
Deep Learning-Based Robust Imaging Exploiting
2-D Array Compressive Measurement

Md. Saidur R. Pavel, Yimin D. Zhang

Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA

Abstract—This paper proposes a neural network-based robust
imaging method from compressive measurements exploiting a
two-dimensional (2-D) array. The practical implementation of
a 2-D array becomes much more complicated as the number
of antennas increases due to the requirement to allocate a
different radio frequency front-end circuit to each antenna. An
effective solution to this problem is to compress the received
signal prior to digitization at the array. In this paper, we use
the maximization of the mutual information between compressed
measurement and the signal locations to determine the optimal
compressive measurement. A neural network-based strategy for
localizing sources using these compressed measurements is then
proposed. We treat neural network training as a 2-D multilabel
classification problem and design an appropriate loss function to
train the network. Compared to the conventional approach, the
proposed neural network-based approach provides more robust
performance as it does not rely on any prior knowledge of
received signals and the antenna configuration.

keywords: 2-D array, source localization, DOA estimation,
compressive measurement, convolutional neural network.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation, which determines
the spatial spectrum of the impinging electromagnetic or
acoustic waves, is one of the fundamental research areas
in array signal processing. It finds importance in various
applications, including wireless communication, radar, sonar,
and astronomical observations [1–3]. A number of methods
have been developed for DOA estimation purpose. Among
them subspace-based methods [4, 5] is popularly used. De-
spite having numerous advantages, the subspace-based method
suffers from several issues. The subspace-based methods re-
quire singular value decomposition of the covariance matrix,
which is quite time-consuming in real-time source detection.
Additionally, the subspace-based method relies on some prior
knowledge of the array structure and signal forms. Any devia-
tion from these prior knowledge may prevent the subspace-
based method from accurately estimating DOA [33, 34].
Sparsity-inducing methods [6–13] are also widely employed
to solve the DOA estimation problems. Although sparsity
inducing methods offer many advantages such as immunity to
the lack of source number information [35–37], robustness to
noise, and limited number of snapshots [38], the complexity
involved solving ℓp norm optimization problem can pose a
challenge for real-time DOA estimation.

With the emergence of deep learning in a variety of appli-
cations, including image, speech, and array signal processing
[14–17], these techniques are also widely employed for DOA
estimation and source localization [21–27]. Neural network-
based approach for DOA estimation is computationally more
efficient compared to the convectional methods because once
the network is trained it does not require performing any

complicated matrix operation or solving any optimization
problem. Furthermore, neural network-based method does not
rely on any array configuration assumptions, making it more
robust to potential imperfections such as imperfect calibration
or knowledge in sensor gain, phase, position, and inter-sensor
mutual coupling [28–30].

Two-dimensional DOA estimation simultaneously obtains
the azimuth and elevation angles of a source and can more
precisely describe the spatial characteristics of an incident
signal. Therefore, 2-D DOA estimation often requires attention
for source localization in real situations. The practical imple-
mentation of a 2-D array becomes complicated if the number
of antennas increase. Assigning a separate radio frequency
front-end circuit and high resolution analog to digital converter
(ADC) to each antenna is impractical considering the hardware
cost and the power consumption. To overcome this issue,
we introduce a compressive sampling matrix as discussed in
[18–20] to project the high dimensional signal into a low
dimensional manifold. The compressive sampling matrix is
optimized by maximizing the mutual information between the
compressed measurements and the source locations.

Deep learning-based approaches are becoming popular for
2-D DOA estimation. The authors in [31] consider estimating
the azimuth and elevation angle as a regression problem.
They trained multiple convolutional neural networks (CNNs) to
estimate the source location independently, and the final result
was obtained by averaging the estimates of the independently
trained networks. The paper in [32] employed two CNNs
for estimating the azimuth and elevation angle information
separately and a third for pairing them. However, as they
consider 5 sources, they only require 5! = 120 possible pairing
combinations. On the other hand, we consider 16 sources in
this paper, and it is unrealistic to consider 16! output nodes
in a neural network. Considering these issues, we design
a convolutional neural network (CNN) that simultaneously
provides the azimuth and the elevation angles. To achieve this,
we treat our location finding problem as a 2-D multilabel
classification problem, where we train the network using 2-
D labels containing information about azimuth and elevation
angles.

Notations: We use lower-case (upper-case) bold characters
to describe vectors (matrices). In particular, (·)T and (·)H
respectively denote the transpose and conjugate transpose of
a matrix or vector. diag(·) denotes a diagonal matrix with
the elements of a vector constituting the diagonal entries.
triu(·) denotes the upper triangular elements of a matrix. vec(·)
denotes vectorizing of a matrix. E(·) denotes the expectation
operation. ◦ is the Hadamard product operator. ȷ =

√
−1

denotes the unit imaginary number. IM stands for the M×M
identity matrix. In addition, R(·) and I(·) denote the real part



and imaginary part, respectively.

II. SIGNAL MODEL

We consider a rectangular (2-D) array as depicted in
Fig. 1 consisting of N1 and N2 antennas arranged in an
uniform linear fashion in each direction. The total number
of physical antennas are then Nt = N1 × N2. Consider, D
uncorrelated signals are assumed to impinge on the array with
azimuth angles ϕ = [ϕ1, ϕ2, · · · , ϕD]T and with elevation
angle θ = [θ1, θ2, · · · , θD]T. Then the baseband received
signal vector at time t is modeled as

x(t) =

D∑
d=1

a(ϕd, θd)sd(t) + n(t)

= Ā(ϕ, θ)s(t) + n(t),

(1)

where Ā(ϕ, θ) = [a(ϕ1, θ1),a(ϕ2, θ2), · · · , a(ϕD, θD)] ∈
CNt×D is the presumed array manifold matrix whose column
a(ϕd, θd) ∈ CNt represents the steering vector of the dth
user with an azimuth angle of ϕd and an elevation angle
of θd, s(t) = [s1(t), s2(t), · · · , sD(t)]T represents the signal
waveform vector, and n(t) ∼ CN (0, σ2

nID) represents the
zero mean additive white Gaussian noise (AWGN) vector.

When an array sensor has calibration error, we describe
the gain and phase errors of the nth sensor as gn = αne

ȷβn

for n = 1, · · · , Nt, and denote g = [α1e
ȷβ1 , · · · , αNt

eȷβNt ]T.
Then, the actual array manifold A(ϕ, θ) becomes

A(ϕ, θ) = diag(g)Ā(ϕ, θ). (2)

We then introduce a compressive sampling matrix Γ =
[γT

1 ,γ
T
2 , · · · ,γT

M ]T ∈ CM×Nt with M ≪ Nt. γm ∈ C1×Nt

denoting the measurement kernel for m = 1 · · · ,M. Γ is
designed to be row-orthonormal, i.e., ΓΓH = IM , to keep the
noise power unchanged after applying the compression. Pro-
jection of the high-dimensional signal vector x(t) into the mth
measurement kernel γm yields the mth compressive measure-
ment ym(t) = γmx(t). Stacking the M compressed measure-
ment vector yields y(t) = [y1(t), y2(t), · · · , yM (t)]T ∈ CM ,
which is as

y(t) = Γx(t) = ΓA(ϕ, θ)s(t) + Γn(t), (3)

where ΓA(ϕ, θ) ∈ CM×D represents the compressed array
manifold with significantly reduced dimension.

The covariance matrix of the compressed measurement
vector is then computed as

R = E[y(t)yH(t)] = ASAH + σ2
nIM

=

D∑
d=1

σ2
da(ϕd, θd)a

H(ϕd, θd) + σ2
nIM ,

(4)

where S = E[s(t)sH(t)] = diag([σ2
1 , · · · , σ2

D]) is the source
covariance matrix with σ2

d denoting the power of the dth
source.

III. OPTIMIZATION OF COMPRESSIVE SAMPLING MATRIX

In this section, we extend the the optimization procedure
of the compressive sampling matrix discussed in [18–20] into
2-D scenario.

Fig. 1: Antenna Configuration

A. Probabilistic Signal Model
Consider the azimuth ϕ and the elevation θ is a random

variable with a known joint probability density function (PDF)
f(ϕ, θ). Then, according to the law of total probability, the
PDF of the compressed measurement vector can be expressed
as,

f(y) = Eϕ,θ{y|ϕ, θ} =
∫
ϕ

∫
θ

f(y|ϕ, θ)f(ϕ, θ)dϕdθ (5)

We then discretize the marginal distributions f(ϕ) and f(θ)
into U and V angular bins with an equal width of ∆ϕ̄ and
∆θ̄ respectively. The the PDF of the compressed measurement
vector can be approximated as,

f(y) ≈
∑
u∈U

∑
v∈V

pu,vf(y|ϕ̄u, θ̄v), (6)

where pu,v = f(ϕ̄u, θ̄v)∆ϕ̄∆θ̄ denotes the probability of the
(u, v)th azimuth and elevation bin pair with

∑
u∈U,v∈V pupv =

1. f(y|ϕ̄u, θ̄u) denotes the conditional distribution of the
measurement vector y given a specific azimuth, elevation
pair (ϕ̄u, θ̄v). Here, U = {1, · · · , U} and V = {1, · · · , V }
represents the index set of the angular bin.

Consider a signal impinging from the angular bin pair
(u, v) with a nominal azimuth, elevation pair (ϕ̄u, θ̄v), the
compressed measurement vector y can be expressed as

y|ϕ=ϕ̄u,θ=θ̄v = Γ(a(ϕ̄u, θ̄v)s(t) + n(t) (7)

with conditional PDF

f(y|ϕ̄u, θ̄v) =
1

πM |Cyy|ϕ̄u,θ̄v |
e
−yHC−1

yy|ϕ̄u,θ̄v
y
, (8)

where Cyy|ϕ̄u,θ̄v = Γ(σ2
sa(ϕ̄u, θ̄v)a

H(ϕ̄u, θ̄v) + σ2
nI)Γ

H is
the covariance matrix of the compressed measurement for a
specific azimuth, elevation pair (ϕ̄u, θ̄v).

B. Optimization of the compressive sampling matrix
The compressive sampling matrix Γ is optimized by

maximizing the mutual information between the compressed
measurement vector y and the source location (ϕ, θ). The
gradient of the mutual information I(y;ϕ, θ) with respect to
the compressive sampling matrix Γ can be expressed as

∇ΓI(y;ϕ, θ) = ∇Γh(y)−∇Γh(y|ϕ, θ), (9)



where ∇Γ denotes the gradient operator with respect to Γ,
h(y) = −Ey{log[f(y)]} is the differential entropy of y,
and h(y|ϕ, θ) = Ey,ϕ,θ{log[f(y|ϕ, θ)]} is the conditional
differential entropy of y given the source location (ϕ, θ).
An extension of the mutual information gradient derived in
[18, 19] into 2-D case

∇ΓI(y;ϕ, θ) ≈∑
u∈U

∑
v∈V

pu,v∣∣∣∣Cyy|ϕ̄u,θ̄v
σ2
n

∣∣∣∣
[
Cyy|ϕ̄u,θ̄v

σ2
n

]−1

Γ
(

σ2
s

σ2
n
a(ϕ̄u, θ̄v)a

H(ϕ̄u, θ̄v) + I
)

∑
u∈U

∑
v∈V

pu,v

∣∣∣Cyy|ϕ̄u,θ̄v

σ2
n

∣∣∣−1

−
∑
u∈U

∑
v∈V

[
Cyy|ϕ̄u,θ̄v

σ2
n

]−1

Γ

(
σ2
s

σ2
n

a(ϕ̄u, θ̄v)a
H(ϕ̄u, θ̄v) + I

)
,

(10)
where σ2

s/σ
2
n deontes the estimated signal to noise ration

(SNR) of the input signal.
The compressive sampling matrix is then iteratively up-

dated in a gradient ascent manner according to

Γ← Γ+ α∇ΓI(y;ϕ, θ), (11)

where α > 0 is the step size.

IV. PROPOSED CONVOLUTIONAL NEURAL NETWORK

We consider a convolutional neural network as depicted in
Fig. 2 for source localization. As the input to the network,
we employ the covariance matrices computed from the com-
pressed measurement vectors, and as its output, we wish to
determine the azimuth and the elevation angle.

In the proposed CNN model, two convolutional layers
are utilized. In each layer we consider C learnable filters
with a size of F × F . In each layer of the CNN, the
convolutional operation between the input to this layer and
the kernels produce C feature maps. The ReLU activation is
used in conjunction with each convolutional layer to introduce
nonlinearity. We use batchnormalization to the convolutional
layers to normalize the inputs feeding to the layers. The
output from a convolutional layer is followed by a max-
pooling layer. The max-pooling layer divides the feature map
into several non-overlapping regions, and maps the largest
values from each region to its output feature map. The max-
pooling operation reduce the input dimension hence lower the
number of trainable parameters, add transnational invariancy
and avoid trivial solutions. After the max pooling two fully
connected layers are Incorporated. Since the number of nodes
in these fully connected layers is very large to accommodate
the dimension of the 2-D layer at the output, we adopt dropout
regularization technique to prevent potential overfitting.

For a L layer neural network, denote W ℓ and bℓ as
the wights and biases of the ℓth hidden layer with ℓ ∈
{1, 2, · · · ,L}. F [ℓ] is a nonlinear activation function applied
on the ℓth hidden layer. Then the output from the ℓth layer,
A[ℓ], can be expressed as

[A]
ℓ
= F [ℓ]

(
W [l]A[l−1] + b[l]

)
. (12)

We consider the source localization as a (2-D) multilabel
classification problem. Therefore, as the label of the network
we construct a matrix of ones and zeros. Each element of

Fig. 2: Proposed Convolutional Neural Network

the matrix represents a particular azimuth and elevation angle
pair, and the objective is to make a binary decision whether a
signal present in a particular pair or not. The sigmoid activation
function implemented at the output ensures the output nodes of
the network has values between 0 and 1. To make this kind of
binary decisions, the most common loss function is the binary
cross-entropy loss function as expressed in Eq. 14

min
W ,b
− 1

J

J∑
j=1

[
Y [i]

j log Ŷ
[i]

j +
(
1−Y [i]

j

)
log

(
1− Ŷ

[i]

j

)]
,

(13)
where J is the number of training samples in each batch, and
Ŷ

[i]

j and Y [i]
j are, respectively, the predicted output and the

actual label of the jth sample at the ith batch of the training
data.

In this problem, the 2-D label contains very few numbers
of ones compared to the entire 2-D grid. Therefore, the loss
function defined by Eq. 14 can be very small by just making
every prediction to 0. This prevents the network from learning.
To combat this issue, we modified the standard binary cross-
entropy loss function by employing appropriate wights f1 and
f0 with f1 ≫ f0 to emphasize predicting 1′s.

min
W ,b
− 1

J

J∑
j=1

[
f1Y [i]

j log Ŷ
[i]

j + f0

(
1−Y [i]

j

)
log

(
1− Ŷ

[i]

j

)]
,

(14)

V. EXPERIMENTAL RESULTS

We consider a rectangular 2-D array, as shown in Fig. 1,
located in the XY plane. N1 = 10 and N2 = 10 antennas
are arranged in a uniform linear fashion with half-wavelength



Fig. 3: Source localization performance

separation on each axis, resulting Nt = 100 physical antennas.
16 uncorrelated far-field sources are assumed to impinge on the
array with an input SNR of 20 dB, and the number of snapshots
is T = 100. A compression ratio Nt/M = 5 is chosen to get
the dimension of the compressed measurement vector M = 20.
We generate our training dataset by considering the signals
impinging from the range of azimuth angles [0◦, 180◦] and
elevations angle [0◦, 180◦]. The spatial domain is discretized
with 1◦ interval rendering 181 × 181 direction grids. The
antenna gains are independently generated from a uniform
distribution between 0.5 and 1.5, whereas the phase errors are
independently generated from a uniform distribution between
−6◦ and 6◦. We randomly sample 10000 observations of 16
sources from a uniform distribution to generate the training
dataset.

For Nt = 100 and T = 100, the dimension of the array
received signal is 100× 100. After the compressive sampling
matrix Γ is optimized, the compressed measurement vector is
computed with a dimension of 20×100. The covariance matrix
is estimated from T samples of the compressed measurement
as R̂ = 1

T

∑T
t=1 y(t)y

H(t). The dimension of this covariance
matrix is 20 × 20. We then separate the real and imaginary
parts and stacked them together to get a real-valued matrix
with a dimension of 20× 40.

This real-valued covariance matrix feed to the CNN net-
work. The CNN is trained to learn the nonlinear relationship
between the input covariance matrix and the source location.
We use Two convolutional layers followed by ReLU and Max-
pooling and one fully connected layer to construct the network.
The sigmoid activation function is used at the output. Since
we have 181× 181 directional grid, we construct a matrix of
dimension 181 × 181 containing true signal location as the
label of the network. In this 2-D label, 1 is assigned for the
true azimuth-elevation pair and 0 is assigned for the rest of the
elements. Since we have only 16 sources, only 16 elements will
have a value of 1 out of 181 × 181 elements. Therefore, the
training loss is mostly regulated by 0’s, and the network has a
poor performance to predict the 1’s correctly. To combat this

Fig. 4: Source localization performance for distributed source

issue, we overweight the loss corresponding to predicting 1’s
so that any miss-classification of 1 will be highly penalized.

Fig. 3 illustrates the performance of the proposed CNN
model to an example test data. This example considers
a test scenario of point sources with azimuth angles
[168◦,162◦,27◦,172◦,44◦,58◦,99◦,170◦,68◦,60◦,119◦,135◦,30◦,
17◦,154◦,86◦] and elevation angles [89◦,107◦,27◦,63◦,126◦,
176◦, 56◦,15◦,85◦,153◦,43◦,107◦,8◦, 73◦,108◦,2◦]

Fig. 4 depicts the performance of the proposed model in
the case of a distributed source. In both cases the proposed
model successfully locate every sources.

.

VI. CONCLUSION

In this paper, we consider source localization in a 2-
D platform. For practical implementation of a 2-D array
with a large number of antennas, we optimize a compressive
sampling matrix based on the maximization of the mutual
information between the compressed measurements and the
source location. Using the obtained compressed measurements,
our proposed convolutional neural network model determined
the azimuth and elevation angle of the source location. The
proposed method offers improved and robust performance in
the presence of imperfections.
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