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Abstract—This paper develops a systematic approach to iden-
tically dividing a consecutive integer set into two or more non-
overlapping subsets, where each subset generates consecutive
difference lags with reduced redundancy. Unlike the identical
nested partitioning scheme which assigns every element in the
integer set to a subset, the proposed identical division scheme
allows some integers to remain unassigned. This flexibility enables
more effective subset formation with reduced redundancy. A
general expression for selecting subset elements is devised to
facilitate systematic design, and the resulting difference lags are
analyzed. Compared to identical nested partitioning schemes, the
proposed division method achieves higher difference lags for the
same number of elements used in each subset. As an example
of practical applications, the proposed identical division scheme
is employed to efficiently design sparse step-frequency radar
waveforms for interference-free multi-radar operation, with its
effectiveness demonstrated through target range estimation.

Index Terms—identical division, sparse radar waveform, multi-
radar system, interference-free waveform design.

I. INTRODUCTION

Robust and efficient design of sparse sensor arrays [1–11]
and sparse radar waveforms [12–18] has garnered significant
attention in recent years due to their ability to enable sim-
ple, low-cost, and low-complexity hardware implementations.
Most existing sparse arrays and waveforms are designed with
a single platform or user in mind and, therefore, cannot be
directly adapted to effectively support multiple platforms. In
practice, it is highly desirable to efficiently utilize the space,
time, and frequency resources derived from equally spaced
array elements and uniformly sampled waveforms through
shared usage across multiple platforms. This is especially
important in the modern era, where the wireless spectrum is
increasingly congested. Toward this end, a novel partitioning
method was recently proposed in [19] for interference-free
multi-platform operation. This method partitions a consecutive
integer set is partitioned into two or more identical, non-
overlapping subsets, each generating consecutive difference
lags. These subsets can then be allocated to multiple distinct
platforms, enabling the shared use of resources, such as sen-
sors, step frequencies, and slow-time pulses, across platforms
without mutual interference.

Many signal processing applications assume uniform
Nyquist sampling in one or more domains, resulting in one-
or multi-dimensional consecutive discrete sets. On the other
hand, recent developments of difference coarray and sparsity-
based processing techniques have enabled efficient and reliable
direction-of-arrival (DOA) estimation of signals using sparse
arrays [3, 11, 20–22]. Similarly, with the recent advances
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in sparse step frequencies and sparse slow-time pulses [14–
16, 18], it becomes possible to estimate target Doppler
and range using only a subset of these consecutive discrete
samples. Identical partitioning of such consecutive sets into
multiple non-overlapping subsets allows multiple radars to
coexist and share time and/or frequency resources without
interference, maintaining similar performance. An example
of this concept is the design of non-uniform pulse repetition
interval (PRI) radars or sparse step-frequency radars. In such
designs, sparsity along the slow-time or step frequency can
be structured in a non-overlapping manner, enabling multiple
radars to fully utilize the total coherent processing interval
(CPI) or bandwidth simultaneously without interference. After
examining three possible identical partition methods, namely,
localized, interleaved, and nested partitions, it was observed
in [19] that the nested partitioning of integer sets provided
the largest set of unique and consecutive difference lags.
Additionally, closed-form expressions were provided for the
non-overlapping subsets and their difference lags for identical
partitioning of one- and multi-dimensional consecutive integer
sets.

In this paper, we develop a systematic approach to identi-
cally dividing a consecutive integer set into two or more non-
overlapping subsets. The proposed identical division method
is designed so that each subset is identical and, for a given
number of elements per subset, achieves higher consecutive
difference lags compared to the nested partition method intro-
duced in [19]. Consequently, the proposed method outperforms
nested partitioning in terms of difference lags for the same
subset size. This identical division of integer sets provides
valuable insights for designing sparse antenna arrays and radar
waveforms that deliver superior performance compared to
those based on nested partitioning. The effectiveness of the
proposed approach is demonstrated through simulation results
presented in Section IV.

Notations: We denote lower-case bold characters as vectors,
and upper-case blackboard bold characters as sets. |M| repre-
sents the cardinality of set M, whereas ⊗ and ∪ respectively
denote the Kronecker product and union operators.

II. TWO-SUBSET IDENTICAL DIVISION

Consider an M -element consecutive integer set Q =
{1, · · · ,M}. The goal is to divide Q into two non-overlapping
subsets, Q1 and Q2, with the remaining integers, which are not
assigned to any subset, denoted as Qp, i.e., Q = Q1∪Q2∪Qp.
Subsets Q1 and Q2 are designed to have identical, rotated pat-
terns and, therefore, produce the same consecutive difference
lags.

In the following, we provide a brief overview of the identical
nested partitioning method proposed in [19] and outline the
general rule and closed-form expressions for the two-subset



(a) Identical nested partition (N = 3)

(b) Identical division (K = 1 and N = 3)

Fig. 1: Two-subset nested partitioning and identical division
of integer sets with 5 elements in each subset.

identical division. Through analytical evaluation, we demon-
strate that the proposed identical division approach achieves
higher consecutive and unique difference lags compared to
nested partition for the same number of elements in subsets
Q1 and Q2.

A. Review of Two-Subset Identical Nested Partition

When M = 2N + 4 with N ≥ 1, as shown in Fig. 1(a)
for the N = 3 case, the two-subset nested partitioning has
two elements as the inner group, and N elements in the outer
group, each separated by two. The total number of elements
in both subsets is |Q1| = |Q2| = N + 2. The two subsets are
respectively given as

Q1 = {1, 2, 4, 6, · · · , 2N, 2N + 2} (1)

and

Q2 = {3, 5, · · · , 2N − 1, 2N + 1, 2N + 3, 2N + 4}. (2)

The two subsets have the same consecutive difference lags
between −2N−1 and 2N+1. For the partition pattern shown
in Fig. 1(a), each subset produces consecutive lags between
−2N − 1 = −7 and 2N +1 = 7, and the occurrence weights
of the difference lags are shown in Fig. 2(a).

B. Two-Subset Identical Division

We now consider dividing the consecutive integer set Q into
two identical subsets, Q1 and Q2, with the flexibility that not
all elements must be assigned to a subset. We first develop an
approach where the core elements in a subset are separated by
three, which will be referred to as “core separation of 3.” In
this configuration, elements 1 and 3 form the inner group of
subset Q1, along with N outer group elements. Both subsets
contain N + 2 elements and are defined as

Q1 = {1, 3, 6, 9, · · · , 3N − 3, 3N, 3N + 1} (3)

and

Q2 = {4, 5, 8, 11, · · · , 3N − 1, 3N + 2, 3N + 4}. (4)

In each subset, in addition to the elements in the core segment,
located in the middle, the elements at both ends of the subset
form lag-1 and lag-2 pairs, respectively, ensuring that all lags
are consecutive.

To match the number of subset elements shown in Fig. 1(a),
the two-subset identical division of an integer set is depicted
in Fig. 1(b). It is observed that, a few elements, shown in
gray, are not assigned to either subset Q1 or Q2. For identical

(a) Identical nested partitioning

(b) Identical division

Fig. 2: Lag occurrences for two-subset identical nested parti-
tioning and identical division with 5 elements in each subset.

division with N outer groups, the location of these unallocated
integers are given by

Qp = {2, 7, 12 · · · , 3N − 2, 3N + 3}. (5)

It is noted that, for a two-subset identical division, M = 3N+
4, where N ≥ 2. We define the following (3N+4)×1 masking
vectors for subsets Q1 and Q2 as

bg(n) =

{
1, if n ∈ Qg,
0, if n /∈ Qg,

(6)

where g = 1, 2.
The difference lag set for the gth subset, g = 1, 2, is denoted

as
Dg = {D | D = u− v, u ∈ Qg, v ∈ Qg}. (7)

It can be inferred from (3) and (4) that subsets Q1 and Q2 have
the same consecutive difference lags between −3N and 3N .
Compared to nested partitioning, which achieves consecutive
difference lags between −2N − 1 and 2N + 1, it can be
concluded that, for the same number of outer groups or,
equivalently, the same number of elements in each subset,
the identical division method provides a greater number of
consecutive difference lags.

For N = 3 outer groups, as shown in Fig. 2(b), the
identical division method provides consecutive difference lags
ranging from −9 to 9. Furthermore, since the identical division
method achieves a greater number of consecutive lags with
the same number of subset elements, it produces difference
lags with fewer redundancies compared to the identical nested
partitioning method.

C. Generalization of Two-Subset Identical Division

The two-subset identical division approach can also utilize
other core separations. When a subset contains a large number



(a) Core separation of 3

(b) Core separation of 4

Fig. 3: Lag occurrences for identical division with different
core element separations in subsets containing 9 elements.

of elements, adopting a larger separation becomes advanta-
geous. For instance, with Ñ + 4 elements in a subset, the
following “core separation of 4” configuration,

Q̃1 = {1, 2, 3, 7, · · · , 4Ñ − 1, 4Ñ + 2, 4Ñ + 4} (8)

and

Q̃2 = {4, 6, 9, 13, · · · , 4Ñ + 5, 4Ñ + 6, 4Ñ + 7}, (9)

produces consecutive lags between −4Ñ−3 and 4Ñ+3. When
a subset contains more than 7 elements, this configuration
generates more consecutive lags than the “core separation of
3” counterpart.

Fig. 3 compares the lag occurrences for these two config-
urations in subsets contains 9 elements each. With a core
separation of 4, the configuration yields consecutive lags
between −23 and 23, whereas core separation of 3 results
in lags between −21 and 21.

In the sequel, we focus exclusively on the results for subsets
with a core separation of 3. However, extending the results to
other configurations, such as those with a core separation of
4, is straightforward.

III. MULTI-SUBSET IDENTICAL DIVISION

In this section, we extend the concept of two-subset identical
division to G = 2g identical subsets for g ≥ 1 such that
Q = Q1 ∪Q2 ∪ · · · ∪QG ∪Qp.

Let us consider g = 2, allowing Q to be divided into four
non-overlapping identical subsets. The masking vectors for the
four subsets can be obtained as

bg1,g2 = bg2 ⊗ bg1 , (10)

where g1 ∈ {1, 2} and g2 ∈ {1, 2}. Let N1 and N2 denote
the total number of outer group elements for Q1 and Q2,

(a) Four subset identical division of a consecutive integer set.

(b) Union set of the four identically divided subsets

Fig. 4: Four-subset identical division of a 130-element con-
secutive integer set.

respectively, where N1 ≥ 2 and N2 ≥ 2 may take different
values. It is observed in (10) that the dimension of the masking
vector bg1,g2 is (3N1 + 4)(3N2 + 4) × 1, and the number of
elements in each of the four subsets is (N1+2)(N2+2). The
resulting difference lags for each subset obtained by identical
division are consecutive between −(3N2 + 4)(3N1)− (3N2)
and (3N2 + 4)(3N1) + (3N2), whereas that for a subset
obtained by identical nested partitioning is between −(2N2 +
4)(2N1+1)− (2N2+1) and (2N2+4)(2N1+1)+(2N2+1)
[19].

We now illustrate a four-subset identical division of a
consecutive integer set, where N1 = 3 and N2 = 2. This
allows us to identically divide a 130-element consecutive
integer set into four non-overlapping subsets, as shown in Fig.
4(a). Fig. 4(b) depicts the set obtained by combining all the
four subsets, indicating that some integer elements are not
allocated to any of the subsets.

The difference lags achieved by four-subset identical nested
partitioning and division for N1 = 3 and N2 = 2 are
compared in Fig. 5. In Fig. 5(a), we observe that a subset
obtained from the four-subset nested partition achieves only
61 consecutive difference lags, whereas the proposed identical
division method achieves 96 lags. Moreover, it can be clearly
observed in Fig. 5 that the identical division method results in
significantly lower redundancies in the difference lags.

Fig. 6 compares the number of non-negative difference lags
achieved by each subset for both the identical nested parti-
tioning and division methods. It is observed that the identical
division method consistently produces more difference lags,
and the gap between the two methods increases as the number
of elements in each subset grows.

IV. SIMULATION RESULTS

In this section, we design a sparse step-frequency radar
waveform by allocating the available step frequencies across
the entire bandwidth into four non-overlapping subsets. Each
subset is used to design an orthogonal radar waveform for
each user. We then compare the range profile of the radar
waveforms designed using both the identical nested partition
and divisions, with the same number of step frequencies being
used in each case.

In a step-frequency radar, the available bandwidth B is
equally divided into Nf step frequencies with a step size



(a) Difference lags from nested partitioning (N1 = 3 and N2 = 2)

(b) Difference lags from identical division (N1 = 3 and N2 = 2)

Fig. 5: Comparison of the achievable difference lags between
four-subset identical nested partitioning and division methods
for same number of subset elements.

Fig. 6: Number of non-negative lags versus the number of
elements in each subset.

f∆ = B/Nf . Therefore, the nth step frequency is given as:

fn = f0 + (n− 1)f∆, n = 1, 2, · · · , Nf , (11)

where f0 is the base frequency. The maximum unambiguous
range of the step-frequency radar is given as Rmax = c/(2f∆).

We consider a radar system with base frequency f0 = 77
GHz, and the signal bandwidth is B = 200 MHz. Three
targets are located at ranges of 264 m, 265 m, and 266
m, respectively, within the radar’s field of view. To keep a
similar number of step frequencies in each waveform, we
choose N1 = N2 = 6 for both the waveforms designed using
the identical nested partitioning and division methods. For
identical nested partitioning, the total number of available step

(a) Estimated range profile

(b) Zoomed-in view

Fig. 7: Estimated range profile using identical partitioning.

(a) Estimated range profile

(b) Zoomed-in view

Fig. 8: Estimated range profile using identical division.

frequencies is (2N1+4)(2N2+4) = 256 with a corresponding
step size of ∆f = 781.25 kHz, resulting in a maximum
unambiguous range of Rmax = 192 m. Fig. 7(a) shows the
range estimates over the ranges between 0 m and 350 m,
whereas Fig. 7(b) shows the zoomed-in view for the range
between 260 m and 270 m. As can be seen in Fig. 7, the
estimated range profiles for the three targets show alias along
with the true ranges, preventing unambiguous range estimates
for the targets.

On the other hand, for the identical division method, with
N1 = N2 = 6, the total number of available step frequencies
is (3N1 + 4)(3N2 + 4) = 484, resulting in a step size of
∆f = 413.22 kHz. As a result, the maximum unambiguous
range becomes Rmax = 363 m. Fig. 8 shows the successful



and unambiguous detection of the three targets without any
aliasing. Therefore, for the same number of step frequencies
in each radar waveform, the step-frequency waveform de-
signed using the identical division method achieves a higher
maximum unambiguous range due to the higher number of
consecutive difference lags, compared to the identical nested
partitioning counterpart.

V. CONCLUSION

In this paper, we proposed an identical division method
for grouping consecutive integer sets into multiple non-
overlapping subsets. Both analytical results and numerical
examples demonstrated that the subsets formed through this
identical division approach provide a higher number of con-
secutive difference lags compared to those obtained using
the identical nested partitioning scheme proposed in [19].
The advantages of using this identical division method for
efficient resource allocation in multi-platform scenarios has
been highlighted through an example of sparse step-frequency
radar waveform design. The radar waveform designed using
the identical division method achieves a significantly higher
maximum unambiguous range compared to its identical nested
partitioning counterpart, while using the same number of step
frequencies per waveform.
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