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Abstract

This paper deals with the unit-norm tight frames (UNTFs) that better represent and solve sparse representation prob-

lems. Under this sparse representation framework, a novel model termed tight dictionary learning (TDL) is proposed.

Unlike those dictionaries that only focus on the signals of interest, TDL intends to learn a more comprehensive dic-

tionary that better represents the signals with the UNTF properties to facilitate sparse recovery. To better describe the

physical meanings, the normalization constraints on the dictionary columns are imposed. A gradient-based approach

is developed to obtain the tight dictionary where the normalization constraints are embedded into the cost function by

a parametrization method. The learned tight dictionary is applied to the speech inpainting problem to restore speech

signals corrupted by data missing. In order to compensate the degradation effect of the data missing, a UNTF-based

preconditioning technique is developed to reform the frame properties of the degraded system. Parametrization and

gradient-based approaches similar to those applied in the TDL are adopted to design a tight preconditioner. Extensive

experiments on speech denoising and speech segment restoration are conducted to demonstrate the superiority of the

proposed schemes.

Keywords:

Sparse representation, dictionary learning, unit-norm tight frame, speech inpainting, preconditioning.

1. Introduction

Signal representation intends to transform interested signals to a different domain via a basis, where certain signal

characteristics become more readily apparent in the transform coefficients for facilitating various signal processing

tasks. The notion of basis in finite-dimensional spaces implies that the number of representative vectors is the same as

the dimension of the space, which means that the representation is nonredundant and, as a result, corruption or loss of

transform coefficients may cause serious consequence. In order to provide a robust transformation, redundant signal

representation is usually adopted. The redundant counterpart of a basis is called a frame [1], [2].
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Frames give stable signal representations and allow modelling for noisy environments [1]. Signal representation

using a frame expresses a signal vector x ∈ ℜN×1 in the form of

x ≈
K∑

k=1

s(k)D(:, k) , Ds, (1)

where D ∈ ℜN×K (N < K) is a frame matrix with its columns {D(:, k)} referred to as atoms, and s ∈ ℜK×1 is the

corresponding coefficient vector. If s is sparse, i.e., there are few non-zero elements in s, equation (1) is specified as a

sparse representation (SR) of x, and the frame matrix D is named as a dictionary [3], [4].

Signal SR theory is an evolving theory with state-of-the-art results applied in many signal processing tasks, such

as denoising, video encryption, speech recognition, and compressed sensing [5]-[8]. Frames are less constrained

than bases and thus enable more flexible representations of corresponding signals [1], [2]. Hence, investigation of

frame-based SR is of great importance.

A fundamental requirement in employing the SR theory is the proper choice of the dictionary and this leads to

the well-known dictionary learning (DL) problem [9]. A great volume of works have been performed to learn a

data-adaptive dictionary so that a particular class of signals can be sparsely represented in this dictionary with a low

approximation error [4], [10], [11].

Let {xl}Ll=1 be a set of training signals. The basic problem of DL is to find a dictionary D such that for each xl there

exists a sparse representation vector sl. Denote

X ,
[

x1 x2 · · · xL

]
∈ ℜN×L, S ,

[
s1 s2 · · · sL

]
∈ ℜK×L.

The general DL problem is formulated as

min
D, S
∥X − DS∥2F + f (D) + f (S), (2)

where ∥·∥F denotes the Frobenius norm, and f (D) and f (S) are some regularization functions of D and S, respectively.

In general, f (D) may be subject to the matrix column-normalization constraint, whereas f (S) is set as the sparsity

constraint [4]. It is a common assumption that f (D) has nothing to do with S and f (S) is also independent of D.

Assume v(k) as the k-th element of a vector v ∈ ℜK×1. The ℓp-norm of vector v is defined as

∥v∥p ,
 K∑

k=1

|v(k)|p
1/p , p ≥ 1.

For convenience, ∥v∥0 is used to denote the number of non-zero elements in v.

A common choice of f (S) in (2) is f (S) =
∑L

l=1 τl∥sl∥0 (throughout this paper, this f (S) will be retained) with {τl}

denoting proper weighting constants [10], [11]. This leads to

min
D, {sl}Ll=1

∥X − DS∥2F + f (D) +
L∑

l=1

τl∥sl∥0. (3)
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Such a problem is difficult to solve as it is non-convex in D and S, and ∥ · ∥0 is non-smooth and highly unstable. A

popularly used approach is based on the alternating minimization strategy [4], [10], [11]. A two-stage procedure is

usually carried out for solving the above problem and also avoiding the selections of {τl}. The first stage is referred to

as sparse coding or sparse decomposition, also known as sparse recovery in signal reconstruction, aiming at finding

the (column) sparse matrix S with a given dictionary matrix D through the following inverse problem

ŝl , arg min
sl
∥xl − Dsl∥22 s.t. ∥sl∥0 ≤ κ, ∀ l, (4)

with κ denoting the sparsity level. The roles of the penalty and the constraints in (4) may be reversed [4]. We can

choose to constrain the SR error and obtain the sparsest representation by

ŝl , arg min
sl
∥sl∥0 s.t. ∥xl − Dsl∥22 ≤ ϵ, ∀ l, (5)

where ϵ denotes the error threshold. Such a problem can be solved using the orthogonal matching pursuit (OMP)

based methods [12]-[14]. Furthermore, a popular strategy is to replace the ℓ0-norm by the ℓ1-norm, which is its

convex approximation in a natural sense, leading to

ŝl , arg min
sl
∥sl∥1 s.t. ∥xl − Dsl∥22 ≤ ϵ, ∀ l. (6)

Equation (6) is convex and can be solved using algorithms such as the basis pursuit (BP) [15] and the ℓ1-based

optimization techniques [16].

Many methods that solve (3) differentiate each other mainly in the second stage, namely, dictionary updating. In

other words, we need to determine what kind of frames should be selected for coding the signals of interest more

sparsely and precisely. In classical DL problems with normalization constraints on dictionary columns {D(:, k)}, i.e.,

f (D) =
∑K

k=1

(
∥D(:, k)∥22 − 1

)2
in (3), the dictionary is learned adaptively based on the training signals [11]. With

such a strategy, some inherent properties of the dictionary, e.g., the tightness property that is concerned in this paper,

may lose. It is desirable to learn a dictionary with a desired representation capability for signals as well as possessing

certain excellent frame properties to facilitate sparse coding.

For a linear system satisfying expression (1), matrix D is called the system matrix. References [17] and [18]

investigated the optimized design of the system matrix that minimizes the mean squared error (MSE) of the oracle

estimator [19]. The oracle MSE coincides with the unbiased Cramér-Rao bound for sparse deterministic vectors and

represents the best achievable performance for any unbiased estimator [20]. Besides, the oracle MSE performance acts

as a benchmark to the performance of various sparse recovery algorithms. For example, it has been demonstrated both

theoretically and numerically that the Dantzig selector, the OMP and thresholding algorithms all achieve performance

that is proportional to the oracle MSE [20]. Since minimizing the MSE of the oracle estimator with respect to the

system matrix is a non-convex problem, Chen et al. adopted convex relaxation techniques and proved that a unit-norm
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tight frame (UNTF) is the closest design in the Frobenius norm sense to the solution of the relaxed problem [17], [18].

UNTFs offer the advantage of redundancy in signal representations and numerical stability of reconstruction and,

therefore, have received great interests in recent years in the signal processing community [21]-[25].

A UNTF is viewed as a generalization of an orthonormal basis which brings redundancy and stability [22]. Gen-

erally speaking, the properties of a UNTF refer to the unit-norm (i.e., normalization) property of the atoms and the

tightness property of the frame. The unit-norm property avoids the explosion or degeneration of the frame elements

and the sparse coefficients, and the tightness property is valuable to ensure fast convergence of signal sparse decom-

positions [22], [26]. Besides, according to [23], the properties of the UNTF have been proved valid against additive

noise and erasures.

The main objective of this paper is to develop a tight dictionary learning (TDL) method to learn a dictionary that

minimizes the SR error and approximates to a UNTF. In the sequel, tight dictionary implies that both the unit-norm

property and the tightness property hold. As speech signals satisfy the SR model with a high probability [27]-[30]

and UNTFs show great superiority in sparse signal processing [21]-[25], the learned tight dictionary can be applied

to speech inpainting applications. A preconditioning technique [31]-[33] based on UNTF is further presented to

improve the inpainting performance. Utilizing the properties of the UNTF to design the system matrix to facilitate

sparse recovery is termed as tight sparse representation (TSR).

The contributions of this paper are four-fold:

• A novel model is proposed for learning a tight dictionary. The inherent properties of the dictionary matrix,

including the unit-norm property and the tightness property, are taken into consideration when minimizing the

SR error. Because of the UNTF properties that facilitate the sparse recovery, the learned dictionary can well

represent the signals of interest.

• An alternating minimization strategy is developed to solve the TDL problem. When updating the dictionary, a

parametrization method is carried out to convert the constrained optimization problem to an unconstrained one.

A gradient-based approach is developed to solve the parameterized problem and obtain the tight dictionary.

Such an updating procedure results in a precise solution of the TDL problem.

• When applied to speech inpainting problems, the impairment of data missing is effectively mitigated. The data

missing process is formulated as a degradation matrix that removes samples from the speech signals. Noting

the sparse structure of the speech signals in the SR model, the learned tight dictionary is applied to effectively

restore the missing data.

• In order to mitigating the degradation effect of data missing, the preconditioning technique based on UNTF is

employed. Similar parametrization and gradient-based approaches as in the TDL are adopted to design the tight

preconditioner. Such a preconditioner highly reforms the UNTF properties of the degraded system to facilitate

the sparse recovery, thereby improving the accuracy of the speech inpainting results.
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In addition, extensive experiments on speech data and real speech segments are carried out to demonstrate the

superior performance of the proposed TSR schemes.

The remainder of this paper is arranged as follows. In Section 2, some preliminaries are provided and two related

works are introduced as the baselines to evaluate our method. A novel model for learning the tight dictionary with

desirable representation capability is described in Section 3. In Section 4, application of the SR theory and the

preconditioning technique to speech inpainting is discussed in detail. Experiments on speech signals are carried out in

Section 5 to examine the performance of the proposed schemes and to compare with existing techniques. Concluding

remarks are given in Section 6.

In this paper, we use italic characters to denote scalars, whereas lowercase and uppercase bold italic characters

indicate vectors and matrices, respectively. All parameters are real-valued. Besides, MATLAB notations are used to

denote the selections of elements in a vector or a matrix.

2. Preliminaries and related works

In this section, we review some preliminaries on frames, summarize two important works related to TDL, and

point out a problem that is usually encountered in DL.

2.1. Brief review on frames

A finite frame D ∈ ℜN×K in the Hilbert space ℜN×1 is a set of K ≥ N vectors {D(:, k)}Kk=1 that satisfies the

following generalized Parseval condition:

α∥v∥22 ≤
K∑

k=1

|⟨D(:, k), v⟩|2 ≤ β∥v∥22 (7)

for all v ∈ ℜN×1, where α and β are two positive constants referred to as the lower and upper bounds, respectively [1],

[2]. If it is possible to have α = β in (7), then we achieve an α-tight frame with α being referred to as the tightness

constant in this case. A frame {D(:, k)}Kk=1 is α-tight if and only if the corresponding matrix D has a singular value

decomposition (SVD) in the following form

D = U
[ √
αIN 0

]
VT , (8)

where superscriptT denotes the transpose operator, IN is the N×N identity matrix, and both U ∈ ℜN×N and V ∈ ℜK×K

are orthonormal matrices [34], [35].

When designing a frame for a specific application, it is important to control over the spectrum of the corresponding

frame matrix [21], [22]. This spectral characteristic is usually studied via the condition number of the frame matrix.

The closer the condition number is to 1, the better conditioned the frame matrix will be [36]. A linear system with a
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well-conditioned system matrix is said to be stable. It is clear that the condition number of a matrix expressed in (8)

is 1, which means that a tight frame forms a well-conditioned frame matrix.

Where all the atoms have the same unit ℓ2-norm, those frames are called unit-norm frames, i.e., ∥D(:, k)∥22 = 1 for

all k. A frame D is named UNTF when both tightness property and unit-norm property hold [22]-[26]. According to

the definitions of the tight frame and the unit-norm frame, it is straightforward to obtain

αN = tr
[
DDT

]
= tr
[
DT D

]
= K ⇒ α =

K
N
, (9)

by appealing to the cyclic property of the trace operation tr[·] [36]. It means that the tightness constant of any UNTF

is K/N, i.e., the redundancy of corresponding frame.

2.2. Related works of TDL

The two DL schemes proposed in [37] and [38] are closely related to the work presented in this paper, and we

briefly introduce them in this part.

Based on the general DL problem (3) and the alternating minimization strategy to solve it, we reformulate (3) as:

min
D, {sl}Ll=1

∥X − DS∥2F + f (D) s.t. ∥sl∥0 ≤ κ, ∀ l. (10)

In [37], the regularization term f (D) in (10) is set as

f (D) = ω∥DT D − IK∥2F , (11)

with ω being the regularization parameter. Substituting (11) into (10) renders the following DL model:

min
D, {sl}Ll=1

∥X − DS∥2F + ω∥DT D − IK∥2F s.t. ∥sl∥0 ≤ κ, ∀ l. (12)

By employing the alternating minimization strategy, {sl}Ll=1 are computed by certain sparse recovery algorithm like

OMP, and (12) turns to

min
D
∥X − DS∥2F + ω∥DT D − IK∥2F . (13)

A gradient-based approach is then carried out for solving (13) [37].

In order to avoid the choice of the regularization parameter ω, [38] modifies the problem (13) to

min
D
∥X − DS∥2F s.t. min

D
∥DT D − IK∥2F . (14)

That is, they set the regularization term f (D) indicated in (11) as the constraint. The closed-form solution set of

{minD f (D)} was derived in [34] as:

D = U
[

IN 0
]

VT , (15)
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where U and V are orthonormal matrices of dimensions N×N and K×K, respectively. These two matrices U and V are

then alternately optimized to minimize the SR error and improve the representation capability of the dictionary [38].

Comparing (15) and (8), it is clear that the result of {minD f (D)} with f (D) indicated in (11) is exactly the form

of the 1-tight frame which is closely related to TDL.

2.3. A shortcoming in general DL

As introduced in Section 1, classical DL problems take the normalization constraints on dictionary columns as

the regularization term f (D) because these constraints can avoid the explosion or degeneration of the matrix elements

and the sparse coefficients. This is a common choice almost in all DL literatures. For works like [37] and [38], more

constraints on the dictionary are made and these models, including TDL, are sometimes called constrained DL.

Most works take two steps to update the dictionary with normalization constraints. First, compute a dictionary

without considering the normalization constraints, e.g., (13) and (14), and then execute an extra normalization step to

the half-finished dictionary [8]-[10], [37], [38]. However, such a separated strategy compromises the optimality of the

solution as those two steps are not compatible. It is important to maintain the normalization throughout the learning

of the dictionary.

From the perspective of designing frames, these facts motivate us to develop a novel model with tightness and

unit-norm properties taken into consideration simultaneously.

3. Tight dictionary learning model and algorithm

In this section, a novel model for TDL is proposed which minimizes the SR error and, at the same time, approxi-

mates a UNTF that maintains the tightness and unit-norm properties. Parametrization and gradient-based approaches

are developed to solve the corresponding design problem.

3.1. Tight dictionary learning model

According to Proposition 2 in [17], any N × K UNTF is a solution to the optimization problem

min
D
∥DT D − IK∥2F s.t. ∥D(:, k)∥22 = 1, ∀ k. (16)

As indicated in Theorem 1 of [34], the closed-form solution set of (16) can be derived as

D = U
[ √

K
N IN 0

]
VT , (17)

with the orthonormal matrix V properly designed to ensure the normalization constraints in (16) to hold. As shown in

[34] and [39], such a V can always be achieved. The result (17), i.e., the solution of (16), is a K/N-tight frame with

unit-norm atoms, which is the exact definition of an N × K UNTF [22], [26]. This is consistent with that indicated in
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(8) and (9). For convenience, the term tight dictionary is used to represent a dictionary possessing the properties of

the UNTF that ensure tightness and unit-norm.

Recalling the definition of DL, the capability of accurately representing the dictionary to signals of interest must

be enforced. Therefore, in addition to the inherent properties of the dictionary, a signal-adapted penalty term is also

needed. Based on the discussions above, we propose the following TDL model:

min
D, {sl}Ll=1

∥X − DS∥2F + ω∥DT D − IK∥2F s.t. ∥sl∥0 ≤ κ, ∀ l, ∥D(:, k)∥22 = 1, ∀ k, (18)

where ω trades off the significance between the representation accuracy and the frame inherent properties. As the

identity matrix has the smallest condition number, model (18) will lead to a well-conditioned dictionary with a flat

spectrum. Such a dictionary results in a stable representation system [31], [36], [37].

Remark 1.

• The main difference between (18) and (12) lies in the dictionary column-normalization constraints. These
constraints are set for two reasons. On one hand, it gives better description of the physical meaning to hold the
unit-norm. As shown in [34], without the normalization constraints, the solution to

arg min
D
∥DT D − IK∥2F = U

[
IN 0

]
VT ,

is a 1-tight frame but is not necessarily a UNTF. On the other hand, it avoids the degeneration of the sparse
coefficients. In equation (1), if some of the elements in D become very large, small valid values in s may be
easily neglected.

• Frame potential is a famous concept related to the UNTFs and has been defined explicitly in [22] as:

FP(D) ,
K∑

i=1

K∑
j=1

|⟨D(:, i), D(:, j)⟩|2 = ∥DT D∥2F .

A number of methods were developed to construct UNTFs by minimizing the frame potential [25], [40], [41].
It can be observed that the regularization term {∥DT D − IK∥2F} is closely associated with the frame potential if
the unit-norm property holds, i.e., FP(D) = ∥DT D − IK∥2F + K when ∀ k, ∥D(:, k)∥22 = 1. This fact once again
verifies the importance of the normalization constraints.

• Equation (17) is a closed-form expression of the UNTF when a proper V is set [34]. We do not constrain the
form of the dictionary as (17) because there only exists one orthonormal matrix U to improve the representation
capability. The impact of the sole orthonormal matrix on the SR capability is limited. The weighting model
described in (18) is flexible to learn a desired dictionary by selecting a proper value of ω.

3.2. Tight dictionary learning algorithm

This part is devoted to the detailed algorithm description for solving the TDL problem. Noting that, because (18)

is still non-convex in D and S, and ∥ · ∥0 is non-smooth and highly unstable, the alternating minimization strategy is

employed. The pseudo-code is given in Algorithm 1.
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Algorithm 1: Tight dictionary learning algorithm

Initialization:

D[0] ∈ ℜN×K : initial column-normalized dictionary;

X = {xl}Ll=1 ∈ ℜN×L: training signal set;

κ: sparsity level;

Niter: number of iterations for DL.

Set i = 1.

Begin: For i = 1 : Niter, repeat the following two stages:

• Sparse coding: With D[i−1], update the sparse coefficient set S[i] = {ŝl}Ll=1 by

ŝl = arg min
sl
∥xl − D[i−1]sl∥22 s.t. ∥sl∥0 ≤ κ, ∀ l (19)

using a certain OMP-based algorithm.

• Dictionary updating: For S[i] fixed, update the dictionary with

D[i] = arg min
D
∥X − DS[i]∥2F + ω∥DT D − IK∥2F s.t. ∥D(:, k)∥22 = 1, ∀ k. (20)

Because of the normalization constraints in (20), the closed-form solution is hard to be derived. A parametriza-

tion method will be adopted to embed the normalization constraints on the dictionary columns into the cost

function, and then a gradient-based approach is developed to solve the parameterized problem for the dictio-

nary. This will be described in detail below.

End: End the algorithm, and output the tight dictionary.

As (19) is solved by an OMP-based algorithm, the remaining issue is to update the dictionary, i.e., solving (20),

which is described below. For notational convenience, the iteration index [i] will be omitted in the following.

Denote ϱ(D) , ∥E1∥2F + ω∥E2∥2F with

E1 , X − DS, E2 , DT D − IK . (21)

The minimization problem in (20) turns to

min
D
ϱ(D) s.t. ∥D(:, k)∥22 = 1, ∀ k. (22)

It is difficult to derive the closed-form solution of (22) due to the normalization constraints. Referring to [42], we

present a gradient-based approach to solve (22). A key step of this approach is the following parametrization of the

dictionary

D , QQd, (23)
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where Q is an N × K matrix with a mild condition that it contains no zero columns, and Qd ∈ ℜK×K is a diagonal

matrix formed as

Qd = diag
(
∥Q(:, 1)∥−1

2 , ∥Q(:, 2)∥−1
2 , · · · , ∥Q(:,K)∥−1

2

)
. (24)

It is clear that the columns of D defined in (23) are inherently ℓ2-normalized as Q has no zero columns.

With the definitions of (23) and (24), the dictionary updating problem (22) is converted to the following uncon-

strained minimization problem

min
Q
ϱ(QQd). (25)

(25) can be solved using the following gradient descent procedure:

Qn = Qn−1 − γ
∂ϱ

∂Q

∣∣∣∣∣
Q=Qn−1

, (26)

where γ is the step size, and ∂ϱ
∂Q is the gradient of ϱ(QQd) with respect to Q.

Define

ϱ1(Q) , ∥E1∥2F , ϱ2(Q) , ∥E2∥2F (27)

with E1 and E2 defined in (21). Then, one has

ϱ = ϱ1(Q) + ωϱ2(Q). (28)

Hence
∂ϱ

∂Q
=
∂ϱ1(Q)
∂Q

+ ω
∂ϱ2(Q)
∂Q

. (29)

The expressions of ∂ϱ1(Q)
∂Q and ∂ϱ2(Q)

∂Q can be obtained by the following Theorem 1 and Theorem 2, respectively.

Theorem 1. Let Q ∈ ℜN×K be a matrix with no zero columns and Qd is defined in (24). Denote

E1 , X − (QQd)S. (30)

The gradient of ∥E1∥2F with respect to Q is obtained as

∂(∥E1∥2F)
∂Q

= 2QQ3
d R1 − 2E1STQd, (31)

where
R1 , diag (H1(1, 1), H1(2, 2), · · · , H1(K,K)) , H1 , SET1 Q. (32)

Theorem 2. Let Q ∈ ℜN×K be a matrix with no zero columns and Qd is defined in (24). Denote

E2 , (QQd)T (QQd) − IK . (33)

The gradient of ∥E2∥2F with respect to Q is obtained as

∂(∥E2∥2F)
∂Q

= 2(QQd)(ET2 + E2)Qd − 2QQ3
d R2, (34)

where
R2 , diag (H2(1, 1), H2(2, 2), · · · , H2(K,K)) , H2 , QT (QQd)(ET2 + E2). (35)
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The proofs of the above two theorems can be found in Appendices A and B, respectively.

Based on Theorems 1 and 2, the expression of ∂ϱ
∂Q is obtained as

∂ϱ

∂Q
=
∂ϱ1(Q)
∂Q

+ ω
∂ϱ2(Q)
∂Q

= 2QQ3
d R1 − 2E1STQd + ω

[
2(QQd)(ET2 + E2)Qd − 2QQ3

d R2

]
. (36)

Using the result of (36), Q is updated via (26) by the gradient descent procedure, and the solution of (22) is

obtained as D = QQd.

Remark 2.

• When ω → +∞, the dictionary updating turns to the UNTF construction problem which is an attractive topic
[25], [40], [41]. With the Lagrange multiplier, the problem (20) becomes

min
D
∥DT D − IK∥2F +

K∑
k=1

λk(∥D(:, k)∥22 − 1).

The above expression is also known as the famous Paulsen problem [26] with the two penalty terms concerning
the tightness property and the unit-norm property, respectively. When dealing with multiple objects, some works
alternately optimize these properties until the cost function converges (sometimes the alternating optimization
method may not converge) [32], while we search for the tight frame with its atoms inherently normalized.

• For the proposed parametrization and gradient-based strategy, other penalty terms that subject to the unit-norm
constraints are convenient to be added to the cost function, e.g., the signal-adapted penalty term {∥X − DS∥2F}
considered in this work. The computations of the gradients such as (31) and (34) are not complex. This strategy
can be conveniently extended to design high dimensional matrices because it does not involve computationally
expensive operations such as matrix inversion or SVD.

• It can be seen from the pseudo-code that Algorithm 1 is carried out with respect to D and S. The convergence
of our algorithm can be easily guaranteed. For sparse coding, the popularly adopted OMP is viewed as an
efficient method to solve (19) [12]-[14]. Therefore, in the i-th iteration,

∥xl − D[i−1] ŝl∥22 ≤ ∥xl − D[i−1]sl∥22, ∀ l = 1, 2, · · · , L,

for any {sl}. Hence, with S[i] = {ŝl}Ll=1 and S[i−1] being the result obtained in the previous iteration,

∥X − D[i−1]S[i]∥2F ≤ ∥X − D[i−1]S[i−1]∥2F

can be ensured. This leads to

∥X − D[i−1]S[i]∥2F + ω∥(D[i−1])T (D[i−1]) − IK∥2F ≤ ∥X − D[i−1]S[i−1]∥2F + ω∥(D[i−1])T (D[i−1]) − IK∥2F .

Considering dictionary updating, i.e., solving (20), as long as the step size γ in (26) is properly set, the corre-
sponding cost function is non-increasing. Therefore, D[i] resulted from the gradient-based approach guarantees

∥X − D[i]S[i]∥2F + ω∥(D[i])T (D[i]) − IK∥2F ≤ ∥X − D[i−1]S[i]∥2F + ω∥(D[i−1])T (D[i−1]) − IK∥2F .

Subsequently,

∥X − D[i]S[i]∥2F + ω∥(D[i])T (D[i]) − IK∥2F ≤ ∥X − D[i−1]S[i−1]∥2F + ω∥(D[i−1])T (D[i−1]) − IK∥2F

is guaranteed throughout the iteration indexed by i.
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4. Tight sparse representation-based speech inpainting

Speech inpainting, leveraging the concept of image inpainting, refers to filling in missing data whose locations

are assumed to be known a priori in the speech signals [4], [28]-[30]. In this section, the learned tight dictionary

described in the previous section is applied to speech inpainting problems where the speech signals are corrupted by

data missing. We formulate the missing process as a degradation matrix that removes samples from the speech signals

and employ preconditioning technique to promote the speech restoration.

4.1. Formulation of data missing

Data missing is defined as a general problem that a partial set of reliable speech data is observed while the

remaining unreliable data are totally missing. Speech inpainting aims to estimate the unreliable (missing) data from

the reliable data portion. This process is also known as missing data imputation [28]-[30].

According to [27], speech signals satisfy the SR model with a high probability. Assume that x ∈ ℜN×1 is a speech

signal, meaning that there exists a sparse coefficient vector s ∈ ℜK×1 with ∥s∥0 ≤ κ (κ ≪ N) satisfying x ≈ Ds with

D ∈ ℜN×K denoting a pre-specified dictionary.

Further assume that M samples in x are observed with a priori known positions. The degradation matrix L ∈

ℜM×N that records the missing process is a matrix which has only a single element of one and other elements are

zeros in each row. Such a matrix can be expressed as

L(i, j) =


1, when j = J(i),

0, otherwise,
(37)

where i is the element index number of the observed signal, and 1 ≤ J(i) ≤ N is the index number of corresponding

element in the original signal x. Matrix L removes N −M samples from x and this process is viewed as data missing.

This matrix can also be described as taking the N × N identity matrix and removing the N −M rows corresponding to

the missing samples.

Denote the observed signal as y. The speech data missing problem is formulated as

y , Lx ≈ LDs. (38)

When Gaussian noise is added to the observations, speech inpainting should be considered by solving the following

inverse problem

ŝ , arg min
s
∥s∥0 s.t. ∥y − LDs∥22 ≤ ϵ, (39)

with ϵ being the error threshold determined by the noise level. Then the restored signal would become x̂ = Dŝ.
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Remark 3.
• The above strategy would result in successful missing data imputation based on a presupposed condition that x

can be sparsely represented using dictionary D. This condition can be satisfied by the previously proposed TDL
algorithm. As will be seen in the experiment results, the algorithm learns a tight dictionary with promising SR
capability. In addition, when the degradation matrix L = IN (i.e., M = N, implying that no sample is missing),
(39) can be viewed as a speech denoising problem and will also be considered in the experimental studies to
demonstrate the performance of the designed tight dictionary.

• Equation (38) is similar to a compressed sensing model, where L ∈ ℜM×N is the sensing matrix [8]. In many
works, with the dictionary D fixed, the sensing matrix L is designed to make the product LD possess certain
properties such as the tightness property to facilitate the sparse recovery process, thereby improving the accu-
racy of solution indicated in (39) [17], [18], [24], [25]. This is infeasible in our degradation model because L
is determined by the data missing process and cannot be optimized. Depending on the value of L, the property
of LD may be destroyed even when D is well designed. This fact will significantly compromise the solution
of (39). Motivated by this, we introduce the preconditioning technique to modify (39) and ensure the UNTF
properties.

4.2. Construction of tight preconditioner

Preconditioning is one of the most critical ingredients in the development of efficient solvers for challenging

problems in scientific computation [31]-[33]. The term preconditioning refers to transforming a model like (38) into

another form with more favorable properties. A preconditioner is a matrix that affects such a transformation. Generally

speaking, preconditioning attempts to improve the spectral properties of the degraded system matrix LD. Hopefully,

the transformed (preconditioned) system matrix will have a smaller spectral condition number. A well-conditioned

system matrix will lead to a stable sparse coding procedure [31].

Assume LD to be an M × K matrix that does not satisfy the necessary conditions required for sparse recovery.

Suppose that there exists a nonsingular matrix P ∈ ℜM×M such that the product PLD possesses certain desired

properties to facilitate the sparse recovery process. In this case, P is referred to as a preconditioner. Multiplying both

sides of (38) by P, we define

z , Py = PLx ≈ As, (40)

where A , PLD is the preconditioned (system) matrix. As P is invertible, the solution s of (40) is the same as that

of (38). The difference between (38) and (40) in calculating s lies in the properties of A and LD. The effectiveness

of applying algorithms such as OMP to solve (40) for sparse coefficient s depends strongly on the property of A. The

question is how to construct a nonsingular P such that s can be precisely obtained via

ŝ , arg min
s
∥s∥0 s.t. ∥z − As∥22 ≤ ϵ, (41)

with z and A both known, then x̂ = Dŝ is recovered.

Equation (41) is similar to the sparse coding procedure in DL. Therefore, the UNTF properties are preferred. The

preconditioner construction problem is formulated as

min
P∈ℜM×M

∥AT A − IK∥2F s.t. A = PLD and ∥A(:, k)∥22 = 1, ∀ k. (42)
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Note that the column-normalization constraints are included because our goal is to approximate a UNTF in a strict

way. The resulting P obtained from (42) is named as a tight preconditioner.

Once again, due to the normalization constraints in (42), it is difficult to derive a closed-form solution. Denote

Ã , LD ∈ ℜM×K , (43)

and

Q̃ , PÃ ∈ ℜM×K (44)

is determined by P with a mild condition that it contains no zero columns. The gradient-based approach will be

employed and the key step is the following parametrization

A , Q̃Q̃d (45)

with Q̃d ∈ ℜK×K being a diagonal matrix formed as

Q̃d = diag
(
∥Q̃(:, 1)∥−1

2 , ∥Q̃(:, 2)∥−1
2 , · · · , ∥Q̃(:,K)∥−1

2

)
. (46)

It is clear that the columns of A in (45) are inherently normalized, yielding the following unconstrained problem:

min
P∈ℜM×M

{
∥(Q̃Q̃d)T (Q̃Q̃d) − IK∥2F , ϱ̃(P)

}
s.t. (44), (46). (47)

Similar to (25), equation (47) can be solved using the gradient descent procedure:

Pn = Pn−1 − η
∂ϱ̃(P)
∂P

∣∣∣∣∣
P=Pn−1

, (48)

where η denotes the step size, and ∂ϱ̃(P)
∂P is the gradient of ϱ̃(P) with respect to P and can be computed based on

Theorem 3 below.

Theorem 3. Given a known matrix Ã ∈ ℜM×K , let P ∈ ℜM×M be a nonsingular matrix such that Q̃ = PÃ has no
zero columns. Denote

Ẽ , (Q̃Q̃d)T (Q̃Q̃d) − IK , (49)

with Q̃d defined in (46). The gradient of ∥Ẽ∥2F with respect to P is calculated as

∂(∥Ẽ∥2F)
∂P

= 2(Q̃Q̃d)(ẼT + Ẽ)Q̃d ÃT − 2PÃR̃ÃT , (50)

where
R̃ , diag

(
H̃(1, 1), H̃(2, 2), · · · , H̃(K,K)

)
, H̃ , (ẼT + Ẽ)(Q̃Q̃d)T Q̃Q̃3

d. (51)

The proof of Theorem 3 can be found in Appendix C.

With the result of Theorem 3, P is updated via (48) by the gradient descent procedure, and the designed tight

preconditioner can be obtained as limn→+∞ Pn.
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Remark 4.

• In our interested scenarios, the dictionary D is learned in advance and the degradation matrix L is decided
according to the data missing process. Therefore, the property of LD is unpredictable and it may not satisfy the
necessary conditions for sparse recovery. That is the reason why we introduce the preconditioning.

• In general, a good preconditioner should lead to a model which can be easily handled. The UNTF properties
can make the inverse problem easier to be solved and facilitate sparse recovery [17], [18]. We design the pre-
conditioner to make the preconditioned matrix closely approximate the UNTF by enclosing the normalization
constraints.

• Looking from a different perspective, a well-designed preconditioned matrix will result in effective sparse cod-
ing [31], [37]. Choosing the identity matrix as the target in (42) makes the physical meanings of the model
clearer because the identity matrix has the smallest condition number. This is a key point as the purpose of the
preconditioning technique is to improve the spectral properties of the system matrix [31].

• A similar preconditioner construction problem has been investigated in [32]. The problem is described as

min
P∈ℜM×M

∥AT A − Gt∥2F s.t. A = PÃ,

where Gt is the target Gram matrix possessing some desired properties. The authors of [32] first computed
a matrix A for the above problem and then solved a least squares problem to obtain P = arg minP{∥A −
PÃ∥2F} = AÃT (Ã ÃT )−1. A similar strategy is adopted in [25] to design the sensing matrix for a compressed
sensing system. Such a two-step strategy compromises the optimality of the solution. Using equation (48) and
Theorem 3, we can directly construct the preconditioner for problem (42).

• The proposed preconditioner construction method shares some of the ideas in our recent paper [33]. Different
from [33], however, the data missing process is taken into consideration in this paper, and the parametrization
and gradient-based approaches are described in detail.

5. Experiment results

In this section, we evaluate the performance of the proposed models and algorithms with speech signals that are

popularly used for testing the effectiveness of the constrained DL [37], [38].

The speech data are extracted from the GRID corpus [43]. Every recording in the corpus is decomposed in-

to 50% overlapping time-domain frames with a frame length of N = 256. A data matrix consisting of 100, 000

columns is formed by randomly selecting 100 frames from each of the 1, 000 recordings in the corpus. A twice

overcomplete dictionary D[0] (i.e., K = 512) is initialized by choosing K columns of the data matrix followed by a

column-normalization procedure. The training data matrix X = {xl}Ll=1 is obtained as a subset of the data matrix with

L = 10, 000 columns to learn the dictionaries. The testing data matrix X̃ = {x̃l}L̃l=1 is obtained in the same way as X

but with L̃ = 1, 000 columns. It should be noted that the initial dictionary, the training data matrix, and the testing

data matrix are all selected randomly without intersection. When learning the dictionaries, the OMP algorithm is

employed for sparse coding with sparsity κ = 12 which corresponds to about 5% of active elements when compared

with the length N.
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The standard deviation of the Gaussian noise added to the testing data X̃ is denoted as σ. The recovery accuracy

is quantified with the output signal-to-noise ratio (SNR) [28]-[30] defined as

ρsnr , 20 log10
∥X̃∥F

∥X̃ − DS̃∥F
, (52)

where D is the output dictionary of each learning method and S̃ = {s̃l}L̃l=1 is the sparse coefficient matrix calculated

from

s̃l = arg min
sl
∥sl∥1 s.t. ∥x̃l − Dsl∥22 ≤ ϵ, ∀ l

by the ℓ1-Homotopy algorithm [16] with ϵ = 0.5Nσ2. This process can be viewed as the speech denoising problem.

5.1. Performance of the tight dictionary

We now carry out experiments to illustrate the performance of the dictionaries learned with different algorithms.

Algorithms developed in [11], [37] and [38] are compared. For convenience, the learning systems are denoted as

DictNEW, DictKSVD [11], DictSDB [37], and DictBLJ [38] for the proposed TDL and the algorithms in the respective

references. The number of iterations for DL is set to Niter = 100 for all the comparisons. For DictNEW, the gradient

descent is executed for 50 times with step size γ = 0.1. The extra parameter settings for DictKSVD, DictSDB and

DictBLJ are kept the same as those in the corresponding references.

5.1.1. Choice of ω in (12) and (18)

Let us consider the effect of factor ω. In order to test the tradeoff between the representation capability and the

tightness property roundly, we denote

ω̃ , ω

1 + ω
.

When ω increases from 0→ +∞, ω̃ changes monotonically from 0→ 1.

Gaussian noises with different standard deviations are added to the testing data X̃. Figures 1 (a), (b) and (c) show

the results of the recovered SNR with respect to ω̃. The input SNR is the SNR of the noisy speech determined by the

noise standard deviation σ.

For Figures 1 (a), (b) and (c), the significance of the regularization term ∥DT D − IK∥2F is judged by comparing

the cases for ω̃ = 0 with the others, while the significance of ∥X − DS∥2F is examined by the cases with ω̃ = 1. It can

be clearly seen that the best results of DictNEW and DictSDB are always achieved when 0 < ω̃ < 1, which indicates

that the weighting models (12) and (18) are valid. Besides, comparing the results of DictNEW with those of DictSDB,

the importance of the column-normalization constraints is revealed, as the satisfactory results of DictNEW are much

better than those of DictSDB. Though the optimum ω̃ values are data-dependent and differ for various σ, hereinafter,

ω̃ = 0.2, hence ω = 0.25 is set for DictNEW and DictSDB according to its satisfactory performance for all the tests.
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(c) σ = 0.020

Figure 1: Recovered SNR versus ω̃.

5.1.2. Theoretical performance of different dictionaries

Before testing the denoising performance, we take a brief look at the singular value distribution of each learned

dictionary. As indicated in Section 2, for a specific application, it is important to control over the spectrum of the

corresponding system matrix and this spectrum is closely related to the singular value distribution of the system

matrix. The more compact the singular value distribution is, the flatter the matrix spectrum will be, and this also

implies smaller condition number [21], [22], [36], [37]. So a compact singular value distribution means a well-

conditioned dictionary, leading to efficient sparse coding.

A UNTF of dimension N × K has all its singular values equal to
√

K/N [34], [37]. Taking this as the benchmark,

the singular value distributions of the learned dictionaries are shown in Figure 2.
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Figure 2: Singular value distributions of the learned dictionaries.
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As can be seen, the distribution of DictBLJ is closest to the benchmark
√

K/N because DictBLJ is designed un-

der the constraint (15), which is exactly the expression of 1-tight frame. Though extra normalization is enforced,

DictBLJ is still the best-conditioned one. However, the constraint (15) limits the SR capability of the dictionary to

signals since only two orthonormal matrices U and V are optimized to minimize the SR error. Defined as the ra-

tio of the maximum singular value and the minimum one, the condition number of each dictionary is calculated as

cond(DictKSVD)=2235.10, cond(DictSDB)=17.12, cond(DictBLJ)=1.89, cond(DictNEW)=2.57. As indicated in [36], the

closer the condition number to 1, the better the matrix stability will be. We can say that DictNEW is also well condi-

tioned. It can be expected that, if a large ω is set, cond(DictNEW) will be much lower at the cost of the SR capability.

So proper tradeoff is necessary in the proposed model (18).

5.1.3. Denoising performance on testing data

Now we test the denoising performance of the compared dictionaries with the testing data. Figure 3 depicts the

output SNRs of the recovered signals when the Gaussian noises with standard deviation σ varying between 0.001 and

0.030 are added to the testing data.
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Figure 3: Recovered SNR results versus noise standard deviation σ.

As shown in Figure 3, the recovered SNR values all decrease as σ increases, and DictNEW achieves the best

denoising results among these tests. The superiority of DictNEW over DictKSVD is clearly observed in low noise cases.

When σ ≤ 0.012, the gap is more than 2 dB. For high noise cases, e.g., σ ≥ 0.020, the performance of DictBLJ

is poorer than the other three. So we conclude that neither DictKSVD nor DictBLJ is robust enough. The results of

DictSDB are close to those of DictNEW. This verifies the effectiveness of the weighting model which emphasizes the
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tightness property of the dictionary. The remaining differences between these two can be explained by the column-

normalization constraints that make the physical meanings of our model much clearer.

5.1.4. Denoising performance on speech segment

Besides the speech data, we carry out experiments on real speech segment for testing the denoising performance

of different dictionaries. Phrase “place blue at P zero please” is randomly selected for testing. The speech segment is

first divided into 143 non-overlapping time-domain frames with each frame of length N = 256. Denoising is executed

in every frame independently by each of the learned dictionaries, and the restored frames synthesize a speech segment.

Figures 4 (a), (b) and (c) show the time-domain waveforms of the speech segments restored by different dictionar-

ies when the standard deviations of the Gaussian noises are 0.004, 0.010 and 0.020, respectively. In order to clearly see

the details, only 500 samples (starting from 5, 501st in 36, 608 samples) of each waveform are drawn for comparison.
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Figure 4: Restored speech waveforms by different dictionaries.

Taking a close look at these waveforms, one notes that DictKSVD loses the details easily when the signals fluctuate

acutely, even in the case with a small σ = 0.004, whereas the other three dictionaries perform favourably. When

σ = 0.020, it can be observed that the waveform resulted from DictBLJ is still heavily disturbed by noise. These

results confirm that neither DictKSVD nor DictBLJ is robust enough.

The spectrograms of the restored speech segments are compared when σ = 0.020. Figures 5 (a) and (b) depict

the complete speech waveforms and the corresponding spectrograms (drawn by MATLAB with default settings),

respectively. The dark color parts (closing to blue) and the light color parts (closing to yellow) in Figure 5 (b) refer

to low frequency and high frequency components, respectively. As can be observed, DictKSVD loses a lot of high

frequency information and DictBLJ cannot eliminate noise well. These conclusions are consistent with those obtained

from Figure 4.
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(b) Spectrograms of the speech segments

Figure 5: Restored speech waveforms and spectrograms with σ = 0.020.

We summarize the SNR results of all the restored speech segments in Table 1. The output SNR results also

verify the above observations. Although the results of DictSDB are acceptable, it should be emphasized that both the

waveforms and the recovered SNR results clearly verify that DictNEW outperforms other methods in all these tests.

Table 1: Recovered SNRs of speech segments by different dictionaries (dB)

.
σ = 0.004 σ = 0.010 σ = 0.020

Input SNR 21.93 13.97 7.95

DictKSVD 19.59 17.02 14.86

DictSDB 21.83 17.65 14.89

DictBLJ 21.91 16.99 13.40

DictNEW 23.61 18.85 15.53

5.2. Performance of TSR-based speech inpainting

In this part, the learned tight dictionary D is applied to speech inpainting cases where the speech signals are

corrupted by data missing and Gaussian noise. In order to understand the inpainting performance intuitively, real

speech segments are considered. The inpainting process is carried out on non-overlapping time-domain frames with

frame length N = 256. For each frame, data missing happens at random and the degradation matrix L ∈ ℜM×N that
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records the data missing process is structured as (37). It means that N − M samples are lost in every frame. When

designing the tight preconditioner P, the gradient descent is executed for 1, 000 times with step size η = 0.01.

5.2.1. Theoretical performance of tight preconditioner

First, the theoretical performance of the constructed preconditioner P is illustrated in Figure 6 by the singular

value distribution of the preconditioned matrix PLD. For comparison, the distribution of LD is also attached. Taking
√

K/M (i.e., the spectrum of the M×K UNTF [34], [37]) as the benchmark, the singular value distributions are shown

in Figures 6 (a), (b) and (c) with M = 60, M = 130 and M = 190, respectively.

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Magnitude of singular values

0

10

20

30

40

50

60

N
um

be
r 

of
 s

in
gu

la
r 

va
lu

es

Benchmark
 LD
 PLD

(a) M = 60

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Magnitude of singular values

0

20

40

60

80

100

120

140

N
um

be
r 

of
 s

in
gu

la
r 

va
lu

es

Benchmark
 LD
 PLD

(b) M = 130

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Magnitude of singular values

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r 

of
 s

in
gu

la
r 

va
lu

es

Benchmark
 LD
 PLD

(c) M = 190

Figure 6: Singular value distributions of corresponding system matrices.

In Figure 6 (a), the preconditioner P makes the preconditioned matrix PLD an exact UNTF when M = 60. This

verifies the validity of our parametrization process (45) and the gradient-based approach for solving (42). Though

similar phenomenon is not observed in Figures 6 (b) and (c), a more compact singular value distribution is expected

if the step size η in (48) is chosen more carefully and intelligently. This would be explored in the future work.

For these three values of M, the condition numbers of the corresponding system matrices are summarized in

Table 2. The results further confirm the effectiveness of the designed preconditioner. For these three values of M, the

condition numbers of PLD are much closer to 1 than those of LD. They lead to stable preconditioned matrices that

facilitate the sparse recovery process, i.e., solving the inverse problem (41).

Table 2: Condition numbers of corresponding system matrices

.
M = 60 M = 130 M = 190

cond(LD) 1.68 2.11 2.34

cond(PLD) 1.00 1.89 2.18
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5.2.2. Inpainting performance evaluation

In this part, the speech inpainting problem is investigated and three processes are compared. The speech inpainting

process executed by (39) is a TSR-based strategy that is denoted as SITSR. (41) is a preconditioned sparse recovery

process and we name it as SIPTSR. In addition, DictNEW is applied to eliminate noise without data missing just as

in the denoising part in Section 5.1.4 for comparison. In each of the tests, the input SNR is calculated prior to data

missing.

The same phrase “place blue at P zero please” is chosen for testing as in the denoising cases. When M = 130, the

recovered SNR values are depicted in Figure 7 for σ varying between 0.001 and 0.030. The results verify the validity

of the TSR-based inpainting. Figure 7 shows that, when σ > 0.008, the results of SITSR are higher than the input SNR

(without data missing taken into account) values. It means that the inpainting strategy not only restores missing data,

but also eliminates additive noises.
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Figure 7: Recovered SNR results versus σ with M = 130.

Next, we evaluate the effects of the number of observations. For σ = 0.010 fixed, when M changes between 60

and 190, the SNR results are shown in Figure 8. As can be seen, even when only M = 80 observations are reserved,

SITSR restores the signals and leads to an SNR result that is comparable with the input SNR. More observations will

result in remarkable improvements.

With two more speech segments tested, the statistics of the output SNR for these three phrases in different σ and

M cases are summarized in Table 3. In all the tests, SIPTSR achieves higher SNR results than those of SITSR. This

indicates that the preconditioning technique employed to facilitate the sparse recovery process is effective, and the

tight preconditioner constructed by our method is superior.
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Figure 8: Recovered SNR results versus M with σ = 0.010.

Table 3: Statistics of SNR for three phrases in different σ and M cases (dB)

.

Phrases Processes
σ = 0.004 σ = 0.010 σ = 0.020

M = 60 M = 130 M = 190 M = 60 M = 130 M = 190 M = 60 M = 130 M = 190

Input SNR 21.93 13.97 7.95

place blue at DictNEW 23.66 18.95 15.60

P zero please SITSR 13.76 17.59 20.39 12.73 15.89 17.48 10.32 13.48 14.74

SIPTSR 14.07 17.93 20.86 13.08 16.38 18.04 10.70 14.16 15.59

Input SNR 21.94 13.98 7.96

bin blue at DictNEW 24.39 19.54 16.03

L two please SITSR 16.04 19.08 21.07 13.95 16.59 18.15 10.47 14.12 15.26

SIPTSR 16.34 19.39 21.43 14.25 17.08 18.73 10.82 14.81 16.34

Input SNR 21.92 13.97 7.95

set white with DictNEW 23.73 18.31 14.53

I nine soon SITSR 12.31 16.68 19.83 8.78 14.26 16.35 7.46 11.52 13.19

SIPTSR 12.57 17.07 20.38 8.99 14.87 17.20 7.80 12.23 14.15

6. Conclusion

In this paper, we have investigated the TSR problem with application to speech inpainting. A novel DL model,

named TDL, was proposed. Under this model, the dictionary is learned to minimize the SR error adapted to the training

signals and, at the same time, approximate the UNTF to gain the desired frame properties. The parametrization
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method was adopted to embed the normalization constraints on the dictionary columns into the cost function. A

gradient-based approach was developed to solve the parameterized problem for the tight dictionary. Moreover, we

have applied the tight dictionary to the speech inpainting problem where data missing is considered. Finally, in order

to maintain the frame properties of the system, the preconditioning technique based on UNTF was employed, and

the parametrization and gradient-based approaches were carried out once again to solve the normalization constrained

tight preconditioner design problem. Extensive experiments have been conducted to demonstrate the validity and

effectiveness of the proposed TSR schemes on speech denoising and speech segments restoration.
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Appendix A. Proof of Theorem 1

First, one notes that

∥E1∥2F = tr
[
E1ET1

]
with tr[·] denoting the trace operator.

Denote qi j = Q(i, j), then
∂(∥E1∥2F)
∂qi j

= 2tr
[
∂E1

∂qi j
ET1

]
,

and
∂E1

∂qi j
= − ∂(QQd)

∂qi j
S.

Given the definition of Qd in (24), it can be shown that

∂(QQd)
∂qi j

= eieTj Qd − Qqi jd3
j e jeTj ,

where ek denotes the k-th elementary vector with a proper dimension, whose elements are all zeros except the k-th

one that is 1. For example, in the above expression, the dimensions of ei and e j are respectively N × 1 and K × 1.

d j , (
∑

i q2
i j)
−1/2 = ∥Q(:, j)∥−1

2 is the j-th diagonal element of Qd. Then, we get

∂E1

∂qi j
= − eieTj QdS + qi jd3

j Qe jeTj S

and
∂(∥E1∥2F)
∂qi j

= 2(−eTj QdSET1 ei + qi jd3
j e
T
j SET1 Qe j).

As qi j = Q(i, j), i.e., qi j = eTi Qe j, we finally obtain

∂(∥E1∥2F)
∂Q

= 2QQ3
d R1 − 2E1STQd

with R1 defined in (32). This completes the proof.
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Appendix B. Proof of Theorem 2

Similar to Appendix A, we have
∂(∥E2∥2F)
∂qi j

= 2tr
[
∂E2

∂qi j
ET2

]
and

∂E2

∂qi j
=
∂(QQd)T

∂qi j
(QQd)+(QQd)T

∂(QQd)
∂qi j

= Qde jeTi (QQd)−qi jd3
j e jeTj QT (QQd)+(QQd)T eieTj Qd−qi jd3

j (QQd)TQe jeTj

as Qd is diagonal. Hence

∂(∥E2∥2F)
∂qi j

= 2
[
eTi (QQd)ET2 Qde j − qi jd3

j e
T
j QT (QQd)ET2 e j + eTj Qd ET2 (QQd)T ei − qi jd3

j e
T
j ET2 (QQd)TQe j

]
.

Then, we obtain
∂(∥E2∥2F)
∂Q

= 2(QQd)(ET2 + E2)Qd − 2QQ3
d R2

with R2 defined in (35). This completes the proof.
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Appendix C. Proof of Theorem 3

Because

∥Ẽ∥2F = tr
[
ẼẼT

]
,

we obtain
∂(∥Ẽ∥2F)
∂pi j

= 2tr
[
∂Ẽ
∂pi j

ẼT
]

and
∂Ẽ
∂pi j

=
∂(Q̃Q̃d)T

∂pi j
(Q̃Q̃d) + (Q̃Q̃d)T

∂(Q̃Q̃d)
∂pi j

.

Let K × K matrix Ξk , ekeTk . Denote

d̃k = ∥Q̃(:, k)∥−1
2 = ∥PÃ(:, k)∥−1

2

as the k-th diagonal element of Q̃d. Then Q̃d can be expressed as

Q̃d =

K∑
k=1

d̃kΞk.

Denote ak = Ã(:, k) as the k-th column of Ã. One can derive that

∂Q̃d

∂pi j
= −

K∑
k=1

d̃3
k aTk e jeTi PakΞk

with ei and e j both elementary vectors of dimension M × 1. Hence

∂(Q̃Q̃d)
∂pi j

=
∂Q̃
∂pi j

Q̃d + Q̃
∂Q̃d

∂pi j
= eieTj ÃQ̃d − Q̃

K∑
k=1

d̃3
k aTk e jeTi PakΞk.

Therefore,

tr
[
(Q̃Q̃d)T

∂(Q̃Q̃d)
∂pi j

ẼT
]

= tr

(Q̃Q̃d)T (eieTj ÃQ̃d − Q̃
K∑

k=1

d̃3
k aTk e jeTi PakΞk)ẼT


= eTj ÃQ̃d ẼT (Q̃Q̃d)T ei −

K∑
k=1

eTi Pakd̃3
k tr
[
(Q̃Q̃d)T Q̃Ξk ẼT

]
aTk e j

= eTj ÃQ̃d ẼT (Q̃Q̃d)T ei −
K∑

k=1

eTi Pakd̃3
k

[
eTk ẼT (Q̃Q̃d)T Q̃ek

]
aTk e j

, eTj ÃQ̃d ẼT (Q̃Q̃d)T ei − eTi P
K∑

k=1

akd̃3
k H̃1(k, k)aTk e j

, eTj ÃQ̃d ẼT (Q̃Q̃d)T ei − eTi PG1e j,
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where

H̃1 , ẼT (Q̃Q̃d)T Q̃, G1 ,
K∑

k=1

d̃3
k H̃1(k, k)ak aTk .

According to the characteristics of trace operation, one has

tr
[
∂(Q̃Q̃d)T

∂pi j
(Q̃Q̃d)ẼT

]
= tr
[
(Q̃Q̃d)T

∂(Q̃Q̃d)
∂pi j

Ẽ
]
.

Therefore,

tr
[
∂(Q̃Q̃d)T

∂pi j
(Q̃Q̃d)ẼT

]
= eTj ÃQ̃d Ẽ(Q̃Q̃d)T ei − eTi PG2e j,

where

G2 ,
K∑

k=1

d̃3
k H̃2(k, k)ak aTk

with

H̃2 , Ẽ(Q̃Q̃d)T Q̃.

Subsequently,

∂(∥Ẽ∥2F)
∂pi j

= 2tr
[
∂Ẽ
∂pi j

ẼT
]
= 2
[
eTj ÃQ̃d(ẼT + Ẽ)(Q̃Q̃d)T ei − eTi P(G1 + G2)e j

]
,

which leads to
∂(∥Ẽ∥2F)
∂P

= 2(Q̃Q̃d)(ẼT + Ẽ)Q̃d ÃT − 2PG,

where

G , G1 + G2 =

K∑
k=1

d̃3
k

[
H̃1(k, k) + H̃2(k, k)

]
ak aTk .

Using the definition of R̃ in (51), G can be calculated as G = ÃR̃ÃT . This completes the proof.
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