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Abstract—This paper investigates a double intelligent reflecting
surface (IRS) hybrid network architecture, where the two sur-
faces are deployed to cooperatively assist communication between
a multi-antenna base station and a single-antenna user over
multipath channels. We decouple the double-IRS assisted user
communication system by utilizing sparse active elements in
the second IRS, where active beamforming at the base station
and passive beamforming at the first IRS were simultaneously
optimized using an alternating optimization method, and the
user multipath channels are estimated by the second IRS. We
optimize the reflection coefficients of the second IRS and analyze
the feasible bit rate that the user can achieve. Simulation
results are presented to validate the effectiveness of the proposed
architecture and the benefits of the double-IRS in increasing
spectral efficiency.

Keywords: Intelligent reflecting surface, double IRS net-
work, sparse array, structured matrix completion.

I. INTRODUCTION

The intelligent reflecting surface (IRS) is a viable emerging
technology for 5G and beyond due to its ability to change
the wireless channel between communicating nodes. IRS is
a rectangular metasurface made up of a large number of
passive reflecting elements, each of which can be digitally
adjusted to cause a distinct amplitude change and/or phase
shift in the incident signal, allowing broadcasters and re-
ceivers to cooperate to change the wireless links. In terms
of channel estimation, wireless channel reconfiguration, and
pilot overhead minimization, constructing an IRS with all
passive elements except a few active elements can provide
high-precision performance [1, 2]. Both passive and active
IRSs can be used to build a chain or hybrid network to increase
network capacity, particularly in the millimeter wave domain.

In [3–5], the authors implemented multi-IRS distributed
networks where multiple users are served by a single IRS.
However, the multi-IRS cooperation setup to serve the users
was overlooked, limiting the potential for multi-IRS perfor-
mance gain. A double IRS setup was discussed in [6, 7],
where a joint passive beamforming design for the two IRSs
was proposed, with the base station (BS) serving the user
via the double reflection link. The inter-IRS link was as-
sumed to have a line-of-sight (LoS) channel model, and they
achieved a much higher gain than a single IRS scenario. To
maximize the minimum signal-to-interference-plus-noise ratio
(SINR) among all users in their uplink transmissions, the joint
optimization of the (active) receive beamforming at the BS

and the cooperative (passive) reflect beamforming at the two
distributed IRSs was investigated in [8].However, none of the
previous studies considered the practical scenario in which
the user and the IRS have multiple LOS paths. Furthermore,
because most BS and IRSs are above ground, channels are
more likely to be constant, whereas user-IRS typically have
fast varying multipath channels, necessitating fast channel
estimation as well as active and passive beamforming op-
timization. Furthermore, passive double-IRS is incapable of
achieving distributed computational performance and disjoint
optimization efficiency across the network.

We investigate a multiple-input, single-output (MISO) com-
munication system as depicted in Fig. 1, where we seek to
attain the achievable bit rate at the user end by employing
double IRS in a hybrid network model. Using the advantages
of an active IRS (IRS-2), we propose a decoupled passive
beamforming optimization technique which is implemented
in three phases and we optimize the joint active and passive
beamforming vectors for BS and passive IRS (IRS-1) in phase
I. The alternate optimization technique is used to optimize
one set of variables iteratively while keeping the other set
constant. In phase II, we estimate the fast fading multipath
channel between user and IRS-2 with the help of an L-shaped
sparse active elements on the IRS-2. Based on the channel
knowledge and optimized beamforming vectors of the BS and
IRS-1, we compute the ideal passive beamforming vector for
IRS-2 and determine the highest bit rate for the user served by
the multi-antenna base station (BS) over the double reflection
link in phase III.

Fig. 1: Double IRS-assisted channel model.



II. SYSTEM MODEL

Consider an IRS-enhanced MISO downlink communication
system that consists of two distributed IRSs (referred to
as IRS-1 and IRS-2) deployed to assist the communication
between a single antenna user from an N -antenna BS. We
assume that the two IRSs are positioned near the BS and the
user respectively, in a practical deployment scenario where di-
rect links between user and the BS are significantly obstructed.
We consider the IRS-1 is a passive reflector with M1 passive
reflecting elements. But the IRS-2 has M2 reflecting elements
among which M̄2 active elements which has both sensing and
reflecting properties, are placed in sparse L-shaped structure
as shown in Fig. 1. Furthermore M̄x and M̄z are the active
elements in x and z-axis subarrays, where M̄2 = M̄x+M̄z−1.
Let hr,1 ∈ CM2×1 and hr,2 ∈ CM2×1 are two LOS paths
between the IRS 2 and user, where h ∈ CM2×1 is the
summed channel. In addition, each IRS is connected to a smart
controller that controls the phase shifts and communicates with
the BS via a separate, reliable backhaul link. Let, the signal
transmitted by the BS is given by

x = fs, (1)

where s denotes the transmitted data symbol and follows
E[|s|2] = 1, and f ∈ CN×1 is the corresponding beamforming
vector. The channels between the BS and RIS-1, the BS and
IRS-2, and the RIS-1 and IRS-2 are denoted by Ht ∈ CM1×N ,
Hd ∈ CM2×N and D ∈ CM2×M1 . Thus the downlink received
signal at the user is formulated as

yT = (hk)x+ nT , (2)

where, yT and hk ∈ C1×N are the received signal and
the superimposed channel from BS to user, respectively.
nT ∼ CN (0, σ2

T ) represents the additive white Gaussian noise
(AWGN) at the user with noise variance σ2

T . From fig.1 we
can write the superimposed channel as

hk = hHΦHd + hHΦDΘHt

= ϕ diag(hH)Hd + hHΦ{θ̄ diag(d1), θ̄ diag(d2),

· · · , θ̄ diag(dM1
)}Ht,

(3)

here, Θ = diag(θ̄) and Φ = diag(ϕ) represents the diagonal
reflection matrix of IRS-1 and IRS-2, respectively [8]. dm ∈
C1×M1 is the channel between IRS-1 and m-th patch of IRS-2.
For simplicity, we assume that the BS perfectly knows all the
channel state information (CSI) between BS → IRS-1, inter
IRS channel (IRS-1 → IRS-2) and BS→ IRS-2 channel. But
the multipath channel between IRS-2 and user is unknown. To
make the system more robust we have included the distortion
noise in the BS. In this work, our goal is to optimize passive
beamforming vectors (θ̄ and ϕ) in a decoupled fashion to
achieve the performance gains over multipath channel between

IRS-2 and user, brought by the passive and active IRS system.
So, the problem can be expressed as,

maximize
f , θ̄,ϕ

[R]+ (4a)

subject to ∥f∥22 ≤ Pmax, (4b)
|θm| = 1, |ϕm| = 1, ∀m = 1, 2, · · · ,M, (4c)

here, Pmax is the base station power budget. The passive
beamforming vectors are subject to the unit modulus con-
straints. The bit rate R can be formulated as,

R = log2(1 +
|hkf

H|2

ΞT
), (5)

where ΞT is the sum power of distortion noise and thermal
noise of the system. Due to the non-concave objective function
with respect to f , θ̄,ϕ in (4a) and the non-convex unit-modulus
constraints in (4c) the optimization problem which becomes
NP hard and is not easy to solve. Moreover we also need the
estimated channel between IRS-2 and user. So, the total system
is solved in three phase which is described in next section.

III. PROPOSED CHANNEL DECOUPLE METHOD

A. Phase I

Assume m-th element of the IRS-2 is an active patch.
From (3), the equivalent channel between BS→ IRS-1→ m-th
element of IRS-2 (diag(dm)Ht ∈ CM1×N ) and BS→ m-th

element of IRS-2 (hd,m ∈ C1×N ) is, G1 =

[
diag(dm)Ht

hd,m

]
∈

C(M1+1)×N . And θ = [θ1, θ2, · · · , θM1 , 1]
T ∈ C(M1+1)×1 is

the equivalent reflection coefficient vector. So in the Phase I
we determine the bit rate, R1 over the equivalent channel and
can be expressed as,

R1 = log2(1 +
1

Ξ1(f ,θ)
fHGH

1 θθ
HG1f), (6)

here, Ξ1(f ,θ) = µtf
Hd̃iagGH

Uθθ
HGU f+σ2

1 is the sum power
of distortion noise and thermal noise of the system [9].

Phase I focuses on optimizing the received bit rate, R1

at the m-th element of IRS-2 by combining the transmit
beamforming vector f and the passive beamforming θ, while
keeping the maximum transmit power constraint at the BS in
mind. The associated optimization issue can be formulated as,

maximize
f ,θ

[R1]
+ (7a)

subject to ∥f∥22 ≤ Pmax, (7b)
θ ∈ S, (7c)

S imposes a unit modulus on each entry in θ with the set
S = {θ| |θm|2 = 1, 1 ≤ m ≤ M1, θM1+1 = 1}. The optimal
value of Problem (7a) is always non-negative. If R1 ≤ 0,
the objective function’s value can be set to zero by setting
∥f∥22 = 0. The non-concave objective function with respect
to f and θ, as well as the non-convex constraint (7c), make
problem (7) difficult to solve.



1) Algorithm Design for Phase I: We adopt the alternating
optimization (AO) method to address the coupling of the
beamforming vector at the BS and the reflection beamforming
at the RIS in Problem (7). Specifically, we alternately update f
and θ while fixing the other variable. Due to the non concave
function in (6) and (7), we introduce auxiliary variables
p = [p1, p2]

T, which satisfy{
log2(Ξ1(f ,θ) + fHGH

1 θθ
HG1f) ≥ p1, (8a)

log2(Ξ1(f ,θ)) ≤ p2, (8b)

such that, R1 ≥ p1 − p2. With (8), the problem (7) can be
reformulated as,

maximize
f ,θ,p

p1 − p2 (9a)

subject to (7b), (7c), (8). (9b)

2) Optimize f with respect to θ: When θ is given, we
further introduce auxiliary variables r = [rf,1, rf,2] such that
non-convex constraints at (8) are respectively equivalent to,

(8) ⇒


log2(rf,1) ≥ p1, (10a)
log2(rf,2) ≤ p2, (10b)

(Ξ1(f) + fHGH
1 θθ

HG1f) ≥ rf,1, (10c)
(Ξ1(f)) ≤ rf,2. (10d)

It is observed from (10) that constraints (10a), (10d) are
convex, while constraints (10b), (10c) are concave. According
to [10], the successive convex approximation (SCA) can be
used to address the concave constraints. First-order Taylor ap-
proximation can provide the following equivalent constraints,

(10b) ⇒ log2(r
n
f,2) +

rf,2 − rnf,2
rnf,2ln(2)

≤ p2, (11)

(10c) ⇒ 2Re{fn,HA1f} − fn,HA1f
n + σ1

2 ≥ rf,1 (12)

where, A1 = GH
1 θθ

HG1, and rnf,2 and f are the solutions
obtained at the n-th iteration. Finally, the suboptimal problem
for solving f is formulated as,

maximize
f ,p, rf

p1 − p2 (13a)

subject to (7b), (10a), (10d), (11), (12). (13b)

Problem (13) is a second order cone program (SOCP) and can
be solved by CVX tool.

3) Optimize θ with respect to f : In order to tackle the non-
convex unit-modulus constraint θ ∈ S, we adopt the semidef-
inite relaxation (SDR) technique to update θ. In particular, by
defining a new variable Ẽ = θθH, constraint θ ∈ S is replaced
by {Ẽ ⪰ 0, rank(Ẽ) = 1, d̃iag(Ẽ) = IM1+1}, Furthermore,
with fixed f and new auxiliary variables rθ = [rθ,1, rθ,2]

T ,
non-convex constraints (8a) and (8b) are equivalent to,

(8a), (8b) ⇒


log2(rθ,1) ≥ p1, (14a)
log2(rθ,2) ≤ p2, (14b)
Tr{B1E}+ σ2

1 ≥ rθ,1, (14c)
Tr{B2E}+ σ2

1 ≤ rθ,2, (14d)

where, B1 = B2 +G1ff
HGH

1 and B2 = µtG1d̃iag(ff)
H
GH

1

and Tr(.) denotes the trace operation. In (14), the only non-
convex constraints (14b), which can be approximated by using
the first-order Taylor approximation as

log2(r
n
θ,2) +

rθ,2 − rnθ,2
rnθ,2ln(2)

≤ p2, (15)

rnθ,2 is the solutions obtained at the n-th iteration. Finally, the
relaxed subproblem of Problem (9) can be formulated as,

maximize
Ẽ,p, rθ

p1 − p2 (16a)

subject to Ẽ ⪰ 0, rank(Ẽ) = 1, d̃iag(Ẽ) = IM+1, (16b)
(14a), (14c), (14d), (15). (16c)

In order to ensure the non-decreasing objective value sequence
generated in each iteration, we update θ as [9]. As the IRS-1
and IRS-2 are in LOS, and the angle of arrival (AOA) from the
reflected IRS-1 signal for all the active and passive elements of
IRS-2 are same, thus the achievable bit rate for each element
at IRS-2 is also same. At phase I, by the above joint active
and passive beamforming we can determine the optimal active
beamforming vector f for the BS and passive beamfoming
vector θ̄ of IRS-1. The total complexity of phase I is O(N3)+
O(M3.5

1 ). As the computational complexity is proportional to
the channel dimension, we have reduced the computational
time by optimizing the cascade channel over a single element
of IRS-2.

B. Phase II

At phase II, we will estimate the multipath channel between
user and IRS-2. It is assumed that uncorrelated far-field
narrowband signals impinge to the IRS-2 described as L paths
between the user and the IRS, and the AOAs corresponding
to the L-shaped sparse array are {φl, ϑl} for l = 1, · · · , L.

Considering the IRS-2 as an uniform planar array, the 2-D
steering vector aIRS(φ, ϑ) for can be written as [11]:

aIRS(φ, ϑ) = az(φ)⊗ ax(ϑ), (17)

where,

ax(φ) = [1, e−j 2π
λ d sin(φ), . . . , e−j 2π

λ d(Mx−1) sin(φ)]T, (18)

az(ϑ) = [1, e−j 2π
λ d sin(ϑ), . . . , e−j 2π

λ d(Mz−1) sin(ϑ)]T, (19)

and Mx denotes the elements in the x-axis and Mz denotes the
elements in the z-axis on the IRS-2 surface. On the other hand,
since user contains a single antenna, the channel between the
IRS and user is denoted by,

h = hr,1 + hr,2 =

L∑
l=1

βla
H
IRS(ϑ

IRS
l , φIRS

l ), (20)

where βl is the path gain, ϑIRS
l ∈ [−π/2, π/2] and φIRS

l ∈
[−π/2, π/2] are respectively the elevation and the azimuth
angles from the received signal from the user at IRS-2.



1) 2-D AOA and Path Gain Estimation: During sensing
mode, the IRS 2 receives signals from the user through its ac-
tive elements. The received signal at the IRS-2 corresponding
to the x-axis and the z-axis are respectively given as [2, 11]:

x(t) =

L∑
l=1

βlaX(φl)su(t) + nX(t), (21)

z(t) =

L∑
l=1

βlaZ(ϑl)su(t) + nZ(t), (22)

where su(t) denotes the source signal vector transmitted by
the user, and nX(t) and nZ(t) are the AWGN vectors.

We consider separately spaced active elements with the
ONRA structure [12], and the positions of the active ele-
ments along the x- and the z-axes are represented by X =
{p0, p1, · · · , pM̄x−1}λ/2 and Z = {q0, q1, · · · , qM̄z−1}λ/2,
respectively, where pi and qi are integers for all i, and
p0 = q0 = 0 is assumed. We also denote Wx = pM̄x−1+1 and
Wz = pM̄z−1+1 as the length of active and passive elements
included within the respective apertures of the x- and z-axis
subarrays. aX(φl) ∈ CWx×1 and aZ(ϑl) ∈ CWz×1 denote the
steering vectors corresponding to the received AOAs along the
x axis and z axis, respectively.

Assuming the noise is uncorrelated to the signals, the
covariance matrices of x(t) and z(t) can be respectively
expressed as:

RXIRS
= E[x(t)xH(t)] = AXRsA

H
X + σ2

nIWx
, (23)

RZIRS = E[z(t)zH(t)] = AZRsA
H
Z + σ2

nIWz , (24)

where Rs = diag(σ2
1 , σ

2
2 , · · · , σ2

L), and σ2
l represents the

power of the l-th path signal and σ2
n denote the noise power.

Because of the sparse spacing between the elements, the
covariance matrices RXIRS and RZIRS become sparse with
missing holes. So we consider the matrix interpolation of
RXIRS

to obtain a full rank covariance matrix along the x-axis
as the following nuclear norm minimization problem [13, 14]:

minimize
w

∥T (w)V −RXIRS
∥2F + ζ∥T (w)∥∗

subject to T (w) ≽ 0,
(25)

where ∥T (w)∥∗ = Tr(
√
T H(w)T (w)) is the nuclear norm

of T (w), T (w) denotes the Hermitian-Toeplitz matrix with
w as its first column, ζ is a tunable regularization parameter.
V = vpv

T
p is the binary mask of the sparse covariance matrix,

⟨vp⟩g =

{
1, gd ∈ X,
0, otherwise,

(26)

where g is the index of the sensor location with g ∈
{p0, p1, · · · , pNx−1} and ⟨·⟩g denotes the element correspond-
ing to sensor positions at gd. The interpolated covariance
matrices as R̂XIRS

∈ CWx×Wx and R̂ZIRS
∈ CWz×Wz for the

x and the z axes, respectively. Subspace-based methods, such
as MUSIC, can be applied to R̂XIRS

such that the azimuth
and elevation AOAs at the IRS can be solved for user-IRS 2
multipath signals.

2) Pair-Matching for 2-D AOA Estimation: Generally, from
the user there are multiple incident signals at the same
time on the IRS. Therefore, it is important to determine the
pairing between the determined azimuth and the corresponding
elevation angle. The array steering matrix can be constructed
according to the estimated azimuth angles as,

ÂX = [aX(φ̂1),aX(φ̂2), · · · ,aX(φ̂L)] ∈ CWz×L. (27)

The cross-covariance matrix for x(t) and z(t) is given as:

RXZ = E[x(t)zH(t)] = AXRSA
H
Z . (28)

The steering matrix ÂZ can be obtained as [11],

ÂZ =(R−1
S Â†

XRXZ)
H, (29)

where, ÂZ ∈ CWz×L. According to [11], we have reap-
ply the MUSIC algorithm on each l-th path to determine
the azimuth angle sequence to reconstruct the steering ma-
trix of the IRS for the user-IRS 2 channel as ÂIRS =
[âIRS(φ

IRS
1 , ϑIRS

1 ), · · · , âIRS(
IRS
L , ϑIRS

L )] ∈ CM2×L.

3) Path Gain Estimation: The path gains are identical for
the x- and z-axis subarrays. Therefore, to estimate the path
gain of the user-IRS 2 channel, computation in one of these
two subarrays will suffice. The received signal at the z-
direction subarray can be rearranged as,

yz(t) = AZgsu(t) + nZ(t), (30)

where g = [β1, β2, · · · , βL]
T represents the path gains and

can be estimated from

ĝ =
1

σ2
s

(AH
ZAZ)

−1AH
Z ȳz, (31)

where ȳz = E{yz(t)s
∗
u(t)}. From the above AoAs and path

gain estimation, we can reconstruct the USER-IRS 2 multipath
channel hr.

C. Phase III

Here our goal is to optimize ϕ based on the jointly opti-
mized θ, and f and the estimated h over the known channels
between BS→IRS-1, IRS-1→ IRS-2. From the double IRS
channel (BS→IRS-1→ IRS-2→ user), the rate RU at user,

RU = log2(1 +
1

ΞU (f ,ϕ)
fHGH

Uϕϕ
HGU f), (32)

where the cascade channel is GU = diag(hH
r )DrΘG. At this

point we will again adopt SDR to update ϕ.

IV. SIMULATION RESULTS

We consider a BS with N = 4 antennas, IRS-1 has M1 = 64
passive elements where in active IRS-2 has total M2 = 64
elements where M̄2 = 7 of them are active. The x- and z di-
rection linear subarrays in the L-shape sparse active array each
consists of 4 sensors since the 0-th reference sensor is shared
by both the subarrays. The position of the active elements
along the x- and the z axes are X = Z = {0, 1, 5, 7}λ/2.
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Fig. 2: Achievable bit rate for single and double IRS.

The BS, RIS-1, IRS-2 and user are located at (0 m, 0 m,
10m) and (30 m, 4 m, 10m), (70 m, 4 m, 10m) and (75 m, 5
m, 0m) respectively. For evaluating the decoupled double IRS
performance, we have considered a M3 = 128 passive element
single IRS-3 at the position of IRS 2 and IRS 1 is also absent.
σ2
T = −80dBm, The large-scale path loss is PL= −30 −

10αlog10b, where α is the pathloss exponent, b is the link
length in meters. The path loss exponent of the BS→RIS-1,
IRS-1→IRS-2 and BS→RIS-2 channels are set to 2.4, 2.6, and
3.6, respectively. And user→IRS-2 path loss exponent were set
as 2.2 and 2.4.

Fig. 2 investigates the achievable rate of different schemes
as a function of the maximum transmit power at the BS
through single and double IRS system. Without considering
hardware impairment the double IRS performs much better
than the single IRS. Considering the hardware impairment
scenario, when the transmit power is less than 20dBm, double
IRS still achieves bit rate which is much higher than the 128 el-
ement single IRS system. But the rate tends to remain steady as
Pmax increases beyond 25 dBm. Because the distortion noise
induced by hardware flaws is proportional to the transceiver
signal strength, the rate as a function of the maximum transmit
power has an upper limit in terms of bit rate it can achieve.

V. CONCLUSION

In this paper, we have shown that using double IRS setup
improves the channel efficiency compared to a single IRS
system with the same number of active elements. Furthermore,
the computational complexity also reduces because of the
distributed computation of passive beamforming vectors. The
aperture is increased while the computational overhead is
reduced by applying structured matrix completion and pair-
matching methods for multipath channel detection. Simulation
results confirm the effectiveness and performance of the pro-
posed structured compared to the single IRS setup.
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