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Abstract --- Ionospheric delay significantly affects the accuracy 

of positioning applications, posing a challenge due to the 

nonhomogeneous electron densities and magnetic fields that 

characterize the global ionosphere. To address this issue, 

researchers have recently introduced ionospheric correction 

models aimed at effectively mitigating ionospheric delay. One 

such model is NeQuick, which offers a comprehensive 3-D 

representation of electron density over time, as well as the 

longitudes, latitudes, and heights of both the satellite transmitter 

and ground receiver. NeQuick-G relies on three ionospheric 

coefficients, which are transmitted by Galileo Satellites. These 

coefficients are optimized for all Galileo sensor stations 

worldwide, making them less than optimal for local users.  

Moreover, the coefficient updates are not immediate. To address 

these limitations, an unscented Kalman filter (UKF) for 

tracking the three ionospheric coefficients is proposed in this 

paper. This is achieved by utilizing four local reference emitters 

and one Low Earth Orbit (LEO) satellite, with the objective of 

passively geolocating ground-based electromagnetic 

interference (EMI) sources. The accurate and real-time 

estimation of the ionosphere provided by the UKF will 

significantly enhance geolocation accuracy. In the design, the 

satellite and four ground reference emitters, strategically 

deployed around the estimated EMI position, are used to 

measure the ionosphere. The UKF tracks the ionospheric 

coefficients, updating them in real time and optimizing them 

specifically for the local region where the EMI is located. These 

precise values are then employed in the NeQuick-G model to 

estimate the ionosphere along the path from the EMI source to 

the individual satellite. Numerical results validate the 

effectiveness of the proposed approach, combining UKF-

enabled NeQuick-G for ionosphere estimation and the 

subsequent enhancement of single satellite geolocation (SSG) 

accuracy.  
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1. INTRODUCTION 

Interference of satellite communications is a frequent 

and ongoing concern for both DoD and civilian enterprises. 

Satellite communications are facing increasingly diverse 

physical and electromagnetic interference (EMI) that 

transmit radio frequency (RF) signals in X/Ku/K/Ka/Q-

bands. Therefore, RF emitter detection and localization is a 

key enabler for reliable space control, space situational 

awareness, intelligence surveillance and reconnaissance, as 

well as satellite communications together with positioning, 

navigation and timing. Geolocation [1] of the interfering 

source is an essential step in mitigating or eliminating the 

interference and restoring operation of the communication 

services. The DDDAS program (which combines the 

theoretical simulations with real-time data monitoring) 

looked into variations of the ionospheric models in support 

of SSA drag, as highlighted by the DDDAS methods [2]-[5].  

Ionospheric delay [6] significantly affects the accuracy 

of positioning applications, posing a challenge due to the 

nonhomogeneous electron densities and magnetic fields that 

characterize the global ionosphere. To address this issue, 

researchers have recently introduced ionospheric correction 

models aimed at effectively mitigating ionospheric delay. 

One such model is NeQuick [7], which offers a 

comprehensive 3-D representation of electron density over 

time, as well as the longitudes, latitudes, and heights of both 

the satellite transmitter and ground receiver. NeQuick finds 

extensive application in various fields, including Global 

Navigation Satellite Systems (GNSS) navigation, radio 

communication, and space weather research. The latest 

iteration, NeQuick-G [8], is an adaptation that caters to real-

time users, utilizing the International Telecommunication 

Union (ITU)-R NeQuick ionospheric electron density model. 
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NeQuick-G relies on three ionospheric coefficients, 

which are transmitted by Galileo Satellites. These 

coefficients are optimized for all Galileo sensor stations 

worldwide, making them less than optimal for local users. 

Additionally, the coefficient updates are not immediate. To 

address these limitations, we propose the implementation of 

an unscented Kalman filter (UKF) for tracking the three 

ionospheric coefficients. This is achieved by utilizing four 

local reference emitters and one Low Earth Orbit (LEO) 

satellite, with the objective of passively geolocating ground-

based EMI sources. The accurate and real-time estimation of 

the ionosphere provided by the UKF will significantly 

enhance geolocation accuracy. 

In our design, the satellite and four ground reference 

emitters, strategically deployed around the estimated EMI 

position, are used to measure the ionosphere. The UKF tracks 

the ionospheric coefficients, updating them in real time and 

optimizing [9]-[12] them specifically for the local region 

where the EMI is located. These precise values are then 

employed in the NeQuick-G model to estimate the 

ionosphere along the path from the EMI source to the 

individual satellite. 

The rest of the paper is organized as follows. Section 2 

briefly review the NeQuick-G model. Section 3 presents the 

proposed constrained unscented Kalman filter framework for 

the locally optimized NeQuick-G. The simulation results and 

analysis are detailed in Section 4 and Section 5 draws the 

conclusions. 

2. PROBLEM STATEMENT 

3-D Ionospheric Model  

Ionospheric delay is one of the dominant sources 

deteriorating the accuracy of positioning applications.  Since 

the ionosphere is characterized by nonhomogeneous electron 

densities and magnetic fields on the global scale, real-time 

ionospheric correction models are recently proposed in order 

to effectively eliminate the ionospheric delay,  e.g., [13][14]. 

In these models, the vertical total electron content (VTEC) is 

related to the parameters and is updated routinely. The slant 

total electron content (STEC) and the corresponding range 

delay are calculated by thin-shell approximation in 

multiplication with an elevation-dependent mapping 

function. However, the thin-layer approximation is no longer 

valid if the electron density profile fluctuates dramatically 

along the altitude [15]. This can be overcome by the NeQuick 

model, which can provide a real-time 3-D description of 

electron density as a function of time and the longitudes, 

latitudes, and heights of both the satellite transmitter and the 

ground receiver. 

The NeQuick models were initially developed by the 

Institute of Meteorology and Geophysics of the University of 

Graz and the Abdus Salam International Centre for 

Theoretical Physics, Trieste [16][17]. The first version of the 

model, referred to as NeQuick 1, has been adopted by the ITU 

Radiocommunication Sector as a procedure for estimating 

TEC (Recommendation ITU-R P.531) [18].  Subsequently, 

NeQuick 1 is refined as NeQuick 2 [19], which is currently 

recommended by ITU (Recommendation P.531-14; August 

2019) [7] , and is also included in the Space Environment 

Information System (SPENVIS) by the European Space 

Agency (ESA). More recently, the NeQuick model has been 

adapted to a Galileo specific model, NeQuick-G [8], which is 

demonstrated to be able to perform ionospheric correction of 

single-frequency observations from spaceborne applications 

[15].  

The module of NeQuick-G is described in Annex F of 

[8] in detail. The model is summarized in Figure 1. Unlike 

the NeQuick1 and 2 models where the solar activity/solar flux 

is characterized by R12, the 12-month average sunspot 

number, or F10.7, solar radio flux at 10.7 cm wavelength, the 

NeQuick-G model uses the effective ionization level, denoted 

as 

𝐴𝑧 = 𝑎0 + 𝑎1 𝜇 + 𝑎2𝜇2 (1) 

where µ denotes the receiver’s modified dip (MODIP) in 

degree, which is related to the geographic latitude and 

magnetic field at the receiver. NeQuick-G determines the 

MODIP value by interpolation of tabulated global grid of 

longitude/ latitude points. Parameters 𝑎0, 𝑎1, 𝑎2 denote the 

three ionospheric coefficients which are broadcast as part of 

the navigation message.  

 

 

Figure 1. Summary of NeQuick-G 

Based on the calculated 𝐴𝑧 values, NeQuick-G 

determines the STEC or VTEC values from the numerical 

integral ∫ 𝑁
path

𝑑ℓ, where 𝑁 is electron density, along the 

propagation path l between satellite transmitter and the 

ground receiver. Generally, the propagation path will go 

thorough serval ionospheric layers as shown in Figure 1. 

Different layers have different parameters values to compute 

the N.  

 

Problem Statement and Proposed Solution  

NeQuick-G relies on three ionospheric coefficients, 

which are transmitted by Galileo Satellites. These 

coefficients are optimized for all Galileo sensor stations 

worldwide, making them less than optimal for local users. 
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Additionally, the coefficient updates are not frequently. The 

problem and proposed solution are depicted in Figure 2. 

 

 

Figure 2. Problem Statement and the Proposed Solution 

3. CUKF FOR NEQUICK-G 

Nonlinear Filtering Problem 

For a general nonlinear filtering problem [20], we have  

𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘,  𝒘𝑘) (2) 

𝒛𝑘 = 𝒉𝑘(𝒙𝑘, 𝒗𝑘) (3) 

𝟎 = 𝒈𝑘(𝒙𝑘) (4) 

where 𝒙𝒌 is the state vector (𝐿 × 1) at time instant k, and 𝒛𝒌 

is the measurement vector (𝑁 × 1), 𝒇𝒌 and 𝒉𝒌 are the 

nonlinear functions, and 𝒘𝒌 and 𝒗𝒌 are independent white 

noise processes of the state and measurement equations, with 

zero mean and covariances 𝑸𝒌 and 𝑽𝒌, respectively. 𝒈𝒌 are 

the constraints of the system.  

For the traditional Kalman filter, we assume the 𝑓 

(process) and ℎ (measurement) are linear. The state variables 

are Gaussian random variables (GRVs). We know that a 

GRV put through a linear system is still a GRV. So, the 

Kalman filter is optimal for linear systems. For a nonlinear 

system, characterizing the resulting distribution of the 

propagated GRVs is non-trivial. For UKF, the resulting 

distribution is represented by a set of 2L+1 deterministic 

sample points called sigma points.   

In our NeQuick-G tracking problem, the state 𝑥𝑘 is the 

ionospheric coefficients (𝑎0, 𝑎1, 𝑎2). For the feasibility 

research, we assume the ionospheric coefficients are 

constants during the tracking period (~500 seconds),  𝒙𝑘+1 =
 𝒙𝑘.  𝒉𝒌 is the NeQuick-G model of the STEC.  𝒈𝒌 is the 

condition such that 𝒙𝒌 should satisfy 𝐴𝑧 ≤ 400 as specified 

in [8].  

We preferred a constrained UKF (cUKF) design for our 

problem based on the following observations:  

1) cUKF is ideally suited for dealing with the nonlinear in 

the NeQuick-G measurement model; 

2) The UKF provides increased modeling capabilities and 

robustness compared to the Nonlinear Least Squares 

(NLLS) and Extended Kalman Filter (EKF) 

approaches; 

3) cUKF maintains fast computation capabilities and does 

not need the large number of samples that are required 

for the Particle Filter (PF) in order to map the nonlinear 

measurements; 

4) Adding the 𝐴𝑧 ≤ 400 bound constraint provides faster 

convergence and greatly increases the search area and 

accuracy with a straightforward implementation within 

the UKF framework.  

 

Measurement Model 

Given locations of the ground transmitters (enhanced 

refence emitters, EREs) and a single satellite for EMI 

geolocation (SSG), Ne-Quick G model maps the states, 

ionospheric coefficients (𝑎0, 𝑎1, 𝑎2) to the ionospheric 

density values in STEC or VTEC.  

 

The ionospheric density can be measured in real-time 

using ERE and SSG via the ionospheric delay 𝐼𝑓 (at the 

frequency f), denoted by  

𝐼𝑓 = 𝛼𝑓 × 𝑆𝑇𝐸𝐶 (5) 

where the values of STEC are in the unit of total electron 

content unit (TECU), 1 TECU = 1016 electrons/m2.   

𝛼𝑓 =
40.3 × 1016

𝑓2
 

(6) 

 

Sigma Points 

The sigma points in the cUKF are calculated as  

𝜒0 = �̅�𝑘−1 (7) 

𝜒𝑖 = �̅�𝑘−1 + 𝜍(√𝑃𝑥𝑘−1
)

𝑖
,   for 𝑖 = 1, … , 𝐿 (8) 

𝜒𝑖 = �̅�𝑘−1 − 𝜍(√𝑃𝑥𝑘−1
)

𝑖
,    for 𝑖 = 𝐿 + 1, … ,2𝐿 (9) 

where 𝜍 is a scaling factor that determines the spread of the 

sigma points about the mean. These sigma points are then fed 

through the state and measurement equations, and the 

resulting distributions are approximated with weighted 

sample means and weighted sample covariances.  

Time Updates 

The time update equations are 

𝜒𝑘/𝑡
𝑥 = 𝑓(𝜒𝑡

𝑥,  𝜒𝑡
𝑤)  (10) 

�̂�𝑘
− = ∑ 𝑤𝑖

𝑚𝜒𝑘/𝑡𝑖
𝑥2𝐿

𝑖=0   (11) 

�̂�𝑥𝑘
− = ∑ 𝑤𝑖

𝑐(𝜒𝑘/𝑡𝑖
𝑥 − �̂�𝑘

−)2𝐿
𝑖=0 (𝜒𝑘/𝑡𝑖

𝑥 − �̂�𝑘
−)

⊤
+ 𝑄𝑘 (12) 

where 𝑄𝑘 is the covariance of the process noise.  

 

Measurement Updates 

The measurement update equations are 
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𝜒𝑘/𝑡
𝑧 = ℎ(𝜒𝑡

𝑥,  𝜒𝑡
𝑣)  (13) 

�̂�𝑘
− = ∑ 𝑤𝑖

𝑚𝜒𝑘/𝑡𝑖
𝑧2𝐿

𝑖=0   (14) 

�̂�𝑧𝑘
− = ∑ 𝑤𝑖

𝑐(𝜒𝑘/𝑡𝑖
𝑧 − �̂�𝑘

−)2𝐿
𝑖=0 (𝜒𝑘/𝑡𝑖

𝑧 − �̂�𝑘
−)

⊤
+ 𝑅𝑘 (15) 

�̂�𝑥𝑘𝑧𝑘
− = ∑ 𝑤𝑖

𝑐(𝜒𝑘/𝑡𝑖
𝑥 − 𝑥𝑘

−)2𝐿
𝑖=0 (𝜒𝑘/𝑡𝑖

𝑧 − �̂�𝑘
−)

⊤
 (16) 

where the weights can be specified as  𝑤0
𝑚 =

𝜆

𝐿+𝜆
,  𝑤0

𝑐 =
𝜆

𝐿+𝜆
+ (1 − 𝛼2 + 𝛽), and 𝑤𝑖

𝑚 = 𝑤𝑖
𝑐 =

1

2(𝐿+𝜆)
   for 𝑖 =

1,2, … 2𝐿. The 𝑅𝑘 is the covariance of the measurement 

noises. 𝛼,  𝛽, and 𝜆 are used to taper the spread of the sigma 

points to the prior mean.  

 

Steps of cUKF for locally optimizing the NeQuick-G 

The main steps of performing cUKF for NeQuick-G are 

listed as:  

1) Calculate sigma points according to the initial conditions 

2) Project sigma points that are not in the constrained 

solution space into the feasible region 

3) Run projected sigma points through the time update 

equations 

4) Project the state estimates outside the constrained 

solution space into the feasible region using the same 

algorithm in step 2 

5) Run projected sigma points through measurement-

update equations 

 

4. NUMERICAL SIMULATIONS 

CONOPS 

The concept of operations (CONOPS) of demonstrating 

the cUKF for locally optimized NeQuick-G are summarized 

in Figure 3.  

 

 

Figure 3. CONOPS for the cUKF for NeQuick-G  

Scenario 

A scenario we simulated is shown in Figure 4, where the 

orbit of the LEO satellite is propagated using SGP4 and a 

two-line-elements (TLE) file from space-track.org.  

Satellite TLE:  

1 04139U 00000    16171.89568986  .00000098  00000-0  

25282-4 0    06 

2 04139  74.0342  79.1740 0007229 258.8779 101.1575 

14.62696590047575 

 

 EMI location:   Latitude, longitude, and altitude (LLA) 

Emitter_LLA = [39.18644159, -77.24952161,10]; 

 

Location (LLA) of EREs:  

ere1 = EMI + [ 0.9, 0.1, 0]; 

ere2 = EMI+ [-0.1, 0.9, 0]; 

ere3 = EMI+ [-0.9,-0.1, 0]; 

ere4 = EMI + [ 0.1,-0.9, 0]; 

 

 
 

Figure 4. A scenario with a LEO satellite and a EMI 

emitter and 4 ERE emitters 

 

Simulation Results 

The tracked ionospheric coefficients are shown in Figure 5, 

where the black dashed lines are for the ground truth. The 

measured TEC and estimated TEC for the 4 EREs are shown 

in Figure 6.  

 

Figure 5. Estimated ionospheric coefficients (a0,a1,a2) 

from cUKF 
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Figure 6. The measured TEC vs Estimated TEC for the 

four EREs 

Using the cUKF and EREs-SSG, we can estimate the locally 

optimal ionospheric coefficients (a0, a1, a2) and then quickly 

and accurately estimate the ionospheric delays for the 

potential EMI in the local region.  

 

5. CONCLUSIONS 

This paper introduces a locally optimized cUKF for 

refining the NeQuick-G model used in ionosphere estimation. 

The methodology employs a single satellite and strategically 

positioned ground reference emitters, encompassing the 

estimated EMI location, to measure the ionosphere. In real-

time, the UKF continually updates the ionospheric 

coefficients and fine-tunes them specifically for the local area 

surrounding the EMI source. These precise coefficients are 

then integrated into the NeQuick-G model to calculate the 

ionosphere along the path from the EMI source to the lone 

satellite. To evaluate the practicality of this approach, a 

simulation of a real-world scenario is conducted. The 

numerical results affirm the efficacy of the proposed 

methodology, showcasing the synergy of cUKF-enabled 

NeQuick-G for ionosphere estimation and its subsequent 

impact on improving geolocation accuracy. 
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