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Abstract—In this paper, we present a robust time-varying
adaptive beamformer that employs a novel strategy for the
suppression of fast-moving interference sources. By exploiting
the sparsity of the interference sources, the parameters, which in-
clude the direction-of-arrival and power of the desired and inter-
ference signals as well as the noise power, are estimated, and then
the interference-plus-noise covariance matrix is reconstructed.
The proposed time-varying adaptive beamformer is compared
with the state-of-the-art beamformers for mobile interference
sources that employ a wide-null approach. It is demonstrated that
the proposed beamformer achieves near-optimal performance
and outperforms the wide-null beamformers in terms of the
output signal-to-interference-plus-noise ratio performance.

Keywords: Direction-of-arrival estimation, interference-
plus-noise covariance matrix, robust beamforming, low earth
orbit (LEO) satellite, moving interference signal.

I. INTRODUCTION

In array signal processing, adaptive beamforming is one of
the most widely used technologies that finds application in
radar, sonar, wireless communications, radio astronomy, and
medical imaging [1–3]. Adaptive beamformers can maximize
the array gain along the direction of the desired signal while
simultaneously suppressing the interference at the array output
[4, 5]. The well-known minimum variance distortionless re-
sponse (MVDR) beamformer requires that the steering vector
of the desired signal and the interference-plus-noise covariance
matrix (INCM) are available or can be accurately estimated. A
number of algorithms have been proposed to improve robust-
ness against signal steering vector mismatch and inaccuracy
in INCM reconstruction [6–9].

Adaptive beamforming algorithms can be broadly classified
into two major categories, namely, those based on the data
covariance matrix without reconstructing the INCM (referred
to as the non-reconstruction methods) and those based on
the reconstruction of the INCM (referred to as the recon-
struction methods). Examples of non-reconstruction methods
include the minimum power distorionless response (MPDR)
beamformer and those based on diagonal loading of the data
covariance matrix and steering vector estimation [10, 11].
Since the data sample covariance matrix contains contribution
from the desired signal, such beamformers are prone to self-
nulling of the desired signal and cannot achieve near-optimal
performance in terms of the signal-to-interference-plus-noise
ratio (SINR) at the output of the beamformer. To avoid such
sub-optimal performance, INCM reconstruction and desired

signal steering vector estimation are two most important
aspects. In [6, 9], the INCM is estimated from the steering
vector and power of the interference signals, and an improved
estimate of the desired signal steering vector is estimated. In
[7, 8], the INCM is reconstructed using compressive sensing
techniques.

When considering fast-moving interferers, the direction-of-
arrival (DOA) of the interference signal varies rapidly with
time, thus causing wide angular occupation of the interference
signal over a coherent processing interval. In order to provide
effective interference cancellation in this case, [15] proposed
a null-broadening approach over the angular region that the
moving interferers occupy by applying a transformation on
the estimation of the INCM along the time period over which
the motion is observed. In [16], the steering vector correlation
matrix is constructed in the pre-defined angular sectors of
the interference direction. This concept is recently applied
in the minimum dispersion distortionless response (MDDR)
beamformer to provide a null sector over a predefined range
of DOA [17].

All these existing methods are underlying the concept that,
as the interference moves, a broad angular sector is nullified.
As such, a high number of array degrees-of-freedom (DOFs)
is consumed for the cancellation of such spatially widened
interference signals. This may be the only choice when an
interference source moves randomly and cannot be tracked or
predicted. However, when the trajectory of the interferers can
be tracked or predicted, such information of the trajectory can
be utilized to form time-varying nulling, thereby avoiding the
unnecessary consumption of a high number of DOFs due to
the motion of interferers.

Two interesting examples of such interference with pre-
dictable trajectory is automotive radar and satellites, partic-
ularly the low Earth orbit (LEO) satellites. Automotive radar
has emerged as a key enabling technology for next-generation
autonomous driving systems [18, 19]. As a result, a rapidly
increasing number of automotive radars will be deployed and
interference between different radar units is expected to be
a serious problem [20]. Interference signals from radar units
mounted on nearby vehicles are fast moving and their trajec-
tory can, in general, be tracked. On the other hand, by utilizing
hundreds to tens of thousands of satellites in the LEO orbits,
mega satellite constellations deliver low-latency broadband
data services anywhere on the planet and are considered an



important means for providing 5G/6G Internet [21, 22]. For
interference from LEO satellites, the trajectory and, thereby,
the direction of the interference signals over time can be
precisely characterized. In both applications, by taking the
advantage and noticing the fact that each interference source
is, at any time, impinging from a single direction, we can
construct a time-varying adaptive beamformer which requires
only a single DOF for each interference to be effectively
cancelled.

In this paper, we propose a strategy for nullifying moving
interference sources by deploying a time-varying beamformer
that adjusts its weight vector as a function of time depending
on the motion of the interference signals and creates deep and
narrow nulls at each instance of time. In so doing, the data
received over a longer coherent processing time can be utilized
to provide an accurate estimate of the INCM estimate for
effective interference cancellation, and the proposed approach
does not consume unnecessary DOFs because of the widened
nulls.

The rest of the paper is organized as follows. The system
model of adaptive beamforming is described in Section II.
In Section III, we present the sparsity-based parameter esti-
mation to perform INCM reconstruction and implement robust
beamforming for moving interference cancellation. Simulation
results are provided in Section IV to demonstrate the effective-
ness of the proposed method. Finally, conclusions are drawn
in Section V.

Notations: We use lower-case and upper-case bold charac-
ters to denote vectors and matrices, respectively. In partic-
ular, IN denotes the N × N identity matrix. (.)T and (.)H

respectively represent the transpose and conjugate transpose
(Hermitian) of a matrix or a vector. In addition, || · ||F and
|| · ||1 denote the Frobenius norm and ℓ1 norm, respectively.
R+ denotes the set of non-negative real numbers, and CM×N

denotes the M × N complex space. E(·) denotes statistical
expectation.

II. SYSTEM MODEL

Consider an arbitrary array consisting of N omni-directional
sensors that receive one desired signal and L interference
signals. All the signals are assumed to be stationary in this
section, and we extend to moving interference signals in
Section III. For simplicity of presentation, we consider a
linear array dealing with narrowband signals in the azimuth
directions, but generalization to a wideband signal model
in both azimuth and elevation angles is straightforward. All
signals are assumed to be located in the far field.

Denote the DOA and waveform of the desired signal as θ0
and s0(t), and the waveforms of the uncorrelated interference
signals are s1(t), · · · , sL(t) which impinge from distinct an-
gles θ1, · · · , θL. The baseband signal vector x(t) received at
the array is expressed as:

x(t) = xs(t) + xi(t) + n(t), (1)

where

xs(t) = a(θ0)s0(t),

xi(t) =

L∑
l=1

a(θl)sl(t),
(2)

a(θl) denotes the steering vector of the array corresponding
to the signal impinging from angle θl, and n(t) denotes
the additive circularly complex white Gaussian noise vector
observed at the array. We can rewrite x(t) in a compact form
as

x(t) =

L∑
l=0

a(θl)sl(t) + n(t) = As(t) + n(t), (3)

where s(t) = [s0(t), s1(t), · · · , sL(t)]T and A = [a(θ0),
a(θ1), . . . ,a(θL)] is the array manifold matrix.

Where an adaptive weight vector w ∈ CN×1 is used in the
beamformer, the output of the beamformer is given as

y(t) = wHx(t). (4)

The weight vector of an MVDR beamformer is obtained by
solving the following minimization problem:

minimize
w

wHRi+nw

subject to wHa(θ0) = 1,
(5)

where

Ri+n = E[(xi(t) + n(t))(xi(t) + n(t))H]

=

L∑
l=1

σ2
l a(θl)a

H(θl) + σ2
nIN

(6)

denotes the INCM, and σ2
n denotes the noise power at each

array element. The closed-form solution for the weight vector
of problem (5) is given as

wMVDR =
R−1

i+na(θ0)

aH(θ0)R
−1
i+na(θ0)

. (7)

To avoid the estimation of the INCM, a common practice
is to replace the INCM Ri+n by the covariance matrix of the
received data vector x(t), given as

R = E[x(t)xH(t)] = ASAH + σ2
nIN

=

L∑
l=0

σ2
l a(θl)a

H(θl) + σ2
nIN ,

(8)

where S = E[s(t)sH(t)] = diag([σ2
0 , σ

2
1 , σ

2
2 , · · · , σ2

L]) is the
source covariance matrix with σ2

l denoting the power of the
lth source, l = 0, 1, . . . , L. In practice, the data covariance
matrix can be estimated using the K sampled data available
at the array, i.e.,

R̂ =
1

K

K∑
t=1

x(t)xH(t). (9)



When the data covariance matrix R is used in lieu of the
INCM Ri+n, the resulting beamformer is called the MPDR
beamformer, expressed as

wMPDR =
R−1a(θ0)

aH(θ0)R−1a(θ0)
, (10)

III. SPARSITY-BASED INCM RECONSTRUCTION AND
MOVING INTERFERENCE SUPPRESSION

In this section, we consider sparsity-based reconstruction of
the INCM in the presence of moving interferers. It is achieved
through the estimation of time-varying interference signal
parameters, including their steering vectors and power, as well
as the noise power. Once these parameters are estimated, the
corresponding time-varying INCM can be constructed and
be further processed to obtain a time-varying beamforming
weight vector. Such beamformer is more effective when
compared to broadened null patterns towards the moving
interferers that treat the interferers as if they occupy a wide
angular occupancy.

In Section III-A, we first describe the INCM reconstruction
for stationary interferers [7, 8, 23, 24], and then extend the
results to time-varying interferers in the Section III-B.

A. Sparsity-Based INCM Reconstruction for Stationary Inter-
ferers

Generally, signal arrivals are sparsely present in the space,
and this property can be utilized to reconstruct the INCM
[7, 8]. As discussed in Section I, the accuracy of the INCM
reconstruction depends on the accuracy of the estimation of
system parameters. We assume the system to have a single
desired signal and L interference signals. Let M be the number
of potential source locations forming predefined grids along
the observed field. To estimate the parameters of both the de-
sired signal and interferers, a sparsity-constrained covariance
matrix fitting problem can be formulated as

minimize
p, σ2

n

∥∥∥R̂−AgPA
H
g − σ2

nIN

∥∥∥
F

subject to ∥p∥0 = L+ 1,

p ≥ 0,

σ2
n ≥ 0,

(11)

where p ∈ RM
+ denotes the sparse spatial spectrum distribution

on the M sample grids along the observed field, P = diag(p),
and Ag ∈ CN×M is the steering matrix of the N sensors
along the M sample grids. The optimization problem in
(11) finds the sparsest spatial spectrum distribution p and
the noise power σ2

n such that the difference between the
sample covariance matrix R̂ and the reconstructed covariance
matrix AgPA

H
g + σ2

nIN is minimized. It can be observed that
problem (11) is a non-convex problem due to the ℓ0 norm in

one of the constraints. Thus the problem can be reformulated
into convex form through ℓ1-norm relaxation as [25]

minimize
p, σ2

n

∥∥∥R̂−AgPA
H
g − σ2

nIN

∥∥∥
F
+ γ∥p∥1

subject to p ≥ 0,

σ2
n ≥ 0,

(12)

where γ is the regularization parameter trading off between
the sparsity of the spatial spectrum and the norm differ-
ence of covariance matrix fitting. This optimization problem
can be solved using convex solvers, such as CVX [26].
Once the parameters are estimated, we can identify the ar-
ray manifold corresponding to the interference signals as
Ai = [a(θ1), . . . ,a(θL)], and the interference signal powers
as Si = diag([σ2

1 , σ
2
2 , · · · , σ2

L]). Then, the INCM can be
reconstructed as [8]

R̂i+n = AiSiA
H
i + σ2

nIN . (13)

B. Moving Interference Suppression

In this subsection, we consider the case where the interfer-
ence signals have time-varying DOAs. We first describe the
wide-null approach for the suppression of moving interference
signals [27–29]. A time-varying beamformer is then consid-
ered whose weight vector is updated at every time instant and
creates a sharp null at the exact locations of the interference.

Denote the angular variation of the lth interference signal
as ωl. For simplicity, ωl is assumed to be constant over
the processing time, but extension to a more general case
with time-varying angular variation is straightforward. We also
assume that the power of the interference signals and the noise
power remain constant over the processing time period. Then,
the instantaneous DOA of the interference signal over a time
period of 0 ≤ t ≤ T is given as

θl(t) = θl(t = 0) + ωlt, 0 ≤ t ≤ T. (14)

Thus the array manifold corresponding to the interference
signals becomes time-varying and is denoted as Ai(t). Hence,
the corresponding INCM becomes

R̂i+n =
1

T

∫ T

0

Ai(t)PA
H
i (t) dt+ σ2

nIN . (15)

Substituting (15) into eq. (7) yields the MVDR beamformer
wMVDR which creates an array pattern with broadened nulls
along the angular sector over which the interference signals
traverse in processing time period. This approach requires a
high number of DOFs than the number of interference signals.

On the other hand, if the time varying beamforming weight
vector is formulated individually for every time instant, then
the array pattern will create sharp nulls at each instant time
and will update continuously over the time period T . And the
time-varying INCM for the proposed strategy can be given as,

R̂proposed
i+n (t) = A(t)PAH(t) + σ2

nIN . (16)



It is seen that such a beamformer achieves better perfor-
mance in terms of utilization of the DOFs and the output
SINR.

IV. SIMULATION RESULTS

We consider a uniform linear array (ULA) consisting of
N = 8 omni-directional sensors. There are L = 2 interference
signals and one desired signal impinging on the array from
directions [−12◦, 0◦, 10◦]. The second signal is considered
to be the desired signal, whereas the other two signals are
considered to be moving interference sources. The angular
variation for the first interferer is considered to be ω1 = 0.75
degrees/second and that for the second interferer is ω2 = 1.25
degrees/second. For the simulation scenario we consider a time
period of T = 4 seconds over which the interference sources
are assumed to move with the defined angular variation ω. For
both the scenarios, the number of snapshots available and the
signal-to-noise ratio (SNR) are considered to be K = 500 and
5 dB respectively.

From Fig. 1 we see that the sparse reconstruction of the
support for the DOAs of the signals has been estimated
correctly. Furthermore for simulation the SNR of the desired
signal, and the interference-to-noise-ration (INR) of the two
interferers were set to 5 dB, 10 dB and 15 dB respectively
which matches closely with the results obtained in Fig. 1. In
addition, unit power noise was considered. The regularization
parameter γ was chosen to be 0.5.

Fig. 2(a) depicts the beamforming scenario when the re-
constructed noise plus interference covariance matrix is con-
structed over the total time frame using (15). We observe
the broadened nulls at the directions of the two interference
sources which are at −12◦ and 10◦ respectively. It is to
be noted that the width of the broad nulls depend on the
angle sector that the two interference sources traverse within
the considered time frame. Also for an array consisting of
fewer number of antenna elements wide-null approach does
not provide optimum performance as can be seen in Fig. 2(a).

In Fig. 2(b) we see that very sharp nulls are created along
the time frame as each time frame has been considered
separately for the construction of the INCM using (16). The
nulls are sharp and deep due to the fact that the DOFs of the
ULA are utilized more efficiently than the beam-null method.
Also we observe that in such time adaptive beamforming the
array gain is always maximum towards the desired signal at
every instance of time.

Furthermore, Fig. 3 depicts the output SINR for input SNR
ranging from -20 dB to 20 dB, and it was observed that the
proposed method outperforms the state-of-the-art wide-null
approach by a significant margin. The performance gain of
antenna arrays with fewer elements is greater.

V. CONCLUSION

This paper proposes a new strategy for time-varying adap-
tive beamforming in moving interference scenario. The state
of the art beamforming method for nullifying non-stationary
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Fig. 1: Sparse spatial spectrum comparison.
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(a) Beamforming with the INCM reconstructed over the
time period.
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(b) Beamforming with the INCM reconstructed at a
time instant.

Fig. 2: Adaptive beamforming approaches to suppress the
moving interference signals for LEO satellite scenario.

mobile interference signal is to create a wide null along the
angular sector corresponding to the motion of the interferer.
It has been verified with simulation results that such a beam-
former is not optimal in terms of output SINR and interference
suppression. The proposed time adaptive beamforer is shown
to be more robust and provides optimal performance compared
to the wide null beamformer.
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Fig. 3: Output SINR versus input SNR.
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