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Abstract—We propose a nonstationary jammer signal suppres-
sion technique based on parametric sparse reconstruction, where
sparsely sampled data are considered. By assuming nonstationary
jammers that are characterized by polynomial phase signatures,
a data-dependent parametric dictionary matrix is designed. In
order to obtain an accurate instantaneous frequency estimation
at a low computational complexity, we exploit an iterative multi-
round sparse reconstruction scheme in which the dictionary
matrix is updated with a finer grid size, thus leading to dictionary
entries that are closer to the true jammer signatures. Simulation
results are provided to verify the effectiveness of the proposed
technique.

I. INTRODUCTION

Jammers suppression is an important problem in wireless
communications, satellite navigation, and radio astronomy [1–
5]. Recently, spectrum sharing between wireless communica-
tion, broadcast and other systems has also attracted strong
research interests [6–9]. In this paper, we consider the situation
where the desired signals are direct-sequence spectrum-spread
(DS/SS) signals, which are commonly used in many wireless
communication and satellite navigation systems, whereas the
jammers assume popular nonstationary frequency modulated
(FM) waveforms, such as linear FM and polynomial phase
signals. In this case, conventional frequency-domain or time-
domain jammer suppression techniques, such as notch filters
and gating, become ineffective. Consider the fact that this kind
of jammers are characterized by their instantaneous frequen-
cies (IFs), anti-jam techniques can be developed based on
the joint-variable signal representations to reveal the jammer
signature in the time-frequency (TF) domain [10, 11]. In such
approaches, the jammer excision process consists of two major
steps [12]. In the first step, the TF representations of the
received signals, which are dominated by the jammers, are
obtained to estimate the jammer IF and phase signatures. In
the second step, the jammer signals are removed based on the
estimated IF and phase signatures with a minimum distortion
to the desired signal. It is clear that the jammer mitigation
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performance highly depends on the accuracy of estimated
jammer IF and phase signatures.

Among various factors that limit and compromise the jam-
mer IF estimation capability and performance, missing data
samples generate a high level of artifacts that may significantly
distort and obscure the jammer TF representations and thus
degrade jammer IF estimation accuracy [13]. By exploiting
the fact that nonstationary jammers are locally sparse in the
TF domain due to their power localizations at and around their
IFs, sparse representation based IF estimation algorithms have
been proposed [13–16] and have found useful in anti-jam GPS
receivers [12, 17–19]. However, these methods are based on
non-parametric estimation of the jammer IF signatures which
is sensitive to local distortions and missing data samples.

Note that the fact that most such smart jammers can be
characterized as a polynomial phase signal over a short period
of time. As such, we consider jammer phase estimation based
on parametric sparse reconstruction in order to improve the
jammer signature estimation and suppression performance. By
discretizing the polynomial phase factors into a family of
parameters, the desired data-dependent parametric dictionary
matrix can be designed. Thus, the entries of the dictionary
matrix contain the basis of the nonstationary jammers. In this
case, the phase estimation is cast as a basis selecting problem.
Accurate jammer phase estimation can be achieved if the grid
size of the discretized factor set is sufficiently small. On the
other hand, the dimension of the dictionary matrix has to be
kept small in order to reduce the computational complexity.
For this purpose, we exploit an iterative multi-round sparse
reconstruction scheme in which the dictionary matrix is up-
dated with a finer grid size, thus leading to dictionary entries
that are closer to the true jammer signatures [20]. Simulation
results verify that, when compared with the non-parametric
sparse reconstruction counterpart [18], the proposed method
achieves a higher TF resolution and is more robust to bursty
missing samples.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N×N identity matrix. (.)∗ denotes complex conjugation, and
(·)T and (·)H , respectively, stand for transpose and Hermitian
operations. δ(x) represents the Dirac delta function of x,

⊗
denotes the Kronecker product, and  =

√
−1. In addition,

‖ · ‖1 and ‖ · ‖2 denote the `1-norm and `2-norm, respectively.



II. SIGNAL MODEL

We assume that Qs DS/SS communication or navigation
signals (referred to as desired signals hereafter) along with Qj
nonstationary FM jammers are received by a single-antenna
receiver. The discrete-time received signal can be expressed
as

x(t) =

Qs∑
i=1

si(t) +

Qj∑
j=1

sj(t) + n(t), (1)

where t ∈ [0, · · · , G − 1] denotes the time index, si(t) and
sj(t), respectively, denote the ith of desired signal and the jth
nonstationary jammer with i = 1, · · · , Qs and j = 1, · · · , Qj .
In addition, n(t) is the additive white Gaussian noise term
with zero mean and variance σ2

n.
We model each jammer as a third-order polynomial signal.

The IF signature of the jth jammer can be expressed in terms
of the corresponding phase term as:

fj(t) =
1

2π

dϕj(t)

dt
= ajt

2 + bjt+ cj , (2)

where ϕj(t) is the phase of the jth jammer signal, aj , bj and
cj are the polynomial coefficients.

Consider that the received signal is sampled at the Nyquist
rate but with a high proportion of missing samples. The
yielding sparse observations can be expressed as

y(t) = x(t) · b(t), (3)

where b(t) ∈ {0, 1} is the observation mask. The index set
of non-zero elements of b(t) is denoted as S with candidate
|S| = N ≤ G.

III. JAMMER PHASE ESTIMATION BASED ON PARAMETRIC
SPARSE RECONSTRUCTION

A. Parametric Sparse Reconstruction

Different from the TF based non-parametric sparse re-
construction techniques [12, 18], the proposed parametric
approach designs the dictionary matrix depending on the
polynomial phase coefficients of the jammer signals. These
polynomial phase coefficients must be obtained during the
estimation procedure. In comparison, non-parametric sparse
reconstruction techniques do not consider the time-domain
dependence in the dictionary matrix, which is usually an IDFT
matrix independent of the signal arrivals.

Based on the IF signature presented in (2), the jth jammer
signal in (1) can be further characterized as

sj(t) = αj exp

(
2π(

a3

3t3
+

b3

2t2
+ ct)

)
, (4)

with αj = βje
φj , where βj and φj are the amplitude

and initial phase of the jth jammer signal, respectively. The
polynomial coefficients {aj , bj , cj} are selected from uni-
formly discretized coefficient sets, defined as row vectors,
a = [â1, · · · , âK ], b = [b̂1, · · · , b̂L] and c = [ĉ1, · · · , ĉM ],
with respective step sizes ∆a, ∆b and ∆c.

In practice, the pre-despreading desired signals have a much
lower power compared with noise power, whereas the jammers
are assumed to have a strong power because the use of DS/SS
communication systems have a certain level of protection
against weak jammers due to the spreading. Noting that the
received signal is under sparse sampling, we denote the non-
zero observations in (3) as ȳ(t) with t ∈ S , In this situation,
the received signals can be expressed as

ȳ = Ψ(a, b, c)r + n̄, (5)

where ȳ = [y(t1), · · · , y(tN )]T ∈ CN×1 is the non-zero
observation vector with tm ∈ S, and Ψ(a, b, c) ∈ CN×(KLM)

is the parametric dictionary matrix with its element defined as

Ψn,(k−1)LM+(l−1)M+m(a, b, c)

= exp

(
2π(

ak
3
t3n +

bl
2
t2n + cmtn)

)
,

with ak ∈ a, bl ∈ b, cm ∈ c. In addition, r ∈ CKLM×1

is a sparse vector with an expected number of Qj non-
zero entries. The positions of these non-zero entries provide
the information of the polynomial coefficients, whereas their
values represent the estimates of α1, · · · , αQj . Furthermore,
n̄ = [n(t1), · · · , n(tN )]T is the noise vector.

Equation (5) is a standard compressive sensing formulation.
Based on this formulation, we can obtain the phase of the jam-
mers by solving the following `1-norm minimization problem

min ‖r‖1 s.t. ‖ȳ−Ψ(a, b, c)r‖22 < ε, (6)

where ε is a user-specific tolerance parameter. The `1-norm
minimization problem (6) can be solved by several methods,
such as the orthogonal matching (OMP) [24], LASSO [25],
Bayesian compressive sensing (BCS) [26, 27]. In this paper,
the OMP algorithm is utilized to solve the above `1-norm
minimization problem in (6).

B. Multi-Round Sparse Reconstruction Scheme

It should be noted that, if the step sizes ∆a, ∆b and ∆c
are sufficiently small, the elements of the dictionary will be
close to the true components of the jammer signals. In this
case, an accurate IF estimation can be obtained. However, the
dimension of the dictionary is proportional to the grid sizes
of (a, b, c) and, thereby, will lead to a high computational
complexity in the recovery algorithm.

To reduce the complexity and, at the same time, guarantee
the phase estimation accuracy, we propose the use of a multi-
round CS algorithm. That is, we first design a dictionary matrix
with relatively large step sizes ∆a(1),∆b(1),∆c(1) to achieve
a coarse estimation of the polynomial coefficients as the
initial estimates. Then, we design the second dictionary matrix
with a smaller step size ∆a(2),∆b(2),∆c(2) around the initial
estimates of a(1)j , b(1)j and c

(1)
j for j = 1, · · · , Qj . Thus, in

the second dictionary matrix, the polynomial coefficients can



be selected as a(2) = [ã(2)
1 , · · · , ã(2)

Qj
], b(2) = [b̃

(2)

1 , · · · , b̃
(2)

Qj
],

c(2) = [c̃(2)1 , · · · , c̃(2)Qj
], where

ã(2)
j =a

(1)
j +[−Z∆a(2), · · ·,−∆a(2), 0,∆a(2), · · ·, Z∆a(2)],

b̃
(2)

j =b
(1)
j +[−Z∆b(2), · · ·,−∆b(2), 0,∆b(2), · · ·, Z∆b(2)],

c̃(2)j =c
(1)
j +[−Z∆c(2), · · ·,−∆c(2), 0,∆c(2), · · ·, Z∆c(2)],

and Z determines the number of elements in each vector.
Then, the entries of the dictionary matrix Ψ(a(2), b(2), c(2)) ∈
CN×(2Z+1)3 can be designed based on the coefficient set
(am1, bm2, cm3) ∈ (a(2), b(2), c(2)), i.e.,

Ψn,(m1−1)(2Z+1)2Q2
j+(m2−1)(2Z+1)Qj+m3

(a(2), b(2), c(2))

= exp

(
2π(

am1

3
t3n +

bm2

2
t2n + cm3tn)

)
,

(7)
where am1

, bm2
, and cm3

are the m1th, m2th, and m3th
element of a(2), b(2) and c(2), respectively, and mi ∈
[1, · · · , 2Z + 1] for i ∈ [1, 2, 3].

Thus, compared to Ψ(a(1), b(1), c(1)), the entries of
Ψ(a(2), b(2), c(2)) are closer to the true components of the
jammer signals. Similar to (6), the IF estimation with a higher
accuracy can be achieved by solving

min
∥∥∥r(2)

∥∥∥
1

s.t.
∥∥∥ȳ−Ψ(a(2), b(2), c(2))r(2)

∥∥∥2
2
< ε.

(8)
Such iterations can be repeated until the required accuracy
is obtained, or when the maximum number of iterations is
achieved.

IV. JAMMER SUPPRESSION ALGORITHM

After the phases of all jammer signals are estimated, the
jammer signals can be reconstructed using the estimated phase
values while the corresponding magnitudes can be obtained
from values of non-zero elements of sparse vector r̂. Then,
the reconstructed jth jammer signal can be expressed as

s̃j(t) = α̃j exp(ϕ̃j(t)), (9)

where α̃j is the jth non-zero element of the estimated sparse
vector r̂.

After the jammer signals are reconstructed, the subspace of
the jammer signals can be expressed as

V =
[
v1, · · · , vQj

]
, (10)

where vj = [s̃j(t1), · · · , s̃j(tN )]T for j = 1, · · · , Qj . Thus,
the projection matrix into the orthogonal subspace of the
jammers is give by [11]

P = IN − V
(
VHV

)−1
VH . (11)

Then, the jammer-suppressed time-domain samples is obtained
as

ŷ = Pȳ. (12)

V. SIMULATION RESULTS

In this section, simulation results are provided to verify the
effectiveness of the proposed algorithm. As an example of the
DS/SS signal, we consider an L1 band GPS signal (Qs = 1)
with the C/A code together with two nonstationary jammer
signals (Qj = 2) that imping at a GPS receiver. The signal-
to-noise ratio (SNR) of the GPS waveform is set as −16 dB,
and the jammer-to-noise ration (JNR) of both jammer signals
is assumed to be 25 dB unless otherwise specified.

The sampling frequency of the GPS receiver is set at the
chip rate of the GPS signal, i.e., fs = 1.023 MHz. The
normalized IF laws of the two nonstationary jammers are set
as

f1(t) = 0.1(t/G)
2

+ 0.05 (t/G) + 0.03,

f2(t) = 0.12(t/G)
2

+ 0.15 (t/G) + 0.13,
(13)

for t ∈ [0, · · · , G − 1], and the number of total observations
is set as G = 256 samples. The candidate of S is assumed as
|S| = 128, i.e., 50% of samplings are missing.

Two different situations are considered. In the first case,
the missing samples are randomly distributed with a uniform
distribution. In the second case, the missing samples are
located in several contiguous regions.

For the proposed method, the same procedure is applied
in both situations. Three rounds of `1-norm minimization are
executed. In the first round, vectors a(1), b(1), c(1) are set
as uniformly sampled grids between 0 to 0.2 with step size
4 × 10−3. In the second round, we set the step sizes as
∆a(2) = ∆b(2) = ∆c(2) = 4 × 10−4, whereas in the third
round, ∆a(3) = ∆b(3) = ∆c(3) = 4 × 10−5 is used. Z = 20
is assumed in the last two rounds.

A. Random Missing Samples

In Fig. 1(a), we provide the real-part of the received signal
waveform, where red dots represent the missing samples. The
corresponding true IFs of the nonstationary signals are shown
in Fig. 1(b). Affected by the missing data samples, the Wigner-
Ville distribution (WVD) [22, 23] is highly cluttered by the
noise-like artifacts, and at the same time, it also suffers from
the cross-terms, which make it difficult to estimate the IF of
the jammer signal from this result.

The IF estimation results for the two nonstationary jammer
signal are depicted in Fig. 2. It is shown that the IFs of the
nonstationary jammers are estimated accurately.

To quantitatively evaluate the performance, we use the root
mean square error (RMSE) as the metric, defined as

RMSE =

√√√√ 1

Qj

Qj∑
j=1

E[(f̂j(t)− fj(t))]
2
, (14)

where f̂j denotes the estimate of the jth IF. Fig. 3 provides
the RMSE of the IF estimation results compared with the non-
parametric IF estimation method in [18]. From this result, we
can see that the parametric method consistently outperforms
the non-parametric sparse reconstruction approach.
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Fig. 1. Signal waveform, true IFs and TFD result with randomly
missing samples.
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Fig. 2. IF estimation results.

The corresponding output SJNR, evaluated at the despread
GPS symbol and averaged over the 50 independent trials,
is depicted in Fig. 4. Compared with the non-parametric
sparse reconstruction algorithm [18], the jammer suppression
performance is highly improved by the proposed parametric
estimation method.
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Fig. 3. Performance of the IF estimation method.
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Fig. 4. Output SJNR versus input JNR.

B. Bursty Missing Samples

In the second case, data samples at the following positions
are missing: sample 1, samples 34 to 67, samples 100 to
133, samples 166 to 213, and samples 246 to 256. The real-
part waveform and the WVD are shown in Fig. 5. Figs.
6(a) and 6(b) provide the IF estimation result using non-
parametric algorithm and he proposed parametric algorithm,
respectively. It is clear that, in this case, the non-parametric
approach fails to obtain the jammer IF signatures, whereas
reliable jammer IF signatures are obtained from the proposed
parametric approach.

VI. CONCLUSION

In this paper, we proposed a nonstationary jammer sup-
pression technique for signals with missing samples based
on parametric sparse reconstruction. In order to improve the
jammer IF estimation accuracy and reduce the computational
complexity, a data-dependent parametric dictionary matrix
was designed. After multiple rounds of parametric sparse
reconstruction processes, accurate jammer phase estimation is
achieved to reconstruct the jammer signals. Effective jammer
suppression were performed by applying the orthogonal pro-
jection technique.
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