single snapshot
of data.

II. PROBLEM FORMULATION

A. Signal Model

Consider a scenario involving K narrowband, far-field
source signals, denoted as sk(t) for k = 1, . . . ,K, arriving
at an N -element SLA from directions θ = [θ1, · · · , θK ]T,
where (·)T represents transpose. The array signal model with
one-bit quantizated data is expressed as:

y(t) = csgn

(
K∑

k=1

a(θk)sk(t) + n(t)

)
= csgn (A(θ)s(t) + n(t)) , t = 1, · · · , T,

(1)

where y(t) is the received signal vector, A(θ) =
[a(θ1),a(θ2), · · · ,a(θK)] is the array manifold matrix, s(t)
is the source signal vector, and n(t) is the complex Gaus-
sian noise vector. The complex sign function is defined as
csgn (·) = sign(ℜ (·)) + jsign (ℑ (·)), where sign(·) returns
value in {1,−1}, ℜ(·) and ℑ(·) respectively return the real
and imaginary parts of a complex number. Each column in

array manifold matrix A(θ) corresponds to a steering vector,
given for the k-th signal as:

a(θk) =

[
1, ej

2πd2
λ sin θk , . . . , ej

2πdN
λ sin θk

]T
, (2)

where dn specifies the spacing between the n-th element and
the first element. This paper focuses on estimating the signal
DOAs, θ, using a single-snapshot data vector y. With T set
to 1, the model simplifies to:

y = csgn (A(θ)s+ n) . (3)

B. One-Bit Off-Grid Single-Measurement Vector Model

To estimate θ from (3), we reformulate it as a single-
measurement vector model:

y = csgn(A(θ̃)x+ n). (4)

where A = [a(θ̃1),a(θ̃2), . . . ,a(θ̃M )] ∈ CN×M is the dictio-
nary matrix, Θ = {θ̃1, θ̃2, . . . , θ̃M} are the discretized angle
grids and x = [x1, x2, . . . , xM ]

T are sparse coefficients to be
estimated.

Under this model, M grid points serve as the basis for sparse
signal representation, and the signals are assumed to align with
K grid points, i.e., θk ∈ Θ, k = 1, · · · ,K. This approach is
known as the on-grid model. However, in practice, true DOAs
often don’t align perfectly with the predefined grid, i.e., θk /∈
Θ. Assuming the grid is sufficiently dense, the true DOA θk
lies near the fixed grid point θ̃nk

, nk ∈ {1, 2, . . . ,M}. Using
the first-order Taylor expansion, the true DOA can then be
approximated as:

θk = θ̃nk
+ (θk − θ̃nk

), (5)

where (θk − θ̃nk
) represents the off-grid gap. The steering

vector a(θk) can be approximated as:

a(θk) = a(θ̃nk
) + b(θ̃nk

)(θk − θ̃nk
), (6)

where b(θ̃nk
) = ∂a(θ)

∂θ |θ̃nk

is the first-order derivative. By
incorporating the approximation error into the measurement
noise, the measurement model can be reformulated as:

y = csgn (C(β)x+ n) , (7)

where C(β) = A + B diag (β) is the approximation
dictionary with diag(·) denoting diagonal matrix, B =
[b(θ̃1),b(θ̃2), . . . ,b(θ̃M )], and β = [β1, β2, . . . , βM ]

T are
off-grid gaps defined as:

βn =

{
θk − θnk

, if n = nk, k ∈ {1, 2, ...,K} ,
0, otherwise.

(8)

III. ALGORITHM FRAMEWORK

A. Sparse Bayesian Formulation

To establish a sparse Bayesian framework for the estimation
of one-bit off-grid DOA estimation, we first introduce a
probabilistic model to quantify the probability of x given the
input y. According to (7), the posterior probability of x, under
the MAP criterion, is determined by the likelihood function



p (y|x;β) and the prior probability density function (PDF)
p (x). The likelihood function is given by [30]:

p (y|x;β) =
M∏

m=1

Φ

(
ℜ (ym)ℜ(cTm (β)x)

σ/
√
2

)

· Φ

(
ℑ (ym)ℑ(cTm (β)x)

σ/
√
2

)
, (9)

where Φ (·) denotes the cumulative density function of the
standard normal distribution, ym is the m-th element in y,
cTm is the m-th row vector in C. For the convenience of
calculation, let x̂ =

√
2

σ x, and (9) can be reformulated as:

p (y|x̂;β) =
M∏

m=1

Φ(ℜ(ym)ℜ(cTm(β)x̂))Φ(ℑ(ym)ℑ(cTm(β)x̂)).

(10)

A suitable prior PDF for x̂, such as a Laplacian prior [31] or
exponential distribution [16], should be selected to encourage
sparsity. In this paper, we select the prior PDF as:

p (x̂) =

M∏
i=1

exp

(
−λ |x̂i|

α

α

)
, 0 < α ≤ 1, (11)

where λ is a parameter. As α approaches 0, p (x̂) reaches its
maximum at x̂ = 0, enforcing sparsity on the signal. The off-
grid gaps β follow a uniform distribution, p (β) ∼ U

(
− r

2 ,
r
2

)
[32], where r denotes the grid interval size. With Bayes rule,
the MAP estimator is given as:{

x̂∗,β∗} = argmin
x,β

−lnp (y|x̂;β)− lnp (x̂)− lnp (β) .

(12)

B. Updating Formula

By substituting (10) and (11) into equation (12), we obtain
the following cost function to be minimized:

L =

M∑
m=1

{
−lnΦ

(
ℜ (ym)ℜ(cTm(β)x̂)

)
− lnΦ

(
ℑ (ym)ℑ(cTm(β)x̂)

)
+

N∑
i=1

λ |xi|
α

α
+ const

}
. (13)

Since the object function in (13) is non-convex, we ap-
ply convex relaxation to simplify it. Specifically, with the
majorization-minimization (MM) principle, we can find the
upper bound of the first two terms in (13) as [30]:

M∑
m=1

{
−lnΦ(ℜ (ym)ℜ(cTm(β)x̂))−lnΦ(ℑ (ym)ℑ(cTm(β)x̂))

}
≤

M∑
m=1

1

2
(ℜ (ym)ℜ(cTm(β)x̂))2+

1

2
(ℑ(ym)ℑ(cTm(β)x̂))2

−ℜ(vtm)ℜ(ym)ℜ(cTm(β)x̂)−ℑ(vtm)ℑ(ym)ℑ(cTm(β)x̂) + c′.
(14)
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Fig. 1: Overall architecture of the Unrolled Network.

where vtm =
[
ℜ(ym)ℜ(ṽtm)

]
+ j
[
ℑ(ym)ℑ(ṽtm)

]
, ṽtm = dtm−

I′(dtm), dtm = ℜ(ym)ℜ(cTm(βt)x̂t) + jℑ(ym)ℑ(cTm(βt)x̂t),
and c′ is a constant. Here, superscript (·)t indicates variables
from the tth iteration. In addition, function I′(x) is defined as

I′(x) = −
exp

(
−ℜ(x)2/2

)
√
2πΦ(ℜ(x))

− j
exp

(
−ℑ(x)2/2

)
√
2πΦ(ℑ(x))

. (15)

The third term in (13) can be smoothly approximated as:

N∑
i=1

λ |xi|
α

α
≈ λ

α

N∑
i=1

(
|xi|

2
+ η
)α

2

. (16)

where η > 0 is a small constant, typically set to 10−6.
By substituting (14) and (16) into (13), we obtain a new
minimization problem defined as:{

x̂∗,β∗} = argmin
x̂,β

1

2

∥∥∥C(β)x̂− vt
∥∥∥2
2

+
λ

α

N∑
i=1

(
|xi|

2
+ η
)α

2

+ c′, (17)

where vt = [vt1, · · · , v
t
M ]T. Then, we use iterative update

strategy to estimate x and β as:

x̂t+1 =
[
CH(βt)C(βt) + λΛ(x̂t)

]−1

CH(βt)vt, (18)

βt+1 = ℜ
(
(BHB)∗x̂t+1(x̂t+1)H

)−1

· ℜ
(
diag

(
(x̂t)∗

)
BH
(
vt −Ax̂t

))
, (19)

where

Λ
(
x̂t
)
= diag

((
|x̂1|

2
+ η
)α

2 −1

, · · · ,
(
|x̂N |2 + η

)α
2 −1

)
.

IV. NEURAL NETWORK DERIVED FROM THE ALGORITHM

In this section, we follow the algorithm unrolling paradigm
to design the network architecture by mapping the iteration
steps (18)–(19) to customized layers.

A. Network Architecture

The network consists of the following three main blocks:
Initialization Block, Unrolled Block 1, and Unrolled Block 2,
as shown in Figure 1.

1) Initialization Block: The initialization block simply per-
forms the following operation on the input vector:

x̂0 = CH(β0)y, (20)

where β0 = 0, which means that no initial off-grid gaps are
assumed.
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Fig. 2: Detail architecture of Unrolled Block 1.

2) Unrolled Block 1: Unrolled Block 1 consists of K1

unrolled phases. The details of one unrolled phase are illus-
trated in Figure 2. Unrolled Block 1 is designed to refine the
spectrum in fixed grids. Therefore, the grid gaps are set to
β0 = 0, and grid update is not considered in this block. The
operation is defined as:

ṽt = CH(β0)vt, (21)

where β0 = 0, vt =
[
ℜ (y)⊙ℜ(ṽt)

]
+ j

[
ℑ(y)⊙ℑ(ṽt)

]
,

ṽt = Dt−I′(Dt), and Dt = ℜ
(
y)⊙ℜ(C(β0)x̂t

)
+jℑ(y)⊙

ℑ
(
C(β0)x̂t

)
, ⊙ is Hadamard product. According to (18),

matrix inversion is used to compute the estimate. However,
the computational complexity of this operation increases with
matrix size, making network training challenging. To address
this, we replace matrix inversion in (18) with convolutional
layers. In addition, each convolutional layer is followed by
a Parametric Rectified Linear Unit (PReLU) activation layer
[33] to introduce nonlinearity into the network. A residual
connection is incorporated into each unrolled phase to give
the output x̂t+1.

3) Unrolled Block 2: Unrolled Block 2 comprises K2

unrolled phases and is designed to update both the angle
spectrum coefficients and the off-grid gaps, as shown in Figure
3. Each phase follows the same operations as in (21), with
convolutional layers identical to those in Unrolled Block 1.
For off-grid gap updates, we replace the formula in (19) with
four Fully Connected (FC) layers, each followed by batch
normalization and Tanh activation. The FC layers take the
absolute values of the estimated signal spectrum, |x̂t+1|, as
input and output the updated off-grid gaps corresponding to
the on-grid spectra. The output is normalized to a single grid
interval [− r

2 ,
r
2 ].

B. Generating Datasets

We generate training datasets using two SLA configurations
with half-wavelength element spacing: an 18-element array at
λ
2 [0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and a
10-element array at λ

2 [0, 3, 4, 5, 6, 7, 11, 16, 18, 19]. The num-
ber of signal sources is set to 2, and the array field of view
(FOV) is defined as [−60◦, 60◦], discretized with a fixed
grid size of 2◦. The off-grid gaps corresponding to target
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Fig. 3: Detail architecture of Unrolled Block 2.

sources are randomly generated following a uniform distri-
bution U

(
−1◦, 1◦

)
. Reflection coefficients for DOA sources

are generated as random complex numbers, with their real and
imaginary parts uniformly distributed in U (0.5, 1). Denoting
the ground truth of the n-th DOA as Gn, the signals are labeled
according to

s∗n =

{
|sk|, if θk = Gn,

0, otherwise.
(22)

For the labeling of off-grid gaps:

β∗
n =

{
|βk|, if θk = Gn,

0, otherwise.
(23)

We randomly generate 100, 000 samples across input SNR
levels ranging between 0 dB and 30 dB in 5 dB increments.
90% of the dataset is used for training and the remaining 10%
is used for validation.

C. Training Approach

Our training process is divided into two stages. In the first
stage, we train only Unrolled Block 1 while keeping the
parameters of Unrolled Block 2 frozen. This training process
is performed with a batch size of 64 for 100 epochs. The
objective of this stage is to generate angle spectra with low
sidelobe levels, facilitating the subsequent training of Unrolled
Block 2. The loss function used in this stage is the Binary
Cross-Entropy (BCE) loss, defined as:

L1(x̂, s
∗) = − 1

N

N∑
i=1

[
s∗i · logx̂i + (1− s∗i ) · log(1− x̂i)

]
.

(24)
In the second stage, the parameters of Unrolled Block 1 are
frozen, and only Unrolled Block 2 is trained. In this stage, we
apply a combination of the mean squared error (MSE) loss
and the BCE loss. The total loss function is defined as:

L2(x̂, s
∗; β̂,β∗) = − 1

N

N∑
i=1

[
s∗i ·logx̂i + (1− s∗i )·log(1− x̂i)

]
+

1

N

N∑
i=1

[β̂i − β∗
i ]

2. (25)



Fig. 4: Spectral outputs for 10-element SLA.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
method in terms of detection rate and root mean square
error (RMSE). The angular space between −90◦ and 90◦ is
discretized into 91 fixed grids, each with the grid size of 2◦.
An angle estimation is considered successful if the absolute
errors of all estimated DOAs are within a threshold of 0.5◦.
Otherwise, it is considered a failure. The detection rate is
defined as Ns

Nt
, where Nt is the total number of Monte Carlo

tests and Ns is the number of successful tests. The RMSE is
calculated as RMSE =

√
1

NsK̂

∑Ns

t=1 ||θ̂t − θ∗||22, where θ̂t
represents the estimated DOA vector in the tth test round. A
total of 1, 024 Monte Carlo trials are conducted for testing.
The evaluation considers two off-grid target sources, θ∗ =
[−10.28◦, 20.56◦], tested with the two SLA configurations
described in Section IV-B. For comparison, we include the
OGIR algorithm [25], representing algorithm-based methods,
and the CNN-DNN network [34], representing network-based
approaches. Additionally, the algorithm framework proposed
in this paper, referred to as “OGBRIM”, is used as a baseline
for comparison.

We first compare the RMSE and detection rate for DOA es-
timation using an 18-element SLA and a 10-element SLA. As
illustrated in Figure 5 for the 18-element SLA, the proposed
method achieves the lowest RMSE and the highest detection
rate, showcasing superior estimation performance. In Figure
6, while all methods exhibit performance degradation with
the sparser 10-element SLA, the proposed method consistently
maintains lower RMSE and higher detection rates, highlighting
its robustness to array sparsity.

Additionally, we compare the spectra outputs of different

(a) RMSE vs. inpput SNR

(b) Detection rate vs. input SNR

Fig. 5: 18-element SLA.

methods for the 10-element SLA, and the results are depicted
in Figure 4. It is observed that the proposed method not only
suppresses spurs effectively but also resolves signals across
various input SNR levels. In contrast, other algorithms, such
as OGIR and OGBRIM, tend to produce false estimates or
miss targets.

VI. CONCLUSION

In this paper, we proposed a novel learning-based sparse
Bayesian approach for one-bit off-grid DOA estimation. The



(a) RMSE vs. input SNR

(b) Detection rate vs. input SNR

Fig. 6: 10-element SLA.

method effectively combines the advantages of traditional
Bayesian modeling with modern neural network architectures
to achieve robust and accurate off-grid angle estimation.
Simulation results demonstrated that the proposed approach
outperforms state-of-the-art methods across a range of SNR
scenarios. Future work will explore the generalization capa-
bilities of the proposed method to enhance its reliability and
extend the approach to handle real-world radar datasets.
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