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Abstract—In this paper, we consider the conditions for unique
identifiability of the direction-of-arrival (DOA) estimation prob-
lem under a multi-frequency sparse rational array framework.
Previous studies on the multi-frequency scenario involved integer
locations of the virtual sensor locations at each frequency. The
rational array framework removes such requirements and thus
provides higher flexibility in multi-frequency sparse array design.
We provide a generalized necessary condition for the unambigu-
ous detection of signal DOAs in terms of the maximum spatial
correlation coefficient between distinct signal directions, and the
applicability of direct MUSIC for the unambiguous detection
of signals exploiting rational sparse arrays is considered. The
effectiveness of multi-frequency rational sparse arrays and the
proposed analyses is verified using simulation results.

Keywords: Direction-of-arrival estimation, sparse array, ra-
tional analysis, multi-frequency array design.

I. INTRODUCTION

Using antenna arrays for DOA estimation has attracted
extensive research over the last several decades. Due to
the requirement of the Nyquist sampling theorem, the most
commonly used antenna array structure is the uniform linear
array (ULA), which consists of linearly placed sensors with
an inter-element spacing of half the signal wavelength [1].
However, ULAs are not efficient in terms of the offered
degrees-of-freedom (DOFs) with respect to the number of
physical sensors. For this reason, sparse arrays have recently
gained high popularity [2–4]. Assuming the same number of
L sensors, a spare linear array can achieve O(L2) DOFs
compared to O(L) offered by a ULA counterpart. One of the
most studied sparse array structures is the coprime array [3]
in which sensor locations are given by the union of those of a
pair of uniform linear subarrays in which, for coprime integers
M and N , one subarray consists of M elements placed with
an inter-element spacing of N units and the other consists of
N elements placed with an inter-element spacing of M units,
where a unit is typically chosen as a half-wavelength.

By leveraging the concept of frequency diversity within
the sparse array framework, a markedly greater number of
DOFs can be attained [5–7]. Exploring the dependence of
the steering vector on the signal carrier frequency gives rise
to multi-frequency coprime arrays. These arrays construct a
virtual coprime array using a single ULA and two or more
continuous-wave sinusoids with frequencies adhering to a
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specific coprime relationship. Such an approach extends the
concept of coprime arrays to a joint spatio-spectral domain,
thereby providing high flexibility for designing arrays with an
increased number of DOFs and a reduced system complexity.

The concept of utilizing multiple frequencies for coprime ar-
ray design has been extended to multi-frequency sparse arrays.
Different multi-frequency sparse array configurations and their
performance, Cramer-Rao lower bound, and number of DOFs
have been extensively studied in [8–15]. In particular, multi-
frequency sparse array structures are designed in [12, 13, 15]
such that the resulting difference coarrays are free of redundant
lags and, as a result, achieve the maximum number of attain-
able DOFs. Nevertheless, while the frequency diversity-based
approaches render high flexibility and an increased number
of DOFs, the sensor locations of the physical antennas are
rather restrictive such that the frequencies have a coprime
relationship defined for integer numbers and all difference lags
are integer multiples of the half-wavelength. Such a condition
limits the choices for possible sensor locations and coprime
frequencies. It often requires a large separation between the
frequencies, making the array design challenging in some
applications.

The recently developed concept of rational array design
[16, 17] allows for successful detection of signals while the
array sensors are located in non-integer locations. In this case,
a subset of sensors deviate from the half-wavelength grid. The
notion of rational arrays can be extended to multi-frequency
sparse array design by exploiting frequencies that are coprime
in the rational sense. A rational sparse array exploiting a ULA
and multi-frequency signals is considered in [18] in which the
virtual sensors and, subsequently, difference lags are located in
non-integer positions. Compared to traditional multi-frequency
sparse arrays, such rational array design provides great flexi-
bility because the integer constraint for the sensor location or
frequency pairs is no longer required. An important advantage
of such multi-frequency rational sparse array design is that an
array can now be designed with a small separation between
the frequencies.

In this paper, the identifiability condition for rational sparse
arrays exploiting rational coprime frequencies is addressed.
Such a condition guarantees that, for any two distinct signal
directions, the maximum spatial correlation coefficient is less
than unity, that is, the DOA of the signal can be uniquely
recovered from its steering vector and that type-1 spatial



ambiguity [19] is avoided. Furthermore, the applicability of
direct MUSIC [20–22] for the detection of signals without
false peaks is discussed.

Notations: We use lowercase (uppercase) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. (.)T and (.)H respectively represent
the transpose and conjugate transpose of a matrix or a vector.
diag[·] forms a diagonal matrix from a vector. gcd(a, b) and
lcm(a, b) respectively denote the greatest common divisor
(GCD) and the least common multiple (LCM) of two integers
a and b. We use CM×N to denote the M ×N complex space,
and Z+ stands for the set of positive integers.

II. SYSTEM MODEL

Consider a DOA estimation problem where I ≥ 2
continuous-wave signals with frequencies fi, where i =
1, 2, · · · , I , are emitted from a single transmit antenna or a
phased array. The signals are reflected by K far-field targets
and impinge on an array consisting of N physical sensors
which are located at

z0 = {0, l1, l2, · · · , lN−1}d, (1)

where l1, l2, · · · , lN−1 are positive integers sorted in an
increasing order and d is the interelement spacing of the
physical array. The I carrier frequencies are related by

M1

f1
=

M2

f2
= · · · = MI

fI
=

2d

c
, (2)

where c denotes the propagation speed of electromagnetic
waves in free space.

In multi-frequency sparse arrays considered in [12, 13, 15],
it is assumed that Mi takes integer values so that d = Miλi/2
is an integer multiple of half-wavelength in the respective
frequency and, therefore, all virtual sensors are located on
the half-wavelength grid. In this paper, we consider multi-
frequency rational sparse arrays in which Mi as rational
numbers such that Mi = Pi/Qi, where Pi and Qi are coprime
integers [18]. Note that, multi-frequency integer coprime ar-
rays become a special case of multi-frequency rational sparse
arrays when the physical array is uniform linear and Qi = 1
holds for all i.

Because d = Mic/(2fi) = Miλi/2, the positions of the
virtual sensors corresponding to frequency fi are expressed as

z̃i = {0, Mil1, Mil2, · · · , MilN−1}
λi

2
. (3)

Denoting the DOA of the k-th signal as θk, k = 1, · · · ,K,
the received signal vector associated with the i-th frequency
component is

x̃i(t) = ej2πfit
K∑

k=1

ρ
(i)
k (t)ai(θk) + ñi(t), (4)

where ρ
(i)
k (t) is the reflection coefficient of the k-th target

corresponding to the i-th frequency, which is in general

frequency-dependent because both phase delay and target
reflectivity vary with frequency. In addition,

ai(θk)=
[
1, e−jπMil1 sin(θk), · · · , e−jπMilN−1 sin(θk)

]T
(5)

is the steering vector of the signal at θk corresponding to the i-
th frequency and ñi(t) ∼ CN (0, σ

(i)
n IN ) denotes the additive

white Gaussian noise.
After demodulating the signal vector using carrier frequency

fi and denoting ωk = π sin(θk), we obtain the baseband signal
vector as

xi(t) =

K∑
k=1

ρ
(i)
k (t)ai(ωk) + ni(t) = Aisi(t) + ni(t), (6)

where

ai(ωk)=
[
1, e−jMil1ωk , · · · , e−jMilN−1ωk

]T
, (7)

Ai = [ai(ω1),ai(ω2), ...,ai(ωK)] is the array manifold of
the virtual array due to the i-th frequency, and si(t) =

[ρ
(i)
1 (t), ..., ρ

(i)
K (t)]T.

By stacking the received data corresponding to all I fre-
quencies, the received signal vector of the entire virtual array
is obtained as

x(t) =


x1(t)
x2(t)

...
xI(t)

 =


A1s1(t)
A2s1(t)

...
AIsI(t)

+ n(t)

=


A1

AID̃2

...
AID̃I

 s(t) + n(t) = As(t) + n(t),

(8)

where s(t) = s1(t) and D̃i = diag[d
(i)
1 , ..., d

(i)
K ] with

d
(i)
k = ρ

(i)
k /ρ

(1)
k . The effective steering vector of the k-th

signal becomes

a(ωk) = [aT
1 (ωk) d

(2)
k aT

2 (ωk) · · · d
(I)
k aT

I (ωk)]
T. (9)

In this paper, we only consider the scenario in which the
reflection coefficient ρ

(i)
k does not vary with frequency, i.e.,

d
(i)
k = 1 for all k and i. This is referred to as the proportional

spectra scenario [23].

III. IDENTIFIABILITY ANALYSIS AND DIRECT MUSIC

Denoting d̄ as half-wavelength in a normalized frequency
sense, we rewrite (3) as

zi = {0, Mil1, Mil2, · · · , MilN−1}d̄. (10)

Then, the rendered multi-frequency rational sparse array cor-
responding to all I frequencies is given as

z =

I⋃
i=1

zi. (11)



A. Condition for unique recovery of signal DOAs from its
steering vector

In the previous section, we discussed how frequency di-
versity can be exploited to create a virtual sparse array.
For simplicity and without loss of generality, consider two
frequencies f1 and f2 such that M1/f1 = M2/f2. In this
case, for physical sensor locations described in (1), the set of
virtual sensor locations in (11) can be written as,

z = {0, M1l1, · · · , M1lN−1, M2l1, · · · , M2lN−1}d̄. (12)

It should be noted that the sensor locations in (12) are
rational numbers consisting of integers as a special case. The
GCD of any m positive rational numbers ri = Ui/Vi, i =
1, 2, · · · ,m with Ui, Vi ∈ Z+ ∀i is given by

gcd(r1, r2, · · · , rm) =
gcd(U1, U2, · · · , Um)

lcm(V1, V2, · · · , Vm)
. (13)

As stated in [17], the set of m rational numbers r1, r2,· · · , rm
are considered coprime if the GCD of the set is less than or
equal to one. Therefore, the sensor locations of the virtual ar-
ray in (12) are said to be coprime if gcd(M1l1, · · · ,M1lN−1,
M2l1, · · · ,M2lN−1) ≤ 1. Furthermore, it is shown in [16, 27]
that the coprimality of the sensor locations is a necessary
and sufficient condition for the DOA of a signal to be
uniquely identifiable from its steering vector, i.e., to avoid the
type-1 spatial ambiguity. This condition for the unambiguous
detection of the DOAs [24] implies that the spatial correlation
coefficient γ is less than unity for −π ≤ ωl ̸= ωk < π, i.e.,
[25]

γ =
1

N
|aH(ωl)a(ωk)| < 1. (14)

Therefore, for the case of multi-frequency rational arrays, we
can have the following generalization:
Theorem 1: The necessary and sufficient condition for the
signal DOA to be uniquely identifiable from its steering vector
such that the spatial correlation coefficient γ < 1 for −π ≤
ωl ̸= ωk < π is satisfied when

gcd(M1,M2) · gcd(l1, l2, · · · , lN−1) ≤ 1. (15)

Proof. As stated previously, the necessary and sufficient con-
dition for the unique recoverability of the signal DOA is the
coprimality of the sensor locations, i.e.,

gcd(M1l1, · · · ,M1lN−1,M2l1, · · · ,M2lN−1) ≤ 1. (16)

It is well known that the gcd(·) function satisfies the distribu-
tive and associativity property. That is, for any positive num-
bers α1, α2, α3, and α4, gcd(α1α2, α1α3) = α1 ·gcd(α2, α3)
and gcd(α1, α2, α3, α4) = gcd(gcd(α1, α2), gcd(α3, α4))
holds true. Therefore, using the associative property to (16),
we obtain

gcd(gcd(M1l1, · · · ,M1lN−1), gcd(M2l1, · · · ,M2lN−1)) ≤ 1,
(17)

which can be further simplified using the distributive property
as

gcd(M1·gcd(l1, l2, · · · , lN−1),M2·gcd(l1, l2 · · · , lN−1)) ≤ 1.
(18)

Because gcd(l1, · · · , lN−1) is also a positive number, using the
distributive property again, (18) simplifies to gcd(M1,M2) ·
gcd(l1, l2, · · · , lN−1) ≤ 1. This concludes the proof.

It is noted that the extension of the unique identifiability
condition for I ≥ 2 frequencies is straightforward and is given
as

gcd(M1,M2, · · · ,MI) · gcd(l1, l2, · · · , lN−1) ≤ 1. (19)

It is interesting to note that (19) allows optimal design of
multi-frequency rational sparse arrays by decoupling the fre-
quencies selection from that of sensor locations. Furthermore,
condition (19) can be satisfied even by widely separated sparse
physical arrays if the frequencies are appropriately chosen.

B. Unambiguous detection using direct MUSIC

It is shown in [26] that the MUSIC algorithm can identify
K signals unambiguously and without any false peaks if and
only if the N ×K array manifold matrix

A = [a(ω1), a(ω2), · · · ,a(ωK)] (20)

is rank K for all distinct ωi in 0 ≤ ωi < 2π.
We now show that (20) is full rank K regardless of whether

ωK+1 is distinct modulo 2π/M1 or 2π/M2 from any of the
signals. Assume that ωK is not distinct modulo 2π/M1 with
any one of the signals, say ω1 such that ωK = ω1+2πh/M1,
where h ∈ Z+, and thus a1(ω1) = a1(ωK). In this case, the
array manifold corresponding to the total virtual sparse array
can be obtained from (8) as,

A =

[
A1

A2

]
=

[
a1(ω1) a1(ω2) · · · a1(ωK)
a2(ω1) a2(ω2) · · · a2(ωK)

]
. (21)

Let us initially assume that A is not full rank and since
a1(ω1) = a1(ωK), there exists a non-zero vector b ∈ CK

such that A1b = 0. For Ab = 0 to be true, A2b = 0 must
also be satisfied, which indicates that a2(ω1) = a2(ωK). This
is possible if and only if ωK is not distinct modulo 2π/M2

with ω1. Since M1 and M2 are coprime numbers, it is not
possible for ωK to be simultaneously distinct modulo 2π/M1

and distinct modulo 2π/M2 with ω1 [22]. This implies that
there is no non-zero vector b such that Ab = 0, indicating
A is indeed full rank regardless of whether ωK is distinct
modulo 2π/M1 or 2π/M2 with any of the signal locations
ωi. Therefore, using direct MUSIC on rational sparse arrays
will resolve all signal locations without ambiguity.

IV. SIMULATION RESULTS

In this section, we provide simulation results that demon-
strate the justification for the conditions stated to avoid type-1
spatial ambiguity. Let us consider a sparse ULA with physical
sensors located at integer positions z0 = {0, 2, 4, 6, 8}d. In
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Fig. 1: Removal of type-1 spatial ambiguity by using rational
sparse frequency pair since max(γ) < 1.

this case, the rendered multi-frequency rational sparse array is
a multi-frequency sparse coprime array.

Fig. 1(a) shows the presence of type-1 spatial ambiguity as
the GCD of the sensor locations is gcd(5, 4) ·gcd(2, 4, 6, 8) =
2 > 1 and does not satisfy the condition in (15). It is noted
that the high correlation coefficients in the mainlobe region
(ω1 ≈ ω2) are removed from Fig. 1 to emphasize the spatial
correlation coefficients in other regions. In comparison, if
rational frequency pairs are chosen such that M1 = 5 and
M2 = 4.7 = 47/10, then the GCD of the sensor location
is obtained as gcd(5, 4.7) · gcd(2, 4, 6, 8) = 1/5 < 1 which
satisfies the coprimality condition in (15). It can also be
observed in Fig. 1 (b) that the type-1 spatial ambiguity is
removed since the maximum correlation coefficient is now
less than unity. It is also interesting to note that linear arrays
with sensors placed along the half-wavelength grid show
ambiguity in DOA estimation for the (−π, π) DOA pairs as
depicted in Fig. 1(a). On the other hand, when rational coprime
arrays are used such ambiguity is overcome and the rational
coprime array can successfully detect signals even from end-
fire directions.

Fig. 2 shows the corresponding MUSIC spectra in which
two signals arrive from −60◦ and 40◦. It is observed in Fig.
2 that spatial alias only exists for the integer coprime array
but not the rational coprime arras in this case. It is noted
that the frequency separation for the rational coprime array is
6.2 % whereas that for the integer coprime array is 20.4%.
Thus, when it comes to unambiguous DOA estimation with
a reduced frequency separation, the multi-frequency rational
coprime array provides much higher flexibility compared to
traditional multi-frequency integer coprime arrays.

To confirm the applicability of direct MUSIC to rational
coprime arrays, we consider an N = 9 element ULA and
two frequencies f1 and f2 are chosen such that M1 = 5
and M2 = 4.7. The GCD of the sensor locations of the
virtual coprime array can be calculated to be 1/10 which
is less than unity and thus satisfies the condition to avoid
type-1 ambiguity. We consider K = 6 uncorrelated signals
to be evenly distributed in [−60◦, 60◦]. The noise power at
each frequency is assumed to be identical and the phase
difference between the received signal corresponding to dif-
ferent frequencies is uniformly distributed in [0, 2π]. T = 500

(a) No spatial aliasing occurs (b) Spatial aliasing occurs

Fig. 2: No spatial aliasing present in MUSIC spectrum for the
rational coprime array

snapshots are considered and the input SNR is set to 0 dB.
It is observed in Fig. 3(a) that the six signals are resolved
without unambiguous or false peaks by the rational coprime
array using direct MUSIC. Fig. 3(b) shows the results of direct
MUSIC on an integer coprime array when the two frequencies
f1 and f2 are chosen such that M1 = 5 and M2 = 4. For this
specific example, although the integer coprime array can also
successfully detect all signals, its MUSIC spectrum has much
higher sidelobe levels compared to the rational coprime array
with a similar virtual aperture.

Fig. 3(c) shows the root mean-square error (RMSE) perfor-
mance of the rational and integer coprime arrays with respect
to the number of signals. The RMSE results are calculated
using 200 independent trials. It is seen in Fig. 3(c) that
the rational and integer coprime arrays have similar RMSE
performance, but the rational coprime array can resolve one
additional signal compared to the integer coprime array. This is
due to the fact that, for the integer coprime array with M1 = 5
and M2 = 4, there is redundancy at lag 20, thus reducing the
number of unique lags by one. On the other hand, the rational
array is designed to achieve redundancy-free difference lags. It
is noted that multi-frequency integer coprime arrays are more
prone to lag redundancy due to the restricted number of integer
lag positions.

V. CONCLUSION

In this paper, we considered the extension and generalization
of the multi-frequency sparse array framework to rational
arrays. We revealed that the coprimality of the multi-frequency
rational sparse arrays can be decoupled into those of the
frequencies and physical array configurations. Based on this
observations, it became clear that unambiguous DOA esti-
mation can be achieved by a sparse array provided that the
frequencies are chosen to provide a small GCD. Simulation
results are provided to verify the effectiveness of the multi-
frequency rational coprime arrays and the analysis of the
condition for achieving unambiguous DOA estimation.
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