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Abstract—In sky-wave over-the-horizon radar, local multipath
returns from a maneuvering target, generated as a result of
reflections from ionosphere and earth surfaces, generally yield
three distinct components with highly time-varying and closely
separated Doppler frequencies. The difference between these
Doppler signatures provides important information on target
velocity in the elevation direction and enables high-resolution
target altitude estimation. However, it is often a challenging
task to accurately estimate this Doppler difference due to the
proximity of the Doppler components. In this paper, we develop
a low-complexity modified Viterbi-based approach to provide
improved Doppler difference estimation in impaired observing
conditions. Simulation results verify the effectiveness of the
proposed method.

Index Terms—Doppler frequency, over-the-horizon radar, tar-
get tracking, time-frequency analysis, Viterbi-based estimation.

I. INTRODUCTION

By utilizing reflections and refractions from the ionospheric
layers and the earth surface, a sky-wave over-the-horizon
radar (OTHR) performs wide-area surveillance to detect targets
which are located well beyond the coverage of conventional
line-of-sight radars [1]. In OTHR, prevalent ionospheric con-
ditions limit the signal to be narrowband, which, in turn,
adversely affects the achieved range resolution [2]. The range
resolution of an OTHR system is usually around 10 kilometers
[3]. While this accuracy is acceptable when considering the
horizontal positions of targets located at thousands of kilo-
meters away, it makes the direct estimation of target altitude
impractical, as the altitude of a typical aircraft is comparable to
the available range resolution. Target altitude estimation with
a higher resolution is important for target position tracking as
well as for its classification [4].

In practice, reflections of radar signals from ionospheric
layers and the earth surface generate local-multipath obser-
vations. Doppler frequencies associated with these multipath
signals contain important information about target parameters.
In particular, the difference between these Doppler signatures
carries important information regarding the target elevation
velocity, which is crucial for accurate and high-resolution
target altitude estimation and tracking [5, 6].
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However, this Doppler difference between local-multipath
signals is extremely small, making its accurate estimation a
challenging task. Time-frequency (TF) techniques [7, 8] facil-
itate visualization and analysis of these Doppler signatures. In
the past two decades, various techniques devised based on the
local-multipath model have attempted to resolve these Doppler
signatures to enable high-resolution target parameter estima-
tion in OTHR [4, 6, 9–13]. However, these techniques suffer
from either a high computational complexity, requirement of
exhaustive parametric analysis, or insufficient resolution. The
close proximity of these highly time-varying and non-linear
Doppler components, inherent interference, and low signal-to-
noise ratio (SNR) adversely affect the performance of these
methods.

An important approach attempts to stationarize (demod-
ulate) the local-multipath signals with its nominal Doppler
frequency [6, 11]. However, accurate estimation of the nom-
inal Doppler frequency is highly time consuming, and any
inaccurate nominal Doppler frequency estimation will result
in erroneous Doppler difference estimation. Recently, by uti-
lizing prior information of these Doppler characteristics, a
self demodulation-based low-complexity approach was devel-
oped to eliminate the need for nominal Doppler component
estimation [14], in which a squared magnitude operation
guarantees perfect signal stationarization and generates four
symmetric components located around the direct-current (DC)
component. Then, the short-time Fourier transform (STFT)-
based approach is utilized to obtain the targeted Doppler fre-
quency difference in [14]. However, due to the low frequency
resolution of STFT, this approach does not provide satisfac-
tory accuracy, particularly when multiple Doppler difference
components are not well separated.

This self-demodulation concept is extended in [15], where
Doppler difference estimation is formulated as a group-sparse
reconstruction problem to take advantage of the relationship
between these Doppler signatures. While this method provides
robust Doppler difference estimation, Bayesian compressive
sensing-based optimization approaches [16, 17] are generally
computationally extensive. Besides, the performance of para-
metric approaches seriously deteriorates in the case of model
mismatch.

Recently developed non-parametric TF methods [18–21]
provide robust instantaneous frequency (IF) estimation of
sparse non-linear frequency modulated (FM) signals. However,
these methods either require cumbersome manual tuning of
the parameters, are computationally expensive, suffer from



frequency quantization errors, or rely on the accuracy of
the underlying TF representations (TFRs). Besides, impaired
observing conditions and proximity of the Doppler signatures
in OTHR may adversely affect the performance of these
methods.

Generalized Viterbi-based [22] IF estimation is considered
in various papers [12, 23–25], in which recursive implementa-
tion of Viterbi-based IF estimation greatly reduces the search
space by selecting the partial best paths. In addition, Viterbi-
based IF estimation methods are shown to be effective in
impaired observing environments. Implementation of Viterbi-
based OTHR Doppler signatures estimation is considered in
[12], where separate estimation, stationarization and removal
of all Doppler signatures are required, and Doppler difference
is indirectly obtained by computing the difference between the
estimated signatures. Due to the proximity of these Doppler
components, these steps are repeated a few times, which
greatly increase complexity and yet give inaccurate estimation
of the nominal Doppler component and Doppler difference.

We observe that only the difference Doppler component
needs to be estimated for acquiring target elevation velocity.
Therefore, when estimating Doppler difference is of interest,
estimation of the nominal frequency component is not re-
quired. In this scenario, implementation of a modified Viterbi-
based technique on the squared magnitude of the received
signal [14, 15] would provide much simpler, yet more accurate
and robust, Doppler difference estimation. Our proposed mod-
ified Viterbi-based Doppler difference estimation algorithm is
founded on this important observation. By carefully drafting
the conditions of the penalty function based on the Doppler
characteristics in OTHR, the proposed technique overcomes
the limitation of the existing Doppler difference approaches
[12, 14, 15] and provides robust, accurate and high-resolution
Doppler difference estimation with much lower computational
complexity than the methods reported in [12, 15]. Simulation
results are provided to validate the superiority of the proposed
method over existing techniques.

Notations. An uppercase bold letter defines a matrix. (·)∗
represents the complex conjugation operation. In addition, we
use  to denote the unit imaginary number.

II. SIGNAL MODEL

Fig. 1 shows the multipath propagation geometry for the
considered pseudo-monostatic OTHR system, in which the
signal propagates through a stable E-layer of the ionosphere.
For simplicity of the mathematical analysis, a flat-earth model
is considered. In Fig. 1, R(t) and h(t) denote the time-varying
target ground range and its altitude, respectively, and H is the
height of the ionosphere, which is assumed to be constant over
the processing interval and is known from periodic ionosonde
measurements. In Fig. 1, the objects and paths below the
ionosphere layer depict the physical system, whereas the
mirrored images are provided above the ionosphere layer for
visualization purposes only.

Fig. 1: Flat-earth local-multipath propagation model with its
mirrored images.

Based on Fig. 1, the slant ranges associated with multipaths
I and II are, respectively, computed as

l1(t) =
(
R2(t) + (2H − h(t))2

)1/2
,

l2(t) =
(
R2(t) + (2H + h(t))2

)1/2
.

(1)

In practice, h(t) � H � R(t) typically holds. In this
case, the slant ranges are approximated using the Taylor series
expansion as

l1(t) ≈ R(t)+
2H2−2Hh(t)

R(t)
, l2(t) ≈ R(t)+

2H2+2Hh(t)

R(t)
,

(2)
and their derivatives with respect to time are obtained as

dl1(t)

dt
≈ vR(t)− 2H2

R2(t)
vR(t)− 2H

R(t)
vh(t),

dl2(t)

dt
≈ vR(t)− 2H2

R2(t)
vR(t) +

2H

R(t)
vh(t),

(3)

where vR(t) = dR(t)/dt and vh(t) = dh(t)/dt represent the
target velocities in range and altitude directions, respectively.

Denote fc as the carrier frequency, c as the speed of the elec-
tromagnetic wave propagation, and J(t) = 1− 2H2/R2(t).
Let f11(t), f22(t), f12(t), and f21(t), respectively, represent
the Doppler frequencies associated with multipaths It-Ir (i.e.,
the signal is transmitted through path I and received through
path I), IIt-IIr, It-IIr, and IIt-Ir, and are given as

f11(t) = −2fc
c

dl1(t)

dt
≈ −2fc

c
J(t)vR(t) +

4fcH

R(t)c
vh(t),

f22(t) = −2fc
c

dl2(t)

dt
≈ −2fc

c
J(t)vR(t)− 4fcH

R(t)c
vh(t),

f12(t) = f21(t) = −fc
c

dl1(t) + dl2(t)

dt
≈ −2fc

c
J(t)vR(t).

(4)

By defining the nominal Doppler component as

fN (t) = −2fc
c
J(t)vR(t), (5)

and the difference Doppler component as

fD(t) =
4fcHvh(t)

R(t)c
, (6)



(4) can be simplified to

f11(t) = fN (t) + fD(t),
f22(t) = fN (t)− fD(t),
f12(t) = f21(t) = fN (t).

(7)

Note in (4) and (7) that the Doppler signatures of the first
two paths, i.e., f11(t) and f22(t), are symmetric around the
frequencies associated with the third and fourth multipath,
f12(t) = f21(t). The associated phase laws are given by

φ1(t) = −2π

∫ t

0

(fN (t) + fD(t))dt = φN (t)− φD(t),

φ2(t) = −2π

∫ t

0

(fN (t)− fD(t))dt = φN (t) + φD(t),

φ3(t) = φ4(t) = −2π

∫ t

0

fN (t)dt = φN (t),

(8)

where φN (t) = 4πfcJ(t)R(t)/c and φD(t) =
8πfcHh(t)/(R(t)c). Note that in the derivations of the
phase laws, R(t) is treated as a constant due to the
insignificant effect of its change over the processing interval.

Denote the received signal obtained after matched filtering
and beamforming at the receiver as

x(t) = r(t) + η(t), (9)

for t = 1, · · · , T , where T is the total number of time samples,
η(t) is the zero-mean complex white Gaussian noise, and r(t)
defines the noise-free target return, expressed as

r(t) =

3∑
n=1

an exp(φn(t)), (10)

where an denotes the magnitude of the nth path. Note that,
because φ3(t) = φ4(t), these two components are combined
and a3 accounts for the contribution from both components.

III. PROPOSED DOPPLER DIFFERENCE ESTIMATION

From (5)–(7), it is clear that the nominal Doppler com-
ponent, fN (t), is shared by all three paths and provides
information on the target horizontal velocity vR, whereas
the difference Doppler component, fD(t), carries informa-
tion regarding the target elevation velocity vh(t). Generally,
vh(t) � vR(t), and thus fD(t) is much smaller compared to
fN (t). As such, accurate estimation of fD(t) is challenging
when the nominal Doppler frequency fN (t) associated with a
maneuvering target is highly non-linear. The primary interest
of this work is to obtain accurate and high-resolution Doppler
difference estimation, which plays a vital role in high-accuracy
target altitude estimation, with a low complexity.

In this section, we describe the proposed method, which
is performed in two stages: 1) stationarization and nominal
Doppler component removal and 2) difference Doppler signa-
ture estimation using modified Viterbi-based IF estimation.

A. Stationarization and Nominal Component Removal

To remove the nominal Doppler component without the
need of performing its accurate estimation, we multiply the

received multi-component signal with its complex conjugate
[14, 15], i.e.,

|x(t)|2 = |r(t)|2 + |η(t)|2 + ε(t) = |r(t)|2 + Λ(t), (11)

where ε(t) represents the cross-terms between r(t) and η(t),
and Λ(t) represents the combined effect of the noise and cross-
terms and will be referred to as the noise term, without loss
of generality.

In (11), the squared magnitude of the noise-free target
return, r(t), is expressed as

|r(t)|2 =
(
|a1|2 + |a2|2 + |a3|2

)
+ (a1a

∗
3 + a∗2a3) exp(φD(t))

+ (a∗1a3 + a2a
∗
3) exp(−φD(t))

+a1a
∗
2 exp(2φD(t)) + a∗1a2 exp(−2φD(t)).

(12)

After the self-demodulation operation of (12), the nominal
Doppler component is removed and only the phase term
related to the difference Doppler component, φD(t), is pre-
served. Although the demodulation operation in (12) generates
four localized components which are symmetrically located
around the DC component, we only need to estimate φD(t)
corresponding to the fundamental frequency component in
order to obtain the elevation velocity of the maneuvering
target. Thus, this technique provides much simpler, yet more
accurate, Doppler difference estimation as compared to [6, 11].

B. Modified Viterbi-based Doppler Difference Estimation

We begin with the TF analysis of the demodulated Doppler
difference signatures |x(t)|2 from (11). Due to the symmetry
of these signatures, consideration of only the positive half
of the TFR is required, thereby reducing the complexity of
the Viterbi-based IF estimation. Let an M × T TF matrix
Y = {(ti, fj)| i ∈ [1, T ], j = [1,M ]} represent the selected
positive half portion of the TFR of |x(t)|2, where M and T ,
respectively, define the total number of frequency bins and the
total number of time samples, (ti, fj) denotes a TF point, and
i and j, respectively, represent the time and frequency indices.

As the DC component in the stationarized signal has a high
value but does not provide useful information related to the
Doppler difference frequency, it is removed through low-pass
filtering.

Let set S comprise all the paths, S(t), between the time
instances t1 and tT for the considered time interval t ∈ [t1, tT ],
and p(S(t); t1, tT ) denote the penalty function of the path
joining t1 and tT , along the line S(t). Then, the Doppler
difference frequency for each time instant, t, is obtained by
selecting the path that minimizes the penalty function, as

f̂(t) = arg min
S(t)∈S

p(S(t); t1, tT ). (13)

The penalty function is designed based on the following
criteria:
• The IF path should pass through high energy points.

In order to implement this constraint, first we sort all
TF points at instant t in the descending order of their
amplitude levels, i.e.,

y(t, f1(t)) ≥ y(t, f2(t)) ≥ ... ≥ y(t, fM (t)), (14)



where y(t, fm(t)), m ∈ [1,M ], is the amplitude of TF
point (t, fm(t)), and fm(t) indicates the index of the
frequency corresponding to the mth highest amplitude
TF point at time t. Then, the penalty function

g1(y(t, fm(t))) = m− 1 (15)

assigns a penalty of 0 point to the highest amplitude TF
point and the lowest amplitude TF point is assigned the
penalty of M − 1 points.

• For an OTHR target, the IF is a slowly time-varying
function. Therefore, the second criterion is designed to
discourage swift changes in the IF estimates of two
consecutive time instances by assigning a high penalty
to such sudden jumps. The associated penalty function is
defined as

g2(a(t), b(t+ 1)) =


0, q ≤ ξ1,
c1(q − ξ1), ξ1 < q ≤ ξ2,
c2(q − ξ1), ξ2 < q,

(16)

where a(t) and b(t+1) are the indices of the frequencies
in two consecutive time instances t and t+1, respectively,
and q = |a(t)− b(t+ 1)| represents their distance as an
integer. Thresholds ξ1 and ξ2, where ξ2 > ξ1, are defined
in terms of the number of frequency bins. The penalties
c1 and c2 with c2 > c1 are also defined as integer
values. These relationships and the conditions of penalty
function g2(·) ensure that a moderate penalty is assigned
to insignificant jumps, whereas high abrupt jumps are
penalized with higher values. The selection of the values
of ξ1, ξ2, c1, and c2 depends on the characteristics of
the underlying signal. For highly non-linear signals, ξ1
and ξ2 should be assigned higher values, whereas lower
values should be assigned to c1 and c2, and vice-versa.

Based on (15) and (16), the overall penalty function is given
as

p(S(t); t1, tT ) =

tT∑
t=t1

g1(y(t, S(t))) +

tT−1∑
t=t1

g2(S(t), S(t+ 1)).

(17)
The optimization problem in (13) is recursively solved as

an instance of generalized Viterbi algorithm [22] by estimating
the Doppler difference frequency at a given time instant using
partial best paths from the previous time instant [23, 24] as
follows:

Step 1. Denote πi(t; fj), t ∈ [t1, ti], for j ∈ [1,M ] as the
optimal paths (also known as partial best paths) connecting
instant t1 and all the points of instant ti, and are obtained as

πi(t; fj) = arg min
S(t)∈Sij

p(S(t); t1, (ti, fj)), j ∈ [1,M ],

(18)
where set Sij comprises all the paths between instant t1
and TF point (ti, fj), whereas p(S(t); t1, (ti, fj)) denotes the
corresponding penalty function. Then, the Doppler frequency
for t ∈ [t1, ti] can be obtained as

f̂i(t) = arg min
πi(t;fj),j∈[1,M ]

p(πi(t; fj); t1, (ti, fj)). (19)
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Fig. 2: Target trajectory: (a) Horizontal positions; (b) Altitude.

TABLE I. KEY PARAMETERS

Parameter Notation Value
Initial range of target R(0) 1,500 km
Initial height of target h(0) 10 km
Maximum range direction velocity vR,max 175 m/s
Maximum elevation velocity vh,max 19.68 m/s
Height of ionosphere H 160 km
Carrier frequency fc 16 MHz
Pulse repetition frequency fw 40 Hz

Step 2. The partial best paths at the next instant ti+1 can be
represented as the concatenation of (18) with the TF points at
the new instant as

πi+1(t; fj) = [πi(t; fl̂), (ti+1, fj)], j ∈ [1,M ], (20)

where the frequency index l̂ of the optimal path πi(t; fl̂)
corresponding to the previous instant ti is obtained as

l̂=arg min
l∈[1,M ]

[p(πi(t; fl); t1,(ti,fl))+g1(y(ti+1,fj))+g2(fl,fj)].

(21)
Note that the function g1(y(ti+1, fj)) is a constant for the
considered partial best path. Step 2 is repeated for each fj , j ∈
[1,M ]. Steps 1 and 2 are repeated for all the time instances,
i.e., ti = t2, ..., tT−1.

In this work, we use spectrogram as the TFR Y. However,
other TFRs [19–21, 26, 27] can also be used in lieu of spec-
trogram for further improvement and resolution enhancement,
generally at the cost of higher computational complexity.

IV. SIMULATION RESULTS

In order to demonstrate the effectiveness of the proposed
method, we consider the scenario of a maneuvering aircraft
which makes a 360o circular turn of a 10 km diameter in a time
period of T0 =179.5 seconds while it descends by 2.25 km [14,
15]. The aircraft maintains a constant horizontal velocity of
175 m/s, while its elevation velocity changes sinusoidally. Fig.
2 illustrates the aircraft trajectory. The other key simulation
parameters are listed in Table I.

The elevation velocity of the aircraft is expressed as

vh(t) = −vh,max sin

(
πt

T0

)
, (22)

and the corresponding altitude of the aircraft is obtained as

h(t) = h(0)− vh,maxT0
π

[
1− cos

(
πt

T0

)]
. (23)
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Fig. 3: Multipath Doppler frequencies: (a) True signatures
corresponding to r(t); (b) Spectrogram of noisy signal x(t).
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Fig. 4: Demodulated Doppler signatures: (a) True signatures;
(b) Spectrogram.

All local-multipath returns are assumed to fall in the same
range cell. The effective input SNR after match filtering
and beamforming at the receiver is assumed to be 0 dB.
We consider a clutter-free scenario under the assumption
that the clutter is located in the low-frequency regions and
can be filtered out using, e.g., auto-regressive pre-whitening
techniques [4, 28].

Four multipath-generated true Doppler frequency signatures
corresponding to r(t) are depicted in Fig. 3(a), whereas
Fig. 3(b) shows the corresponding spectrogram of the noisy
received signal x(t). Using (5) and (6), the peak values of
fN (t) and fD(t) are obtained as 18.66 Hz and 0.4478 Hz,
respectively. As these Doppler signatures are highly non-linear
and fD(t)� fN (t), it is extremely difficult to directly resolve
these Doppler signatures, as can also be verified in Fig. 3.

Figs. 4(a) and 4(b) show the true demodulated Doppler
signatures corresponding to |r(t)|2 and the spectrogram cor-
responding to the noisy signal |x(t)|2, respectively. While the
spectrogram depicted in Fig. 4(b) shows the general trend of
the time-varying Doppler frequency difference, it suffers from
poor frequency resolution and is highly affected by noise and
harmonic interference, especially when the Doppler frequency
difference is small.

The comparison between the estimated Doppler difference
results obtained using different approaches is provided in Fig.
5. Figs. 5(a), 5(c), and 5(e) show the TFRs of the estimated

Doppler difference obtained using the spectrogram, the group-
sparsity based method [15], and the proposed Viterbi-based
estimation method, respectively. The corresponding IFs are
plotted in Figs. 5(b), 5(d) and 5(f), respectively. The true
IFs are also provided for comparison. Note that, due to the
symmetry of the demodulated Doppler difference signatures
around the DC component in Fig. 4, we only need to estimate
the difference Doppler component related to the fundamental
frequency. By substituting (22) into (6), it is inferred that,
in the underlying example, the difference Doppler component
fD(t) varies sinusoidally with time, as can be confirmed in
Fig. 5.

The spectrogram in Fig. 5(a) is obtained by fusing the
demodulated Doppler difference signatures [14]. The corre-
sponding Doppler difference in Fig. 5(b) is obtained using
peak detection. As clearly visible in Figs. 5(a) and 5(b), the
spectrogram exhibits cross-terms, suffers from low frequency
resolution, and fails to provide accurate estimation when
the Doppler difference is small. The group-sparsity based
approach, depicted in Figs. 5(c) and 5(d), performs better
than the spectrogram in terms of robustness to noise, and
provides high-resolution Doppler difference estimation. How-
ever, the estimated Doppler differences still deviate from the
true ones in many cases. As evident from Figs. 5(e) and 5(f),
the proposed approach provides superior Doppler difference
estimation results with higher accuracy, high resolution and
effective cross-term and noise suppression. The values of
thresholds ξ1 and ξ2, and penalties c1 and c2 used in (16)
are, respectively, taken as 3, 10, 30 and 100. The average
root mean square error (RMSE) values obtained from 50
independent trials of the estimated Doppler difference using
the spectrogram, the group-sparsity-based method [15], and
the proposed technique are 0.0281 Hz, 0.0234 Hz, and 0.0067
Hz, respectively. As such, the superiority of the proposed
method is clearly verified.

V. CONCLUSION

In this paper, we proposed a modified Viterbi-based ap-
proach for accurate and robust estimation of the difference
Doppler component corresponding to local multipath target
returns in OTHR systems. By effectively crafting the condi-
tions of the modified Viterbi algorithm based on the Doppler
characteristics of the multipath signals, the proposed approach
provides better results with much lower computational com-
plexity and high-resolution compared to recently developed
Doppler difference estimation methods. Simulation results
validated the effectiveness of the proposed method.

REFERENCES

[1] A. A. Kolosov, Over-the-Horizon Radar. Artech House, 1987.
[2] J. M. Headrick and S. J. Anderson, “HF over-the-horizon radar,”

Chapter 20 in M. Skolnik (ed.), Radar Handbook, 3rd Ed.
McGraw-Hill, 2008.

[3] G. A. Fabrizio (ed.), High Frequency Over-the-Horizon Radar:
Fundamental Principles, Signal Processing, and Practical Ap-
plications. McGraw-Hill, 2013.

[4] Y. Zhang, M. G. Amin, and G. J. Frazer, “High-resolution
time-frequency distributions for manoeuvring target detection



0 50 100 150

time (sec)

0

0.2

0.4

0.6

0.8

1

D
o
p
p
le

r 
d
if
fe

re
n
c
e
 (

H
z
)

0 50 100 150

time (sec)

0

0.2

0.4

0.6

0.8

1

D
o
p
p
le

r 
d
if
fe

re
n
c
e
 (

H
z
) true

estimated

(a) (b)

0 50 100 150

time (sec)

0

0.2

0.4

0.6

0.8

1

D
o
p
p
le

r 
d
if
fe

re
n
c
e
 (

H
z
)

0 50 100 150

time (sec)

0

0.2

0.4

0.6

0.8

1

D
o
p
p
le

r 
d
if
fe

re
n
c
e
 (

H
z
) true

estimated

(c) (d)

0 50 100 150

time (sec)

0

0.2

0.4

0.6

0.8

1

D
o
p
p
le

r 
d
if
fe

re
n
c
e
 (

H
z
)

0 50 100 150

time (sec)

0

0.2

0.4

0.6

0.8

1

D
o
p
p
le

r 
d
if
fe

re
n
c
e
 (

H
z
) true

estimated

(e) (f)

Fig. 5: Difference Doppler estimation: (a) Spectrogram; (b)
Peak detection result from (a); (c) TFR from group sparsity-
based method [15]; (d) Peak detection result from (c); (e) TFR
from the proposed method; (f) Estimated IF from (e).

in over-the-horizon radars,” in Proc. IEE Radar Sonar Navig.,
vol. 150, no. 4, Nov. 2003, pp. 299–304.

[5] R. H. Anderson, S. Kraut, and J. L. Krolik, “Robust altitude
estimation for over-the-horizon radar using a state-space mul-
tipath fading model,” IEEE Trans. Aerospace Electron. Syst.,
vol. 39, no. 1, pp. 192–201, Jan. 2003.

[6] Y. D. Zhang, J. J. Zhang, M. G. Amin, and B. Himed, “In-
stantaneous altitude estimation of maneuvering targets in over-
the-horizon radar exploiting multipath Doppler signatures,”
EURASIP J. Adv. Signal Process., vol. 2013, no. 2013:100, pp.
1–13, May 2013.

[7] L. Cohen, Time-Frequency Analysis. Prentical Hall, 1995.
[8] V. Chen and H. Ling, Time-Frequency Transforms for Radar

Imaging and Signal Analysis. Aetech House, 2002.
[9] C. Ioana, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Charac-

terization of Doppler effects in the context of over-the-horizon
radar,” in Proc. IEEE Radar Conf., Washington, D.C., May
2010, pp. 506–510.

[10] Y. D. Zhang, M. G. Amin, and B. Himed, “Altitude estimation
of maneuvering targets in MIMO over-the-horizon radar,” in
Proc. IEEE Sensor Array Multichannel Signal Process. (SAM)

Workshop, Hoboken, NJ, June 2012, pp. 257–260.
[11] C. Ioana, Y. D. Zhang, M. G. Amin, F. Ahmad, G. Frazer,

and B. Himed, “Time-frequency characterization of micro-
multipath signals in over-the-horizon radar,” in Proc. IEEE
Radar Conf., Atlanta, GA, May 2012, pp. 671–675.

[12] I. Djurovic, S. Djukanovic, M. G. Amin, Y. D. Zhang, and B.
Himed, “High-resolution time-frequency representations based
on the local polynomial Fourier transform for over-the-horizon
radars,” in Proc. SPIE Defense Security Sensing Conf., vol.
8361, Baltimore, MD, May 2012.

[13] I. Djurovic and Y. D. Zhang, “Accurate parameter estimation
of over-the-horizon radar signals using RANSAC and MUSIC
algorithms,” Progress In Electromagnetics Research M, vol. 67,
pp. 85–93, April 2018.

[14] Y. D. Zhang and B. Himed, “Multipath Doppler difference
estimation in over-the-horizon radar,” in Proc. IEEE Radar
Conf., Oklahoma City, OK, April 2018, pp. 0693–0697.

[15] V. S. Amin, Y. D. Zhang, and B. Himed, “Group sparsity-
based local multipath Doppler difference estimation in over-
the-horizon radar,” in Proc. IEEE Int. Radar Conf., Washington,
DC, April 2020, pp. 436–441.

[16] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the
recovery of block sparse signals with intrablock correlation,”
IEEE Trans. Signal Process., vol. 61, no. 8, pp. 2009–2015,
April 2013.

[17] S. Ji, D. Dunson, and L. Carin, “Multitask compressive sens-
ing,” IEEE Trans. Signal Proc., vol. 57, no. 1, pp. 92–106, Jan.
2009.

[18] V. S. Amin, Y. D. Zhang, and B. Himed, “Sparsity-based
time-frequency representation of FM signals with burst missing
samples,” Signal Process., vol. 155, pp. 25–43, Feb. 2019.

[19] V. S. Amin, Y. D. Zhang, and B. Himed, “Improved instanta-
neous frequency estimation of multi-component FM signals,”
in Proc. IEEE Radar Conf., Boston, MA, April 2019.

[20] S. Zhang and Y. D. Zhang, “Robust time-frequency analysis of
multiple FM signals with burst missing samples,” IEEE Signal
Process. Lett., vol. 26, no. 8, pp. 1172–1176, June 2019.

[21] V. S. Amin, Y. D. Zhang, and B. Himed, “Sequential time-
frequency signature estimation of multi-component FM sig-
nals,” in Proc. Asilomar Conf. Signals Syst. Comp., Pacific
Grove, CA, Nov. 2019, pp. 1901–1905.

[22] G. D. Forney, “The Viterbi algorithm,” in Proc. IEEE, vol. 61,
no. 3, pp. 268–278, March 1973.

[23] I. Djurovic and L. J. Stankovic, “An algorithm for the Wigner
distribution based instantaneous frequency estimation in a high
noise environment,” IEEE Signal Process., vol. 84, no. 3, pp.
631–643, March 2004.

[24] N. A. Khan, M. Mohammadi, and I. Djurovic, “A modified
Viterbi algorithm-based IF estimation algorithm for adaptive
directional time-frequency distributions,” Circuits Syst. Signal
Process., vol. 38, pp. 2227–2244, May 2019.

[25] N. A. Khan, M. Mohammadi, and I. Stankovic, “Sparse re-
construction based on iterative TF domain filtering and Viterbi
based IF estimation algorithm,” Signal Process., vol. 166, pp.
1–12, Jan. 2020.

[26] V. S. Amin, Y. D. Zhang, and B. Himed, “Improved IF
estimation of multi-component FM Signals through iterative
adaptive missing data recovery,” in Proc. IEEE Radar Conf.,
Florence, Italy, Sept. 2020.

[27] V. S. Amin, Y. D. Zhang, and B. Himed, “Improved time-
frequency representation of multi-component FM Signals with
compressed observations,” in Proc. Asilomar Conf. Signals Syst.
Comp., Pacific Grove, CA, Nov. 2020.

[28] T. J. Nohara and S. Haykin, “AR-based growler detection in
sea clutter,” IEEE Trans. Signal Process., vol. 41, no. 3, pp.
1259–1271, March 1993.


