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Abstract

In this paper, we explore a collaborative direction-of-arrival (DOA) esti-
mation technique that utilizes multiple closely spaced subarrays to maximize
the potential of distributed arrays while minimizing communication overhead
between the subarrays and the processing center. Each subarray computes
its self-covariance matrix using the full-precision data and transmits it, along
with a one-bit version of the measured data, to the processing center. The
processing center generates one-bit cross-covariance matrices between subar-
rays, which are combined with full-precision subarray self-covariance matrices
to create the mixed-precision covariance matrix of the entire array for source
DOA estimation. This approach utilizes the full array aperture and all avail-
able degrees of freedom of the entire distributed array. To address missing
entries in the full covariance matrix, we employ matrix completion, taking
into account its Toeplitz and Hermitian structure. For subarrays that are not
positioned on the half-wavelength grid, we propose an iterative DOA estima-
tion method to ensure robust DOA estimation performance. Our proposed
approach outperforms scenarios where cross-covariance matrices are unavail-
able or the entire covariance matrix is not interpolated. With the same
communication traffic limitation, it demonstrates superiority over schemes
that utilize only full-precision data or only one-bit data.
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1. Introduction

Array processing plays an important role in various applications in wire-
less communications, radar sensing, and radio astronomy [3–5]. Distributed
sensor array platforms enabling collaborative sensing and network communi-
cation systems are gaining popularity in diverse sensing applications [6–12].
When using a large-scale array is impractical or impossible due to platform
limitations, distributed arrays can be an attractive alternative. Distributed
arrays are composed of multiple separately separated subarrays with a small
number of sensors each. In such platforms, fusing the information observed
at multiple distributed subarrays forms a virtual array with a larger aper-
ture, more degrees of freedom (DOFs), and significantly enhanced sensing
capability [13–16].

In this paper, we investigate a collaborative platform where multiple dis-
tributed subarrays are used to estimate source directions-of-arrival (DOAs).
These subarrays are collocated, i.e., while the separation between these subar-
rays could be larger than the subarray size, they are close enough so that the
different subarrays observe each impinging source with the same DOA. Such
problems can be encountered in a broad class of distributed array sensing
applications involving automotive radar, unmanned aerial vehicles (UAVs)
and Internet of Things (IoT), where each vehicle or node is equipped with a
small-size array [17, 18]. It is noted that subarrays may have different num-
bers of sensors and different sensor configurations, such as uniform spacing,
sparse spacing with the same configuration, or sparse spacing with different
configurations. We consider the general case that the subarrays have the
same number of sensors, but the array configuration in each subarray gener-
ally differs. Sparse subarray configurations provide better sensing capability
as they reduce the redundancy in computing the second-order correlation
required for DOA estimation [19–24].

Both coherent and non-coherent approaches can be used to estimate signal
DOAs for distributed arrays. Assuming complete subarray synchronization
and precise position information for each subarray, coherent DOA estimation
is implemented by sending all subarray data to a processing center where
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these data are combined to create a virtual full array with a large aperture.
The formed array is frequently referred to as a partially calibrated array
when the sensor positions within each subarray are correctly calibrated, but
the relative positions of the subarrays are unknown. For example, the DOA
estimation problem for a partially calibrated array is considered in [14].

Coherent processing of data observed at different subarrays requires sev-
eral demanding conditions, including transfer of high-volume raw data from
the subarrays to the processing center. Such high-volume traffic can be
avoided by using the much simpler non-coherent processing strategy [13,
15, 16]. In this case, each subarray computes its covariance matrix locally
and forwards it to the processing center. This reduces the communication
traffic significantly compared to coherent processing, which requires raw data
to be transferred to the processing center. However, non-coherent process-
ing suffers from a substantial loss of array aperture and DOA estimation
performance.

In this paper, we propose a novel strategy that achieves high-resolution
DOA estimation with low communication traffic. In this scheme, each sub-
array computes its self-subarray covariance matrix using the full-precision
measured data. For brevity, we refer to the covariance matrix of the sub-
array signal vector as self-covariance matrix, whereas the covariance ma-
trix computed between the signal vectors of two different subarrays as their
cross-covariance matrix. Each subarray then transmits its estimated self-
covariance matrix and one-bit version of the measured data to the processing
center. Transmitting only the one-bit data significantly reduces communica-
tion traffic compared to transmitting the full-precision raw data. The pro-
cessing center computes the cross-covariance matrices between subarray pairs
using the one-bit data. These one-bit cross-covariance matrices and the full-
precision subarray self-covariance matrices computed by the subarrays are
combined to form the full-array covariance matrix.

Recently, one-bit data processing has received extensive interest in the
field of array signal processing, for example, in DOA estimation and (MIMO)
processing problems [25–31]. However, relying only on one-bit data degrades
the DOA estimation performance. The proposed approach avoids this per-
formance degradation by using full-precision self-covariance matrices for all
subarrays, which have a small size for transmission to the processing center.
This keeps the communication traffic low.

The computed full-array covariance matrix is associated with sparse sen-
sor placement due to the sparse subarray configurations as well as the dis-
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placement between the subarrays. Therefore, the resulting DOA estimation
performance suffers from high sidelobes. Assuming a moderate level of sen-
sor sparsity, we use matrix completion methods to interpolate the missing
holes in a half-wavelength grid so that the DOFs can be increased and the
sidelobe effects in the estimated spatial spectrum can be minimized [32–40].
Considering that the spacing between the subarrays may not be an integer
multiple of half-wavelength, an iterative DOA estimation method is proposed
that compensates for the phase shift due to off-grid displacement. After the
covariance matrix is fully interpolated, we use the MUSIC algorithm [41] to
perform gridless DOA estimation. To provide an insightful understanding
of the offerings of the proposed approach, a pessimistic Cramér-Rao bound
(CRB) is also provided.

The offerings of this paper are summarized below:

1. A low-complexity collaborative DOA estimation scheme is proposed
that utilizes full-precision data for local self-covariance matrix compu-
tation and one-bit data for cross-covariance matrix computation.

2. We apply a covariance matrix interpolation scheme to perform DOA
estimation that accounts for off-grid subarray alignments.

3. An iterative DOA estimation approach is developed to compensate for
the off-grid subarray displacement and provide improved estimation
of the cross-covariance matrices for the off-grid subarray displacement
scenario.

4. We provide a pessimistic CRB analysis to understand the importance of
full-precision self-covariance matrix and the inclusion of cross-covariance,
as well as the effect of data precision on cross-covariance matrix com-
putation.

The idea of utilizing one-bit cross-covariance matrices was first presented
in [1], and the CRB was analyzed in [2]. In [1], identical uniform linear
arrays (ULAs) are used in the subarrays, and all sensors are assumed to be
aligned to the half-wavelength grid. In contrast, this paper assumes sparse
arrays in the subarrays, and the sparse array configurations may differ, and
sensor interpolation is considered. The consideration for off-grid subarray
placement is completely new, and an iterative method is developed to account
for the unknown phase due to off-grid subarray placement. We further added
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a comparison of the required data bits and revealed the superiority of the
proposed method over full-precision and one-bit data cases in traffic-limited
networks.

It is noted that there are recent reports on employing mixed-resolution
analog-to-digital converters (ADCs) in massive MIMO systems to reduce
the processing complexity and power consumption with a low performance
loss [42–44]. For example, in [42], a nested array is considered where low-
resolution ADCs are used for the inner subarray and high-resolution ADCs
are used for the outer subarray. In [44], DOA estimation for coprime MIMO
radar is considered, where the array antennas are grouped into low-resolution
and high-resolution subsets. Furthermore, the authors in [45] proposed a
method that can identify more targets and achieve better performance than
existing subspace-based algorithms while deriving the CRB for nested MIMO
radars. In [43], mixed-ADCs are used in massive MIMO systems with hy-
brid analog and digital beamformers. Because these applications consider
collocated antennas, such systems do not involve network traffic, so both the
signal model and processing approaches differ from our problem. Unlike our
problem, where the self-covariance matrices are accurate and the data pre-
cision is only compromised in the cross-covariance matrices, the resolution
in a massive MIMO system is limited by the ADCs, and such resolution is
shared in the computation of all correlations.

The remainder of the paper is organized as follows. In Section 2, we
formulate the signal model of the proposed collaborative DOA estimation
scheme and describe the subarray self-covariance matrices computed locally
at each subarray and the cross-covariance matrices between different pairs
of subarrays computed at the processing center. Section 3 describes the co-
variance matrix interpolation using structured matrix completion techniques
and performs DOA estimation when all subarrays are aligned to the half-
wavelength grid. Covariance matrix interpolation and DOA estimation in-
volving subarrays in off-grid positions are considered in Section 4, where an
iterative DOA estimation approach is proposed. In Section 5, we analyze the
pessimistic CRB of the underlying DOA estimation problem. In Section 6,
we numerically evaluate the DOA estimation performance of the proposed
scheme, and the results are compared to different situations where the cross-
covariance matrices are estimated with full-precision data or are based only
on one-bit data. It is learned that the performance of the proposed technique
is slightly inferior to the case where the covariance matrices are provided with
full precision but is significantly better than the case when cross-covariance
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matrices are unavailable. Matrix completion exploiting the Toeplitz and Her-
mitian properties of the covariance matrix also assumes that all sensors are
on a half-wavelength grid. Situations that violate these assumptions will be
considered in separate works.

Notations: Lower-case and upper-case bold characters are used to repre-
sent vectors and matrices, respectively. In particular, IN denotes the identity
matrix of dimensionN×N , 1 denotes a vector or a matrix with all elements to
be unity, and 0 denotes a vector or matrix with all elements to be zero. (.)T,
(.)∗, and (.)H stand for the transpose, conjugate, and conjugate transpose
(Hermitian) operations, respectively. and (·)† denotes the Moore-Penrose
inversion of a matrix. ∥ · ∥F denotes the Frobenius norm, ◦, ⊙, and ⊗ re-
spectively denote the Hadamard, Khatri-Rao, and Kronecker products, and
A ⪰ 0 implies that matrix A is positive semidefinite. In addition, vec(·) and
tr(·) respectively perform the vectorization and trace operations on a matrix,
and T (z) represents a Hermitian and Toeplitz matrix that takes vector z as
its first column. diag(·) and bdiag(·) respectively form diagonal and block
diagonal matrices. In addition, [A]p,q denotes the (p, q)th element of matrix
A, whereas ⟨v⟩i denotes the ith entry of vector v. E[·] performs statistical
expectation, and Q(·) denotes the element-wise one-bit quantization oper-
ation. ȷ is used to denote the unit imaginary number, and R(·) and I(·)
respectively return the real and imaginary parts of a complex number. We
use CM×N to denote the M ×N complex space, and Z+ stands for the set of
positive integers.

2. System Model

Consider a collaborative array platform consisting of K collocated sub-
arrays. The locations of the Mk sensors of the kth subarray are given as

Sk = {pk,1d, pk,2d, . . . , pk,Mk
d}, (1)

where k = 1, . . . , K, d = λ/2, and λ is the signal wavelength. The first sensor
of the first subarray is set as the reference of the entire array, i.e., p1,1 = 0.
For each subarray, the first sensor of the subarray serves as a local reference.

We assume that all subarray locations are synchronized and their sensor
locations, S1, · · · ,SK , are known. In addition, in each subarray, the sen-
sor positions pk,md relative to their respective reference sensor position pk,1d
are considered integer multiples of d, i.e., (pk,m − pk,1) ∈ Z+ ∀k,m. How-
ever, the displacement between the reference sensor of a subarray, pk,1d is
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not necessarily an integer multiple of d for k ≥ 2. From practicality of the
subarray placement and for notation convenience without generality, we as-
sume pk2,1 > pk1,1 for any pair of subarrays with k2 > k1 and pk+1,1 > pk,Mk

for k = 1, · · · , K − 1. This assumption ensures that Sk1 ∩ Sk2 = ∅ for all
k1 ̸= k2 so that the full set of all array sensor is given as S =

⋃K
k=1 Sk without

redundant elements in the resulting set.
When L uncorrelated far-field narrowband signals are received at the

array from distinct directions θ = [θ1, · · · , θL]T, the baseband form of the
signal vector received at the kth sparse subarray is expressed as:

xk(t) =
L∑
l=1

ak(θl)sl(t) + nk(t) = Aks(t) + nk(t), (2)

where sl(t) and θl denote the waveform and direction of the lth signal, re-
spectively, s(t) = [s1(t), · · · , sL(t)]T, and

ak(θl) = [e−ȷpk,1π sin(θl), e−ȷpk,2π sin(θl), . . . e−ȷpk,Mk
π sin(θl)]T (3)

is the steering vector of the kth subarray corresponding to the signal associ-
ated with direction θl. In addition, nk(t) is the additive circularly complex
white Gaussian noise vector observed at the kth subarray with mean 0 and
covariance matrix σ2

nIMk
. We refer to Ak = [ak(θ1), ak(θ2), . . . , ak(θL)] as

the manifold matrix of the kth subarray, and A = [AT
1 , AT

2 , · · · AT
K ]

T is
defined as the manifold matrix of the entire array. It is noted that, because
all signal and noise components are zero-mean, we use the terms correlation
and covariance interchangeably.

Stacking the received signal vectors of all subarrays becomes

x(t) = [xT
1 (t), · · · ,xT

K(t)]
T ∈ CM×1, (4)

where M =
∑K

k=1Mk denotes the total number of sensors in the entire array.

2.1. Local Processing at Each Subarray
The self-covariance matrix of the data received at the kth subarray is

expressed as:
Rk = E[xk(t)x

H
k (t)] = AkSA

H
k + σ2

nIMk

=
L∑
l=1

σ2
l ak(θl)a

H
k (θl) + σ2

nIMk
,

(5)
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where σ2
l denotes the power of the lth signal for l = 1, . . . , L and S =

E[s(t)sH(t)] = diag([σ2
1, σ

2
2, · · · , σ2

L]) is the diagonal source covariance matrix.
In practice, the self-covariance matrix of each subarray is estimated using

T available data samples, i.e.,

R̂k =
1

T

T∑
t=1

xk(t)x
H
k (t). (6)

It is noted that, because R̂k is Hermitian and thus generally contain redun-
dant entries associated with the same lags, only the unique entries of R̂k

need to be transferred to the processing center.
In addition to R̂k, the kth subarray quantizes the received data and sends

the resulting one-bit complex data to the processing center. The real and
imaginary parts of signal vector xk(t) are respectively quantized, and the
one-bit complex signal vector is expressed as [25]

yk(t) = Q[R(xk(t))] + ȷQ[I(xk(t))]. (7)

2.2. Centralized Processing at the Processing Center
The full-precision data cross-covariance matrix between the k1th and k2th

subarrays is given as:

Rk1k2 = E[xk1(t)x
H
k2
(t)]

= Ak1SA
H
k2

=
L∑
l=1

σ2
l ak1(θl)a

H
k2
(θl).

(8)

The quantized one-bit cross-covariance matrix corresponding to Rk1k2 is ex-
pressed as

R
[1B]
k1k2

= E[yk1(t)y
H
k2
(t)]

= Ak1S̄A
H
k2

=
L∑
l=1

σ̄2
l ak1(θl)a

H
k2
(θl),

(9)

where σ̄2
l = σ2

l /(
∑L

l=1 σ
2
l + σ2

n) denotes the normalized power of the lth source
for l = 1, . . . , L, k1, k2 = 1, . . . , K with k1 ̸= k2, and S̄ = diag([σ̄2

1, σ̄
2
2, · · · , σ̄2

L])
represents the normalized source covariance matrix [46].

If all K subarrays send the T1 samples of full-precision raw data to the
processing center, the processing center estimates the cross-covariance matrix
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as

R̂k1k2 =
1

T1

T∑
t=1

xk1(t)x
H
k2
(t). (10)

On the other hand, when the subarrays only send T2 samples of the one-bit
quantized data to the processing center, the processing center estimates the
one-bit cross-covariance matrix between the k1th and k2th subarrays as

R̂
[1B]
k1k2

=
1

T2

T∑
t=1

yk1(t)y
H
k2
(t), (11)

where superscript [1B] emphasizes that the results are obtained from one-bit
quantized data.

For an arbitrary zero-mean stationary signal z(t), the self-covariance
RZ(τ) between z(t) and z(t+τ) is related to the one-bit counterpart R[1B]

Z (τ)
by an arcsine relationship as [47, 48]

R[1B]
z (τ) =

2

π
sin−1

(
Rz(τ)

Rz(0)

)
. (12)

Note here that the self-covariance function Rz(τ) is normalized by Rz(0)
in the above computation because one-bit quantization results do not carry
signal magnitude information. Similarly, the cross-covariance between z1(t)
and z2(t+ τ) is obtained as

R[1B]
z1z2

(τ) =
2

π
sin−1

(
Rz1z2(τ)√
Rz1(0)Rz2(0)

)
. (13)

As a result, by denoting

R̄k1k2 = sin
(π
2
R
[
R̂

[1B]
k1k2

])
+ ȷ sin

(π
2
I
[
R̂

[1B]
k1k2

])
, (14)

the cross-covariance matrix R̂k1k2 between subarrays k1 and k2 with the cor-
rect entry magnitudes is obtained from R̂

[1B]
k1k2

as

R̂k1k2 = Ĝ
1/2
1 R̄k1k2Ĝ

1/2
2 , (15)

where Ĝk = R̂k ◦ IMk
is a diagonal matrix representing the power of the

signals received at the kth subarray sensors.
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3. Covariance Matrix Interpolation and DOA Estimation

In this section, we consider the DOA estimation with and without covari-
ance matrix interpolation. First, we consider in Section 3.1 the case where
no interpolation is applied. Section 3.2 considers covariance matrix interpo-
lation when all sensor nodes are aligned on a half-wavelength grid. When the
inter-subarray spacing is not an integer multiple of half-wavelength, we need
to compensate for the phase-offset component due to the off-grid subarray
positions. DOA estimation in such a general scenario is addressed in Section
4.

3.1. DOA Estimation without Covariance Matrix Interpolation
We generate the estimated covariance matrix of the full array vector x of

all M sensors at the processing center by fusing the estimated subarray self-
and cross-covariance matrices as follows:

R̂ =


R̂1 R̂1,2 · · · R̂1,K

R̂2,1 R̂2 · · · R̂2,K

...
... . . . ...

R̂K,1 R̂K,2 · · · R̂K

 ∈ CM×M . (16)

In this case, MUSIC can be directly applied. We perform eigen-decomposition
of matrix R̂ as

R̂ = ÛΣ̂ÛH = ÛsΣ̂sÛ
H
s + ÛnΣ̂nÛ

H
n , (17)

where Ûs and Ûn contain columns that respectively span the signal and
noise subspaces, whereas Σ̂s and Σ̂n are diagonal matrices containing the
corresponding eigenvalues. Also, denote the full-array steering vector as the
cascade of all subarrays, i.e.,

a(θ) = [aT
1 (θ), a

T
2 (θ), · · · , aT

K(θ)]
T. (18)

Then, MUSIC finds the DOAs of the L sources as the highest peaks of the
following pseudo-spectrum:

P (θ) =
1

aH(θ)ÛnÛH
n a(θ)

. (19)

In this case, the array resolve up toM−1 sources and the estimated spectrum
may subject to high sidelobe effects due to missing entries.

10



Figure 1: Sensor positions of the three lags.

3.2. Covariance Matrix Interpolation
Considering the distributed array with all sensors aligned on a half-

wavelength grid with moderate separations, the problem is similar to the
single-array interpolation problem considered in the literature [32–40], ex-
cept that the cross-covariance matrices are obtained from one-bit data. We
can use the same methods to interpolate a ULA to be interpolated with vir-
tual sensor position at 0, 1, · · · , P = pK,MK

. In this paper, we use the
method described in [37] due to its higher interpolation accuracy. A brief
description of this approach is summarized below.

For the array configuration illustrated in Fig. 1, the self- and cross-
covariance matrices are illustrated in Fig. 2(a). Black circles depict self-lags,
whereas blue circles show cross-lags. Circles in magenta dash lines show
missing entries.

The virtual signal vector of the difference coarray is obtained by vector-
izing the covariance matrix R̂, given as

v̂ = vec(R̂) = Avp+ σ2
ni, (20)

where Av =A∗⊙A, p = [σ2
1, σ

2
2, . . . , σ

2
K ]

T, and i= vec (I). Each element of
v̂ corresponds to a virtual sensor. The positions of the virtual sensors are
determined by the difference lags between the physical sensor positions. The
entire set of virtual sensors obtained from the difference lags corresponding
to all physical sensors is expressed as

D = {sd|sd = s1 − s2, s1 ∈ S, s2 ∈ S}. (21)

Because the self-covariance matrices that are locally computed at each
subarray are more accurate than the cross-covariance matrices that are com-
puted using one-bit data, it is reasonable to distinguish difference lags com-
puted from self- and cross-covariance entries in the formed mixed-precision
covariance matrix, particularly when both of them are available for some
lags. That is, when a covariance corresponding to a specific lag (such as lag
5 and −5 in Fig. 2) is available for both self- and cross-covariance entries, we
will use the self-covariance results because they have a higher accuracy.
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(a) Self- and cross-covariance matrix entries. (b) Covariance matrix entries after filling with known
lags.

Figure 2: Array covariance matrix before and after filling with known lag values (black
circle: self-lags; blue circle: cross-lags; magenta circle: missing holes; black dot: filled with
self-lags; blue dot: filled with cross-lags).

We define the lags generated from the self-covariance of the kth subarray
as

D[self]
k = {sd|sd = s1 − s2, s1 ∈ Sk, s2 ∈ Sk}. (22)

The collection of all subarray self-lags constitutes the entire self-lag set, ex-
pressed as

D[self] =
{
D[self]

1 , D[self]
2 , · · · ,D[self]

K

}
. (23)

Note that some entries of D[self]
1 , D[self]

2 , · · · ,D[self]
K may be redundant. The

cross-lags are obtained as

D[cross] = D\D[self], (24)

where \ denotes the difference between two sets. With such lags obtained, we
can fill in the covariance matrix by utilizing the Toeplitz structure of the ULA
spanning the entire array aperture. The covariance entries corresponding to
the example shown in Fig. 2(a) are illustrated in Fig. 2(b), where missing
entries filled by self-lags are depicted by black dots, whereas those filled with
cross-lags are depicted by blue dots. As the result, most of the holes are
filled, whereas the remaining holes will be filled using a matrix completion
method.
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We first initialize the ith element of the interpolated virtual array signal
vector vI ∈ C(2P+1)×1 as

⟨vI⟩i =

{
⟨v̂⟩i, i ∈ D,
0, i ∈ SI\D,

(25)

for −P ≤ i ≤ P , where SI denotes all virtual ULA positions between −P and
P . By dividing vI into U = P + 1 overlapping subvectors r1, r2, . . ., and rU ,
we form matrix V = [r1, . . . , rU ] ∈ CU×U which is Hermitian and Toeplitz.

Denote g(θ) as the U × 1 steering vector. Then, an atom that represents
matrix V can be expressed as G(θ) = g(θ)bH(θ) ∈ CU×U for θ ∈ [−90◦, 90◦],
where

b(θ) = [1, e−ȷπ sin θ, . . . , e−ȷπ(U−1) sin θ]T (26)

describes the relative phase offsets of the U columns of matrix V with respect
to its first column [35, 37].

Letting

A = {G(θ) | θ ∈ [−90◦, 90◦]} (27)

denote the full atom set, the smallest number of atoms that represent the
virtual measurement matrix V is defined as

||V||A,0 = inf
K

{
V =

∑K

k=1
pkG(θk), pk ≥ 0

}
. (28)

It is shown in [37] that problem (28) is equivalent to the following rank
minimization problem:

min
z,M

rank[T (z)]

subject to
[
T (z) V
VH M

]
⪰ 0, (29)

where M is a Hermitian and Toeplitz matrix. Let γ > 0 be a positive
constant and W ⪰ 0 be a positive semidefinite matrix. Then, the above
rank-minimization problem can be reformulated as [37, 38]:
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min
z,W

γ−2(∥W − γI∥2F) + 2tr[WT (z)]

subject to ∥T (z) ◦B− R̃v∥F ≤ η,

tr[WT (z)] ≤ 0, (30)
W ⪰ 0,[
T (z) z
zH U−1tr[T (z)]

]
⪰ 0,

where R̃v = T (r1) and B ∈ CU×U is a binary matrix whose non-zero entries
indicate derived statistics in R̃v, whereas zero values indicate interpolated
results.

Once the covariance matrix of the ULA is estimated as T (z) from the
above optimization problem, MUSIC algorithm is applied to perform gridless
DOA estimation.

4. Iterative Method for DOA Estimation

In the previous sections, we assumed that all subarrays are on-grid, mean-
ing that their positions are defined by integer multiples of a half-wavelength.
In practice, we can align all sensors within a subarray, but we usually do not
have full control over the subarray positions. In other words, while subarray
sensors may be spaced an integer multiple of a half-wavelength apart, the
subarrays themselves, represented by the reference sensor position of each
subarray, may not be exactly aligned with the on-grid positions. Motivated
by this fact, in this section, we develop a new iterative DOA estimation
technique which enables application to such scenarios with off-grid subarray
positions and provides improved DOA estimation performance.

Consider that the reference sensor of the kth subarray is located at posi-
tion p̃k,1d = pk,1d+ϵk, where p̃k,1 is generally a non-integer, pk,1d is the closest
integer to p̃k,1 indicating an on-grid position, and ϵk with |ϵk| ≤ d/2 = λ/4
is the fraction part of the reference sensor position of the kth subarray with
respect to half-wavelength. It is assumed that the off-grid displacement of
all subarrays, p̃k,1, k = 2, · · · , K, is known.

Considering the off-grid subarray positions, the steering vector of the kth
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subarray is expressed as

ãk(θ) =
[
e−ȷp̃k,1π sin(θ), e−ȷp̃k,2π sin(θ), · · · , e−ȷp̃k,Mk

π sin(θ)
]T

= exp(−ȷ2πϵk sin(θ))ak(θ),
(31)

where ak(θ) is given in (3) and is computed based on the nearest on-grid
sensor position. In this case, the data received by the kth subarray becomes

xk(t) = Ãks(t) + nk(t) = AkΦks(t) + nk(t), (32)

where Ãk = AkΦk and Ak are respectively the array manifold matrices
corresponding to ãk(θ) and ak(θ). As such, the matrix

Φk = diag ([exp(−ȷ2πϵk sin(θ1)), · · · , exp(−ȷ2πϵk sin(θL))]) (33)

relating these two matrices represents the phase-offset due to the off-grid
subarray positions. It is clear that such off-grid subarray position issue only
affects the cross-covariance matrices between subarrays which, for subarrays
k1 and k2, now become

R
[1B]
k1k2

= E[yk1(t)y
H
k2
(t)] = Ãk1S̄Ã

H
k2

= Ak1Φk1k2S̄A
H
k2
, (34)

which depends on Φk1k2 = Φk1Φ
H
k2

, whereas the self-covariance matrix of
each subarray, given in (5), is unaffected because Φkk = IMk

for all k.
Based on the estimates of R

[1B]
k1k2

and Rk, we can obtain the estimated
full-array covariance matrix R̂ in (16) as the input to initiate the iterative
DOA estimation approach described below.

The total covariance matrix R̂ is interpolated and the DOAs of the L
sources are estimated. Let the estimated DOAs of the sources obtained
in the ith iteration be denoted as θ̂

(i)
= [θ̂

(i)
1 , · · · , θ̂

(i)
L ]T. Based on these

estimated DOAs at the ith iteration, we compute the steering vector for the
off-grid position case using (31), and the corresponding array manifold of
the individual subarrays as Ã

(i+1)
k = [ãk(θ̂

(i)
1 ), ãk(θ̂

(i)
2 ), · · · , ãk(θ̂

(i)
L )] for k =

1, · · · , K. Furthermore, the power of the lth source in the ith iteration is
estimated as [51]

(σ̂2
l )

(i) =
1

(ã(θ̂
(i)
l ))HÛs(Σ̂s)−1(Ûs)Hã(θ̂

(i)
l )

, (35)
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where Ûs denotes the signal subspace corresponding to the interpolated co-
variance matrix R̂ obtained by using (34) and (10), and Σ̂s denotes the
diagonal matrix of the corresponding eigenvalues. The use of the signal sub-
space in the matrix inversion provides more accurate estimation of the signal
power as compared to the commonly used total covariance matrix inversion,
particularly when the input signal-to-noise ratio (SNR) is low [51].

Based on the estimated signal DOAs and power of all the L sources, we
can estimate the source covariance matrix Ŝ(i) = diag([(σ̂2

1)
(i), (σ̂2

2)
(i), · · · , (σ̂2

L)
(i)]).

Denote x̂
(i)
k (t) = Ã

(i)
k s + nk(t) as the received array data corresponding to

the array manifold Ã
(i)
k estimated at the ith iteration, the estimated cross-

covariance matrix between subarrays k1 and k2 in the ith iteration can be
obtained as

R̃
(i)
k1k2

= E
[
x̂
(i)
k1
(t)
(
x̂
(i)
k2
(t)
)H]

= Â
(i)
k1
Ŝ(i)

(
Â

(i)
k2

)H
. (36)

Once the cross-covariance matrices between all subarray pairs are computed
with the phase-offset terms compensated at the end of the iterative steps,
the corresponding cross-covariance matrices in (16) are replaced by that ob-
tained from (36), which is then interpolated following the method developed
in [37] to form the interpolated covariance matrix. In this matrix, the effect
of the off-grid subarray displacement is nullified, and thus the precision of
the estimation is improved. The DOA estimation is performed on the in-
terpolated covariance matrix by employing subspace-based approaches, such
as MUSIC, as discussed in the previous section. The iteration is continued
until the stopping criterion is met. Such stopping criterion typically includes
that a predetermined number of iterations Nmax is executed, or the desired
estimation accuracy is achieved, e.g., maxl |θ̂(i)l − θ̂

(i−1)
l | ≤ ϵθ, where ϵθ is a

predefined bound. The proposed iterative method is summarized in Algo-
rithm 1.

The computational complexity of our proposed method is separately con-
sidered for the DOA estimation when all subarrays are aligned to the half-
wavelength grid, and the additional iterative approach to compensate for the
off-grid subarray displacements. For the former, the complexity of the pro-
posed algorithm is primarily dominated by the matrix completion required
to interpolate the covariance matrix R̂(i), which is described in Section 3.2
with a complexity of O(M4) [38], and the eigen-decomposition of the com-
pleted covariance matrix required to perform the MUSIC algorithm, whose
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complexity is given as O(M3) [49, 50]. As such, the overall complexity is
denoted as O(M4).

The iterative approach closely follows the similar steps in each iteration,
including matrix completion and DOA estimation, with an additional step of
signal power estimation. Therefore, the computational complexity required
to perform each iteration is O(M4), and the total complexity of the iterative
algorithm is Nmax · O(M4).

When simulations are carried out for the distributed array depicted in Fig.
1 and reported in Section 6 using an Intel(R) Core(TM) i7-1065G7 CPU with
16 GB memory, the initial DOA estimation phase takes 2.5 seconds, whereas
the time needed to perform 2 iterations of the iterative subarray displacement
compensation is 4.8 seconds.

Algorithm 1 Proposed Iterative DOA Estimation Method
Input: {yk(t)}Kk=1, {R̂k}Kk=1, {p̃k,1}Kk=1, Nmax, ϵθ
Output: {θ̂l}Ll=1

1: Compute {R̂[1B]
k1k2

}Kk1,k2=1 from (11)
2: Construct R̂ in (16) using all R̂k and R̂

[1B]
k1k2

3: Interpolate R̂ using (30)
4: Estimate the DOAs {θ̂(0)l }Ll=1 by applying MUSIC to R̂
5: for i = 1 : Nmax do
6: Estimate ã(θ̂

(i)
l ) from (31) and (σ̂2

l )
(i) from (35) using {θ̂(i−1)

l }Ll=1

7: Construct Ŝ(i) using estimated source powers
8: Update {R[1B]

k1k2
}Kk1,k2=1 using (36)

9: Update R̂(i) using (16)
10: Estimate the DOAs {θ̂(i)l }Ll=1 by applying MUSIC to R̂(i)

11: if max
l

|θ̂(i)l − θ̂
(i−1)
l | ≤ ϵθ then

12: break
13: end if
14: end for

5. CRB Analysis

To carry out the CRB analysis, we construct the parameter vector ψ =
[ωT,pT, σ2

n]
T, where the spatial frequencies and power of the L sources are
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given as ω = [ω1, · · · , ωL]
T and p = [σ2

1, σ
2
2, · · · , σ2

L]
T, respectively. Note

that the spatial frequency ωl of the lth source is related to its DOA θl by
ωl = d sin(θl)/λ = sin(θl)/2. Therefore, the cardinality of the unknown
parameter vector is 2L+ 1.

The true probability density function (PDF) of one-bit data is obtained
from the orthant probabilities [52] of Gaussian distribution which, in general,
does not have a closed-form expression [46]. Instead, a pessimistic closed-
form approximation is used in [46] to derive the CRB of the estimated DOAs
obtained from one-bit sparse linear array data. The Gaussian assumption
leads to the largest, i.e., most pessimistic, CRB results in a general class of
data distributions [53].

5.1. Probability Model
Assuming uncorrelated incoming signals [54, 55], we determine the stochas-

tic CRB by employing the pessimistic model as described in [46]. We uti-
lize the previously mentioned relationship between covariances derived from
full-precision data and those from one-bit data, and model x(t) to follow a
complex Gaussian distribution with zero mean and covariance matrix R, i.e.,
x(t) ∼ CN (0,R), where

R = E[x(t)xH(t)]

=


R1 R1,2 · · · R1,K

R2,1 R2 · · · R2,K
...

... . . . ...
RK,1 RK,2 · · · RK

 .
In this expression, the block diagonal elements denoted as Rk represents
the self-covariance matrix for the kth subarray and is defined in (5), whereas
Rk1,k2 is the cross-covariance matrix between the k1th and the k2th subarrays
obtained using the one-bit data, given as

Rk1k2 = G
1/2
1 R̄k1k2G

1/2
2 , (37)

and Gk = Rk ◦ IMk
. In the above expression,

R̄k1k2 = sin
(π
2
R
[
R

[1B]
k1k2

])
+ ȷ sin

(π
2
I
[
R

[1B]
k1k2

])
, (38)

where R
[1B]
k1k2

is defined in (9). It is noted that, because noise components
observed at different sensors are uncorrelated, cross-covariance matrices do
not include noise terms.
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5.2. Formulation of the CRB
Consider a random vector x with a conditional PDF given as p(x|ψ),

where ψ is a deterministic parameter vector. Denote ψp as the pth element
of the unknown parameter vector ψ. Then, for p, q ∈ {1, 2, · · · , 2L+ 1}, the
general expression for the (p, q)th element of the Fisher information matrix
(FIM) is given by

[F]p,q = −E
{
∂2 ln p(x|ψ)
∂ψp∂ψq

}
. (39)

When T samples are used in the estimation of the covariance entries, the
formulation closely follows the existing results that are derived for sparse
arrays [55]. In this case, denoting r = vec(R) ∈ CM2×1, (39) can be written
as [55–57]:

[F]p,q = T · tr
(
R−1 ∂R

∂ψp

R−1 ∂R

∂ψq

)
= T ·

[(
RT ⊗R

)−1/2 ∂r

∂ψp

]H [(
RT ⊗R

)−1/2 ∂r

∂ψq

]
.

(40)

The parameters of interest for which we would like to find the CRB are
spatial frequencies of the signals, i.e., ω. Thus, we divide the parameter
vector as ψ = [ωT o]T, where o = [pT σ2

n] consists of the signal and noise
power terms. Then, the total FIM can be decomposed into components that
are respectively associated with the spatial frequencies and other terms, given
as

F = T ·
[
∆ω

∆o

]H
[∆ω ∆o] = T ·

[
∆H

ω∆ω ∆H
ω∆o

∆H
o∆ω ∆H

o∆o

]
, (41)

where
∆ω =

(
RT ⊗R

)− 1
2

[
∂r

∂ω1

, · · · , ∂r
∂ωL

]
(42)

and
∆o =

(
RT ⊗R

)− 1
2

[
∂r

∂σ2
1

, · · · , ∂r
∂σ2

L

,
∂r

∂σ2
n

]
. (43)

When the FIM is nonsingular, following the derivation in [55], the CRB
of ω can be obtained as the inverse of the Schur complement of the ∆H

o∆o

block as [58]:

CRB(ω) =
1

T
(∆H

ωΠ
⊥
o∆ω)

−1, (44)
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where Π⊥
o = I − ∆o(∆

H
o∆o)

−1∆H
o denotes the orthogonal projection onto

the null space of ∆o.
In the following subsections, we formulate the FIM and CRB expressions

for the full-precision and the one-bit data model for the distributed sparse
arrays based on [55] and [46] respectively. The CRB analysis for the mixed-
precision data model will then follow.

5.3. CRB and FIM for Full-Precision Data Model
Denote D as the lags resulting from the difference coarray of the en-

tire array, and D as the number of non-negative elements in D such that
|D| = 2D − 1 [24]. Define aD(θl) ∈ C(2D−1)×1 as the steering vector of the
difference coarray corresponding to the lth signal and J ∈ {0, 1}M2×(2D−1)

as a binary selection mask such that a∗(θl) ⊗ a(θl) = JaD(θl). We obtain
the covariance matrix from the full-precision data as RFP, and its vectorized
result is expressed as

rFP =
L∑
l=1

σ2
l JaD(θl) + σ2

nvec(IM). (45)

We obtain the partial derivative of rFP corresponding to the spatial frequency
of the lth signal, ωl, as

∂rFP
∂ωl

= −ȷ2πσ2
l · J · diag(D) · aD(θl), (46)

whereas the partial derivatives of rFP with respect to the signal power σ2
l of

the lth signal and to the noise power σ2
n are respectively given as

∂rFP
∂σ2

l

= JaD(θl) (47)

and
∂rFP
∂σ2

n

= vec(IM). (48)

Therefore, when full-precision array data are used, substituting (46)–(48)
into (41)–(44) yields the FIM and the CRB of the DOA estimates.
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5.4. FIM and CRB for One-Bit Data Model
For the CRB and FIM expressions of the one-bit data model, we con-

sider the entire array as a sparse linear array and compute the full-precision
normalized cross-covariance matrix R̄FP as

R̄FP = Adiag(p̄)AH +

(
1−

L∑
l=1

σ̄l
2

)
IM . (49)

Utilizing the arcsine law, the corresponding covariance matrix obtained from
the one-bit data is expressed as

R1B =
2

π
arcsine

(
R̄FP

)
. (50)

Substituting (49) to (50) and vectorizing, we obtain

r1B =
2

π
J · arcsine

[
ADp̄+

(
1−

L∑
l=1

σ̄l
2

)
e

]
, (51)

where AD = [aD(θ1), · · · , aD(θL)] ∈ C(2D−1)×L and e ∈ {0, 1}(2D−1)×1 is a
column vector such that ⟨e⟩D = 1 and the other elements are zero.

The partial derivative of r1B with respect to spatial frequency ωl of the
lth signal is formulated as

∂r1B
∂ωl

= −4jσ̄l
2J · diag(D)

[
diag(h̄) · R (aD(θl))− e

+ȷdiag(h) · I (aD(θl))
]
.

(52)

Similarly, the partial derivatives of r1B with respect to signal power σ2
l and

the noise power σ2
n are respectively given as

∂r1B
∂σ2

l

=
2

π
J
[
diag(h) · R (aD(θl))− e

+ȷdiag(h̄) · I (aD(θl))
] (53)

and

∂r1B
∂σ2

n

=
2

π
J
[
diag(h) · e+ ȷdiag(h̄) · e

]
, (54)
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where h = [hD1 , · · · , hD2D−1
]T and h̄ = [h̄D1 , · · · , h̄D2D−1

]T whose uth elements,
u ∈ [1, 2, · · · , (2D − 1)], are respectively expressed as

hDu =
1√

1−
∣∣∣R(∑L

l=1 σ̄l
2e−ȷ⟨D⟩uπ sin θl

)∣∣∣2 (55)

and
h̄Du =

1√
1−

∣∣∣I (∑L
l=1 σ̄l

2e−ȷ⟨D⟩uπ sin θl

)∣∣∣2 . (56)

Similarly, substituting (52)–(54) into (41)–(44) renders the FIM and the CRB
for the one-bit data case.

5.5. CRB and FIM for Mixed-Precision Data Model
Now we consider the CRB of the array when mixed-precision data are

utilized. Define two binary mask matrices Γ = bdiag(1M1 , · · · ,1MK
) and

Γ̄ = 1M −Γ such that Γ ◦R = Γ ◦RFP contains the self-covariance matrices
associated with the full-precision data and Γ̄ ◦ R = Γ̄ ◦ R1B contains the
cross-covariance matrices associated with the one-bit data. As such, the
mixed-precision covariance matrix R can be expressed as

R = Γ ◦R+ Γ̄ ◦R = Γ ◦RFP + Γ̄ ◦R1B. (57)

In order to compute the FIM components ∆ω and ∆o, which are re-
spectively defined in (42) and (43) and correspond to the full-precision and
one-bit data, we can use the results developed in Sections 5.3 and 5.4 respec-
tively for the full-precision and one-bit data models. For clarity, we use the
superscripts FP, MP, and 1B to denote the FIM components corresponding
to the full-precision, mixed-precision, and one-bit data models, respectively.
By further denoting ΓE = diag[vec(Γ)] and Γ̄E = diag[vec(Γ̄)], the two FIM
components corresponding to the mixed-precision data model are respectively
computed as

∆MP
ω = ΓE∆

FP
ω + Γ̄E∆

1B
ω (58)

and
∆MP

o = ΓE∆
FP
o + Γ̄E∆

1B
o . (59)

Incorporating equations (58) and (59) into equation (44) leads to the
calculation of the CRB for the sparse distributed array in the mixed-precision
data scenario.

22



-90 -60 -30 0 30 60 90

 (deg)

-1.5

-1

-0.5

0

N
o
rm

a
liz

e
d
 s

p
e
c
tr

u
m

 (
d
B

)

-90 -60 -30 0 30 60 90

 (deg)

-1.5

-1

-0.5

0

N
o
rm

a
liz

e
d
 s

p
e
c
tr

u
m

 (
d
B

)

-90 -60 -30 0 30 60 90

 (deg)

-40

-30

-20

-10

0

N
o
rm

a
liz

e
d
 s

p
e
c
tr

u
m

 (
d
B

)

(a) (b) (c)

Figure 3: MUSIC pseudo-spectra based on self- and cross-covariance matrices with full
precision data. (a) No interpolation, 7 sources, (b) No interpolation, 12 sources (c) With
interpolation, 12 sources.
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Figure 4: MUSIC pseudo-spectra based on self-covariance matrices only or one-bit data
for cross-covariance matrix computations. (a) No cross-covariance elements, with inter-
polation, 12 sources, (b) Mixed-precision data, with interpolation, 12 sources, (c) One-bit
data, no interpolation, 7 sources.

It is important to note that the existence of the CRB is contingent upon
the FIM being non-singular [55]. It can be deduced from the preceding
expressions that this requirement can be met when both the full-precision
and one-bit FIMs are non-singular.

6. Numerical Results

Consider a distributed array consisting of three subarrays, and each sub-
array consists of 3 sparsely placed sensors. In the default array configura-
tion, the three subarrays have distinct sensor placement patterns, respectively
given as

S1 = {0, 1, 4}d, S2 = {7, 9, 11}d, S3 = {16, 19, 21}d.
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The distributed array configuration is shown in Fig. 1. In this case, all array
sensors are aligned with the half-wavelength grid.

6.1. Comparison of MUSIC Pseudo-Spectra
We consider two scenarios, respectively with 7 and 12 uncorrelated sources

that are uniformly distributed between −50◦ and 50◦. We use T = 200 data
snapshots at each subarray and the input SNR is set to 0 dB.

As a benchmark for comparison, we first consider the DOA estimation
problem where all sensors use full-precision data without quantization. In
Fig. 3(a), the MUSIC pseudo-spectrum of the DOA estimates is shown for
L = 7 sources without performing covariance matrix interpolation. In this
case, since the number of sources is smaller than the number of the total
number of sensors and no interpolation is performed, all source locations
are determined with a root mean-square error (RMSE) of 0.084◦. However,
due to the holes in the correlation lags, high sidelobes are observed in the
spectrum.

On the other hand, when L = 12 which is higher than the total number
of sensors, the MUSIC spectrum fails to locate the sources, as depicted in
Fig. 3(b). In Fig. 3(c), we consider the scenario when matrix completion is
performed to interpolate the correlation results. In this case, the correlation
results for all lags between 0 and 21 are obtained and, as a result, all the 12
sources are resolved with an RMSE of 0.314◦.

Next, we consider the scenario in which no raw or one-bit data are ex-
changed between the subarrays and the processing center. Rather, each
subarray only reports its self-covariance matrix to the processing center. In
this case, the covariance matrix of the whole array observed at the processing
center is block-diagonal, as all the cross-covariance elements are missing. It
is interesting to note that, while matrix completion is still possible based on
the self-covariance matrices [59], the source directions are unresolved as a
result of the missing off-block-diagonal elements in the resulting covariance
matrix. The MUSIC pseudo-spectrum obtained for the 12-source scenario is
shown in Fig. 4(a) which does not indicate the correct DOA estimates.

When one-bit quantized data are transmitted from the subarrays to the
processing center and used for the computation of cross-covariance entries,
the DOA estimation performance using the resulting mixed-precision covari-
ance matrix is only slightly inferior to the full-precision case. Fig. 4(b) de-
picts the MUSIC pseudo-spectrum for the 12-source scenario after performing
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Figure 5: (a) RMSE and CRB versus number of snapshots (ϵk = 0, input SNR = 5 dB).
(b) RMSE and CRB versus input SNR (dB) (ϵk = 0, T = 5,000 snapshots).

matrix completion, and the corresponding RMSE is 0.491◦. When matrix in-
terpolation is not carried out, similar to what we considered in Fig. 3(a), the
array with 9 physical sensors does not recognize more than 8 sources. Fig.
4(c) shows the results of the mixed-precision array for the 7-source scenario
without performing interpolation. In this case, the RMSE is 0.176◦.

In the simulation results that follow, we focus on the results with 10
sources uniformly distributed between −50◦ and 50◦, and covariance matrix
completion is performed in all cases. Except in Section 6.3, the default array
is used and no off-grid subarray displacements are considered.

6.2. Comparison of CRB and RMSE Performance
The CRB and RMSE performance of the distributed array is depicted in

Fig. 5(a) with respect to the number of snapshots. The RMSE results are
computed from 200 independent trials and covariance matrix completion is
performed. It is found in this figure that the mixed-precision processing
offers a significant improvement over the one-bit data case, even though
it is inferior to the full-precision data case due to one-bit quantization in
reconstructing the cross-covariance elements. Similar results are observed in
Fig. 5(b) which shows the CRB and RMSE curves with respect to the input
SNR of the signals.

Fig. 6 shows the CRB with respect to the number of sources, L. Noted
that the maximum number of sources that can be detected by the distributed
array is 20 because there are 21 sensors in the interpolated array. It is
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Figure 6: CRB versus number of sources (ϵk = 0, input SNR = 5 dB, T = 5,000 snapshots).

observed in Fig. 6 that the CRB increases sharply When more than 20 sources
are present.

6.3. Effect of Off-Grid Subarray Positions
So far, we have focused on the default distributed array in which all

the subarrays are on the half-wavelength grid, i.e., ϵk = 0 for all subarrays.
In this subsection, we consider the case in which the second subarray (i.e.,
k = 2) is displaced from the on-grid location by ϵ2 = 0.2d. To estimate
the source DOAs in this scenario, we employ the iterative DOA estimation
approach described in Section 4.

In Fig. 7, we show the convergence performance of the iterative method.
The solid curves in Fig. 7 show the performance of the proposed iterative
method for DOA estimation in the case of ϵ2 = 0.2d, where the first iteration
represents the results before applying the iterative method. It is observed
that the iterative method improves the performance in the underlying off-grid
subarray displacement scenario. The RMSE does not significantly change
after the second iteration, implying the fast convergence of this approach.
This is because the effect due to the phase offset, expressed in Φk1k2 , is
adequately compensated for in the second iteration, and increased iterations
does not further improve the estimates of the source covariance matrix Ŝ.
For comparison, the dashed lines in Fig. 7 show the RMSE corresponding to
the same parameters as the solid lines of the same color when the subarray
does not have off-grid displacement (i.e., ϵ2 = 0).

Fig. 8 compares the RMSE performance after convergence. As illustrated
in Fig. 8(a), the full-precision data model achieves the best performance,
whereas the mixed-resolution model detects all sources with a significantly

26



1 2 3 4

Number of iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
E

 o
f 

 (
d

e
g

re
e

)

SNR= 5 dB, T = 1000

SNR= 5 dB, T = 5000

SNR= 5 dB, T = 10,000

Figure 7: Mixed precision RMSE versus number of iterations (solid lines: ϵ2 = 0.2d;
dashed lines: ϵ2 = 0).

low RMSE than the one-bit counterpart with using the full-precision self-
covariance matrices. Similar trends can also be observed in Fig. 8(b) where
the RMSE is plotted with respect to the varying input SNR.

In order to better demonstrate the significance of the proposed iterative
method, we present the RMSE of the estimated DOAs for different subarray
displacement scenarios as shown in Fig. 9. The CRB is also included for
reference. It is observed in Fig. 9(a) that, when the proposed iterative algo-
rithm is not used, the RMSE values become even higher for the ϵ2 = 0.5d
case compared to that of the ϵ2 = 0.2d case. On the other hand, when the
iterative algorithm is employed, the RMSE values corresponding to the two
cases become very close, demonstrating the effectiveness of the proposed al-
gorithm to alleviate the effects due to subarray displacements. Similar results
can be observed in Fig. 9(b) when the RMSE is depicted with respect to the
input SNR.

6.4. Comparison of Required Data Bits
In the previous subsections, it has been shown how the RMSE perfor-

mance of the estimated DOAs varies with respect to the number of available
snapshots and the input SNR. In this subsection, we compare the perfor-
mance in terms of the number of data bits being transferred between the
subarrays and the processing center. In particular, it is shown that, when
the same number of data bits is used, the proposed mixed-precision data
model achieves the best performance compared to the full-precision and one-
bit data cases.
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Consider that D-bit data are used to express the full-precision data. The
number of bits required for the full-precision model is

DFP =M sensors× T snapshots×D bits× 2 components

= 2MTD bits.

As an example, when M = 9 sensors, T = 1, 000 snapshots, and D = 10 bits,
the resulting DFP is 18,000 bits. More bits are required is a higher number
of bits are used to represent full-precision data.

For the one-bit model, the number of required bits can be obtained as

D1B =M sensors× T snapshots× 1 bit× 2 components

= 2MT bits.

For the same example, it renders D1B = 1, 800 bits.
Now for the mixed-precision model, the data bits required can be formu-

lated as the summation of the data required for the one-bit model, and the
upper triangular portion of the self-covariance matrices. Because the self-
covariance matrix is Hermitian with identical diagonal entries, ignoring any
redundant entries due to same lag pairs, the number of unique entries in the
kth subarray with Mk elements is Mk(Mk − 1)/2 + 1. Therefore, the total
number of data bits to be transmitted from the subarrays to the processing
center is

DMP = D1B + 2D
K∑
k=1

[
Mk (Mk − 1)

2
+ 1

]
bits.

For the underlying example, we obtain DMP to be 2, 040 bits. This is only
240 more bits or 13.3% higher than the one-bit case but achieves 88.67% of
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reduction of the data bits compared to that required for the full-precision
model.

Fig. 10 demonstrates how the data bits required for the three data models
vary with increasing number of snapshots. It can be inferred from the figure
that at high snapshot scenarios, the number of bits required for the mixed-
precision model approaches closer to that of the one-bit model. For example,
when T is increased to 104 snapshots, the required number of bits for the
full-precision, mixed-precision, and one-bit models are respectively 180,000
bits, 18,000 bits, and 18,240 bits. The mixed-precision model still requires
240 bits higher than the one-bit model, but the ratio is reduced to 1.33%. On
the other hand, the reduction from the full-precision model reaches 89.87%.

Fig. 11 compares the RMSE performance achieved with respect to the
number of data bits. The number of data bits depicted in the figure corre-
sponds to the scenarios associated with T = 102, 103, 104, and 105 snapshots.
For a given T , the number of bits required for the full-precision model is
much higher, whereas the one-bit and mixed-precision data models require a
much lower number of data bits. As a result, for a given number of data bits,
the mixed-precision model achieves the lowest RMSE, thus demonstrating
the superiority of the proposed mixed-precision model, making the proposed
approach attractive in a traffic-limited network.

7. Conclusion

In this paper, we considered the DOA estimation problem exploiting col-
laborative distributed arrays to resolve a high number of sources which may
exceed the total number of distributed sensors. The key contribution of

30



this paper is the development of mixed-precision covariance matrices in the
distributed array that leverage the full potential of distributed arrays while
minimizing communication traffic between the subarrays and the processing
center. The required data traffic of the proposed technique is comparable
to the one-bit data case, but the utilization of the full-precision subarray
self-covariance matrices enables high-performance DOA estimation. In par-
ticular, in a traffic-limited network, the proposed technique based on mixed-
precision covariance matrices achieves the highest DOA estimation perfor-
mance. We also considered the scenario in which subarrays are not aligned
in the half-wavelength grid, and an iterative DOA estimation method was
developed to ensure robust DOA estimation.
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