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Abstract—In this paper, we consider optimizing a compres-
sive measurement matrix (CMM) in a massive multiple-input
multiple-output (MIMO) system that provides reliable detection
capability of both strong and weak signals. To achieve this goal,
we propose a reinforcement learning framework, wherein the
base station acts as an agent and interacts with the environment
to design the CMM by selecting appropriate actions based on
a well-defined reward function. Our proposed framework yields
improved weak signal detection capabilities. The optimized CMM
obtained through the proposed method can then be utilized to
reduce the dimension of the received signal, making it practical
to implement a massive MIMO system by reducing the number
of required radio frequency front-end circuits.
keywords: Reinforcement learning, weak signal, massive
MIMO, compressive measurement matrix, direction-of-arrival
estimation.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is an im-
portant technology for the future-generation wireless com-
munications [1–6]. This technology offers the capability to
support a high number of antenna arrays, which can lead to
improved system capacity, energy efficiency, and robustness.
Additionally, the highly directional beam produced by a mas-
sive MIMO system is an effective method of overcoming the
propagation delay experienced in millimeter-wave (mmWave)
channels [7–9]. Massive MIMO is also receiving increasing
interests in radar sensing due to its ability to enhance the
sensing capability, coverage, and performance [10, 11].

The implementation of a massive MIMO system neces-
sitates the allocation of radio frequency (RF) front-end cir-
cuits and analog-to-digital converters (ADCs) to the antennas
for subsequent signal processing. However, the allocation of
dedicated RF front-end circuits and an ADC to each antenna
is not practical due to a number of factors, including power
consumption, hardware complexity, and cost. To address this
issue, a hybrid analog-digital processing strategy is effective,
allowing for a reduced number of RF circuits and ADCs to be
connected to all antennas through a network of phase shifters.

In essence, the analog part of the hybrid beamforming is to
reduce the dimension of the received RF signals before they
are digitized. In such a scheme, the signals received at the
antennas cannot be directly observed, making the optimized
design of the analog beamformer difficult. In [12, 13], an
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information-theoretic approach for the optimization of the
compressive measurement matrix is proposed by assuming
coarse knowledge of the spatial distributions of the signal ar-
rivals. The requirement of such coarse knowledge is eliminated
in [14] through iterative learning. This approach is further
extended to a deep learning-based sequential strategy to pro-
vide offline-training and generalization capabilities [15]. The
optimized compressed measurement matrix yields compressed
measurements of the original high-dimensional array signals
so the outcomes can be processed with a reduced number of
front-end circuits, followed by signal processing methods to
obtain interested signal parameters, such as signal directions-
of-arrival (DOAs).

The methods described above assume that all signals have
an equal or similar strength. As compressed measurements in
general favor strong signals, such schemes may likely fail to
detect weaker signals. This problem becomes more pronounced
in iterative methods, where the probability assigned to weaker
signals may become weaker as the iteration continues. There
are several studies that address the issue of detecting weak sig-
nals in the context of MIMO radar. For instance, [16] improves
the detection of weak targets by utilizing the spatial diversity
offered by a MIMO radar, whereas [17] enhances weak target
detection by utilizing canonical correlation analysis, and [18]
proposed a reinforcement learning (RL) approach to improve
weak target detection in the context of MIMO cognitive radar.

Driven by the aforementioned considerations, we present
an RL framework to improve the detection of weaker signals
from compressed measurements in a massive MIMO system.
The objective of this paper is to optimize a compressive
measurement matrix in which the weak signals are properly
preserved. Unlike the iterative approach [14] where the normal-
ized spatial spectrum obtained in an iteration acts as a prior in
the subsequent iteration for CMM optimization, the proposed
method modifies this prior information before the optimization.
After each iteration, angular bins with a lower power spectral
density are identified as potential bins containing weak signals.
During each iteration, the prior information in the next iter-
ation is adjusted using the State-Action-Reward-State-Action
(SARSA) strategy to optimize the CMM, thereby enhancing
the system’s weak signal detection capability.

Notations: We use lower-case (upper-case) bold characters
to describe vectors (matrices). (·)T and (·)H respectively
represent the transpose and conjugate transpose of a matrix or
vector. diag(·) denotes a diagonal matrix with the elements of a
vector constituting the diagonal entries, whereas vec(·) denotes
vectorizing of a matrix. triu(·) denotes the upper triangular
elements of a matrix. E[·] denotes the expectation operation. ◦



is the Hadamard product operator. sign(x) returns 1 if x ≥ 0
and 0 otherwise. ȷ =

√
−1 denotes the unit imaginary number.

In addition, R(·) and I(·) denote the real part and imaginary
part of a complex entry, respectively.

II. SIGNAL MODEL

We consider a massive MIMO system receiver equipped
with N receive antennas, and D uncorrelated far-field signals
impinge from directions θ = [θ1, θ2, · · · , θD]T. As shown in
Fig. 1, for an array using fully digital beamforming without
analog compression, the signal xRF(t) received at each antenna
is processed separately to obtain the baseband signal vector of
the array x(t), expressed as

x(t) =

D∑
d=1

a(θD)sd(t) + n(t) = A(θ)s(t) + n(t), (1)

where A(θ) = [a(θ1),a(θ2), · · · ,a(θD)] ∈ CN×D is the
array manifold matrix with the dth column a(θd) repre-
senting the steering vector corresponding to θd, s(t) =
[s1(t), s2(t), · · · , sD(t)]T ∈ CD denotes the signal waveform
vector, and n(t) ∼ CN (0, σ2

nIN ) denotes the zero-mean
additive white Gaussian noise (AWGN) vector.

For large-scale antenna arrays in a massive MIMO system,
such an approach is impractical due to the high hardware
requirements. To address this issue, we project the received
signal vector of the array with dimension N onto a lower-
dimensional space of dimension M with M ≪ N . This is
achieved by an analog beamformer that associates the output
array channels with M measurement kernels, represented by
a row vectors {ϕm, m = 1, · · · ,M} ∈ C1×N , as shown in
Fig. 2. By stacking the measurement kernels, we obtain the
compressive sampling matrix Φ = [ϕT

1 , · · · ,ϕ
T
M ]T ∈ CM×N .

The matrix entries are converted to analog weights through
a digital-to-analog converter (DAC) to perform analog beam-
forming.

The compressive measurement matrix is used to obtain
an M -dimensional compressed measurement vector of the N -
dimensional array received signal vector x(t) as

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t). (2)

The main objective of this paper is to optimize the compressive
sampling matrix Φ with enhanced weak signal detection.

III. ITERATIVE OPTIMIZATION OF THE COMPRESSIVE
MEASUREMENT MATRIX Φ

In this section, we review the iterative optimization of
the compressive sampling matrix Φ as discussed in [13, 14].
Consider θ be a random variable that represents the spatial
distribution of signal arrivals and is characterized by a prob-
ability density function (PDF) denoted as f(θ). We proceed
by discretizing the PDF f(θ) into K angular bins, each with
a width of ∆θ̄. The yielding probability mass function (PMF)
of the kth angular bin is given by pk = f(θ̄k)∆θ̄ with∑

k∈K pk = 1, where K = {1, 2, · · · ,K}, and θ̄k represents
the nominal DOA of the kth angular bin.

The signal arrival from the kth angular bin is modeled
with a zero mean Gaussian distribution with variance σ2

s , i.e.,
s(t) ∼ CN (0, σ2

s). The compressed measurement at the kth
bin with nominal DOA θ̄k can then be expressed as

y(t)|θ=θ̄ = Φa(θ̄k)s(t) + n(t). (3)
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Fig. 1: Block diagram of a massive MIMO receiver without
using compression.
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Fig. 2: Block diagram of a massive MIMO receiver exploiting
compression for dimension reduction.

In many cellular communication systems and in the track-
ing mode of radar operations, coarse knowledge of PDF f(θ) is
available. In this case, the PDF of the compressed measurement
vector y(t) can be expressed as

f(y) =

∫
f(y|θ)f(θ)dθ ≈

∑
k∈K

pkf(y|θ̄k), (4)

where the conditional PDF f(y|θ̄k) is given as

f(y|θ̄k) =
1

πM |Cyy|θ̄k |
e
−yHC−1

yy|θ̄k
y
, (5)

with Cyy|θ̄k = Φ(σ2
sa(θ̄k)a

H(θ̄k) + σ2
nI)Φ

H denoting the
covariance matrix of vector y given DOA θ̄k.

The compressive measurement matrix Φ is optimized by
maximizing the mutual information between the compressed
measurement and the signal DOA, denoted as I(y; θ). This
maximization is achieved through a gradient ascent strategy,
expressed as

Φ← Φ+ α∇ΦI(y; θ), (6)

where α > 0 is a learning rate.
When coarse knowledge of f(θ) is not available, it can

be iteratively estimated. Starting with the uniform PMF of θ,
denoted as p(0)(θ), the iterative optimization process optimizes
the compressive measurement matrix Φ(i) at the ith iteration,
considering the prior distribution p(i−1)(θ) for i ≥ 1. The es-
timated normalized minimum variance distortionless response
(MVDR) spectrum based on the optimized Φ(i) is then used
as the prior distribution of θ in the subsequent iteration. This
two-step procedure can be described as

P
(i)
MVDR(θ) =

aH(θ)(Φi)H(Φi)a(θ)

aH(θ)(Φi)H
(
R̂

(i)
)−1

(Φi)a(θ)

(7)



and

p
(i+1)
k =

P
(i)
MVDR(θk)∑

j∈K P
(i)
MVDR(θj)

, (8)

where R̂
(i)

is the sample covariance matrix at ith iteration.
In the iterative approach, the PMF of θ converges to have

sharp peaks at the true signal DOAs. However, the compressive
measurement matrix obtained in such an approach generally
favors strong signals. Therefore, when signals have mixed
strengths, it may progressively decrease weak signals as the
iterations progress and may eventually lead to miss detection.
To protect such weak signals, an RL-based framework is
considered in the following sections.

IV. PROPOSED REINFORCEMENT LEARNING-BASED
WEAK SIGNAL DETECTION

A. Reinforcement Learning Framework
RL is a machine learning approach that deals with se-

quential decision-making. It involves an agent that observes its
environment and learns to take suitable actions to maximize
future rewards. The ultimate goal in RL is to develop an
effective control policy or set of actions through positive or
negative reinforcement. The folowing key elements are used
to characterize the RL process:

• State: A set of observations that describes the environ-
ment. The state, denoted as s(i) ∈ S , represents the
observation at iteration i, where S denotes the set of
possible states.

• Action: An action a(i) ∈ A represents one of the feasible
choices the agent has at iteration i, where A denotes the
set of possible actions. Executing an action results in a
transition from the current state, s, to a new state, s′.

• Reward: A reward, denoted as r(i), is achieved by ex-
ecuting action a(i) in a given state s(i). It serves as a
performance metric to assess the effectiveness of action
a(i) given a state s(i) at itearation i.

• Policy: The policy π(s(i), a(i)) represents the probability
of selecting action a(i) based on the state s(i).

The agent starts in an initial state of the environment
s(0) ∈ S based on some observation. At each iteration, it takes
an action a(i) ∈ A based on a policy function denoted by
π(s(i), a(i)), which represents the probability of taking action
a(i) at state s(i) of the environment. By taking action a(i),
two outcomes follows, namely, i) the agent obtaining a reward
r(i) ∈ R, and ii) the state transitions to s(i+1) ∈ S.

The goal of the RL agent is to find a policy π(s(i), a(i)) to
maximize an expected return, which is also referred to as the
value function, defined as

V π(s) = E

 ∞∑
ĩ=0

γ ĩr(i+ĩ+1)|s(i) = s, π

 , (9)

where γ ∈ [0, 1] is called the discount factor, which controls
the weights of the future reward. Then, the optimal expected
return is

V ⋆(s) = max
π

V π(s). (10)

In addition to the value function, the Q function associated
with Q-learning, a model-free RL method, can be defined in

a similar fashion for a particular state and action as

Qπ(s, a) = Eπ

 ∞∑
ĩ=0

γ ĩr(i+ĩ+1)|s(i) = s, a(i) = a

 . (11)

The optimal Q function can be defined as

Q⋆(s, a) = max
π

Qπ(s, a), (12)

and the optimal policy at state s would be taking an action a
that maximizes the Q(s, a), i.e.,

π⋆(s) = arg max
a∈A

Q(s, a). (13)

In other words, the optimal action at a particular state should
be the one that maximizes the Q function.

B. Proposed Weak Signal Detection Scheme
To enhance the detection of weak signals, we adopt the

SARSA strategy to update the Q function. SARSA is an on-
policy RL algorithm that evaluates and improves the same
policy used for action selection. It is also a model-free RL
algorithm that does not require a model of the environment.

In this particular problem, the objective is to design the
CMM Φ. The process for designing Φ is described below:

1) Selection of state: The CMM Φ is designed using the
mutual information maximization criterion, as described in
[13]. When no prior information is available for the signal
DOAs, the spatial distribution of the signals is initialized using
a uniform distribution [14]. Subsequently, the MVDR spectrum
p(i)(θ) is estimated by eq. (7), exploiting the obtained com-
pressed measurements. The normalized estimated spectrum is
treated as the posterior distribution of the DOAs and can be
considered an observation of the environment. To obtain the
current state, we empirically choose a threshold δ such that

p̃(i)(θ) =

{
1, if p(i)(θ) ≥ δ,

0, otherwise.
(14)

p̃(i)(θ) signifies candidate angular bins that likely contain
signals. The number of angular bins where the spatial spectrum
is above the threshold constitutes the state of the environment.
As such, the state at the ith iteration denotes the total number
of angular bins that likely contain signals and is given as

s(i) =

K∑
k=1

p̃(i), (15)

with s(i) ∈ {1, 2, · · · ,K}.
2) Selection of action: Now, based on the current state

at the ith iteration, denoted as s(i), an action a(i) needs to
be selected. The action involves two tasks. First, it includes
selecting the number of angular bins that most likely contain
both strong and weak signals. To accomplish this, we identify
an angular bin as possibly containing a weak signal if p̃(θ) at
that angular bin is less than δ/2. Recognizing these angular
bins, the power spectrum is multiplied by a factor of 5, while
the power spectrum at the remaining angular bins remains
unchanged, i.e.,

p̂(i)(θ) =

{
p(i)(θ), p(i)(θ) ≥ δ/2,

5p(i)(θ), p(i)(θ) < δ/2.
(16)
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Fig. 3: RL framework for weak signal protection.

By applying a threshold similar to that in equation (14) and
calculating the number of angular bins above the threshold,
the candidate action is first obtained as

a
(i)
candidate =

K∑
k=1

sign(p̂(i) (θ)− δ) . (17)

Clearly, acandidate ∈ {1, 2, · · · ,K} provides a number of
angular bins, among which many may not contain any signals.
Subsequently, we construct an action space, which is the set
of numbers ranging from the state s(i) to the candidate action
a
(i)
candidate. The action space A(i) in the ith iteration is given as

A(i) = {s(i), · · · , a(i)candidate}. (18)

The action a(i) involves choosing a number from the
action space A(i). To accomplish this, a state action matrix
Q ∈ RK×K with elements Q(s, a) is considered. Each row
represents possible states, and each column represents possible
actions, i.e., the (s(i), a(i))th element of matrix Q denotes the
Q value for taking action a(i) from state s(i). The matrix Q is
initialized randomly and updated iteratively. The action a(i) at
state s(i) is selected by finding the index for which Q(s(i), :)
has the maximum value.

Based on the particular state at the ith iteration, we employ
the ϵ-greedy policy to take an action, i.e,

a(i) =

{
arg max

a∈A
Q(s(i), a), with probability 1− ϵ,

random action, with probability ϵ.
(19)

Once the action a(i) is chosen, the angular bins correspond-
ing to the highest a(i) values from equation (16) are selected.
Let Θ

(i)
a = {θ1, θ2, . . . , θa(i)} with p̂(i)(θ1) ≥ p̂(i)(θ2) ≥

p̂(i)(θa(i)) denoting the power spectra of the selected angular
bins. The CMM is then re-optimized by modifying the PMF
so that only the angular bins belonging to Θ

(i)
a have nonzero

PMFs. Similarly, the set Θ(i)
s is defined as comprising angular

bins with the highest s(i) values from (7) and the set Θ contains
all the available angular bins.

3) Computing reward and updating the Q matrix: Exploit-
ing the re-optimized Φ, the MVDR spectrum p(i+1) is subse-
quently estimated. Similar to the preceding two subsections,
the next state s(i+1) and action a(i+1) are chosen based on the
p(i+1).

In the SARSA strategy, the updating of Q matrix is
described as
Q(s(i), a(i))← Q(s(i), a(i)) + α(r(i+1) + γQ(s(i+1), a(i+1))

−Q(s(i), a(i)),
(20)

where α > 0 is learning rate denoting the extent to which the
recent observation overrides the old one, and r is the reward.
The reward at iteration i is formulated as

r(i+1) =
∑

θm∈Θ
(i)
s

p(i+1)(θm)−
∑

θn∈Θ\Θ(i)
s

p(i+1)(θn)

−|a(i) − s(i+1)|.
(21)

The reward function r(i+1) consists of three components.
The first part provides a positive reward for the accurate
detection of angular bins from the previous state, which may
initially contain the bins corresponding to strong signals. The
second term penalizes detection at other angular bins. The
third part imposes a penalty if the action from the previous
step differs from the current state. Initially, the action denotes
the number of angular bins containing strong signals, possibly
weak signals, and some bins without containing signals. Since
the current state depends on the PMF selection based on these
bins, this penalty forces the removal of signal-free bins from
the action. If any angular bin containing a weak signal is
present in the action, a high PMF assigned to this angular
bin may cause the power spectrum at this bin to exceed the
threshold, resulting in its detection as a state for the next
iteration. If a bin containing a weak signal is detected as a state
in the next iteration, the first part of the reward function will
ensure the presence of this angular bin in subsequent iterations.

V. SIMULATION RESULTS

We consider a massive MIMO system consisting of N =
50 receive antennas. We choose the compression ratio N/M =
5 yielding the dimension of the compressed measurement M =
10. The angular bins are discretized with a width of ∆θ = 0.1.

We consider 5 uncorrelated signals that impinge on the
massive MIMO system with DOAs of −40◦, −30◦, −20◦,
−10◦, 0◦. The corresponding signal-to-noise ratios (SNRs) for
the 5 signals are considered as 0 dB, −5 dB, 0 dB, −5 dB,
and 0 dB, respectively, indicating that two of the signals are
weaker than the others.

Fig. 4(a) depicts the estimated spatial spectrum using the
method described in [14]. This method iteratively updates the
posterior distribution of the DOAs to optimize the CMM.
The magnitude of the estimated spectrum in the directions of
two weak signals is much lower than their actual level. As
such, this method fails to detect weak signals properly. On
the other hand, Fig. 4(b) depicts the spatial spectrum based
on the proposed RL approach. In this plot, the magnitude of
the estimated spectrum in the directions of two weak signals
is proportional to the actual signal levels, thereby preserving



(a) Estimated based on [14]

(b) Estimated based on the proposed approach

Fig. 4: Comparison of estimated spatial spectra indicating the
weak signal detection performance.

weak signals in the compressive measurement to ensure their
successfully detection.

VI. CONCLUSION

The focus of our paper is to improve the detection of weak
signals in a massive MIMO system by leveraging compressed
measurements. To achieve this goal, we introduce a reinforce-
ment learning framework that employs a well-designed reward
function to enhance the detection process. The simulation
results confirm the effectiveness of our proposed method.
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